
Communities from Seed Sets

Reid Andersen
University of California, San Diego
9500 Gilman Dr., Department 0112

La Jolla, CA 92093

randerse@math.ucsd.edu

Kevin J. Lang
Yahoo Research

3333 Empire Avenue
Burbank, CA 91504

langk@yahoo-inc.com

ABSTRACT
Expanding a seed set into a larger community is a common
procedure in link-based analysis. We show how to adapt
recent results from theoretical computer science to expand
a seed set into a community with small conductance and
a strong relationship to the seed, while examining only a
small neighborhood of the entire graph. We extend existing
results to give theoretical guarantees that apply to a variety
of seed sets from specified communities. We also describe
simple and flexible heuristics for applying these methods in
practice, and present early experiments showing that these
methods compare favorably with existing approaches.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Network

Problems; H.3.3 [Information Systems]: Information Search
and Retrieval—clustering

General Terms
Algorithms, Theory, Experimentation

Keywords
community finding, link analysis, graph conductance, ran-
dom walks, seed sets

1. INTRODUCTION
In this paper, we present a detailed study of the follow-

ing problem: given a small but cohesive ”seed set” of web
pages, expand this set to generate the enclosing community
(or communities). This seed expansion problem has been
addressed by numerous researchers as an intermediate step
of various graph-based analyses on the web. To our knowl-
edge, however, it has never been called out as an interesting
primitive in its own right. As we will show, the mathemati-
cal structure underlying the problem is rich and fruitful, and
allows us to develop algorithms that perform dramatically
better than naive approaches.

The seed expansion problem first came into prominence
in 2000, when Jon Kleinberg introduced the HITS algo-
rithm [7]. That algorithm used a search engine to gener-
ate a seed set, and then performed a fixed-depth neighbor-
hood expansion in order to generate a larger set of pages

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

upon which the HITS algorithm was employed. This gen-
eral recipe has since seen broad adoption, and is now a com-
mon technique for local link-based analysis. Variants of this
technique have been employed in community finding [8], in
finding similar pages [1], in variants of HITS, PageRank [13],
and TrustRank [5], and in classification [2]. More sophisti-
cated expansions have been applied by Flake et al. [4] in the
context of community discovery.

Alongside this body of work in web analysis, the theoret-
ical computer science community has developed algorithms
that find cuts of provably small conductance within a care-
fully expanded neighborhood of a vertex [12]. Intuitively,
these methods are efficient because they make non-uniform
expansion decisions based on the structure revealed dur-
ing exploration of the neighborhood surrounding the vertex.
Our results are based on these techniques, and we present
modified versions of these methods and theorems that apply
to the seed set expansion problem.

The actual computation is done by simulating a “trun-
cated” random walk for a small number of steps, starting
from a distribution concentrated on the seed set. In each
step of the truncated walk, probability is spread as usual to
neighboring vertices, but is then removed from any vertex
with probability below a certain threshold. This bounds the
number of vertices with nonzero probability, and implicitly
determines which vertices are examined. After each step in
the expansion process, we examine a small number of sets
determined by the current random walk distribution, and
eventually choose one of these sets to be the community for
the seed.

1.1 Discussion of seed set expansion
The graphs we consider in our experiments have small

diameter and a small average distance between nodes, so
the number of nodes within a fixed distance of the seed set
grows quickly. Nonetheless, these graphs contain distinct
communities with relatively small cutsizes. We assume that
the seed set is largely contained in such a community, which
we refer to as a target community. In many of the graphs we
consider, the seed is contained in a nested sequence of target
communities. The results in section 2.5 show that if a good
target community exists for the seed, then the random walk
method produces some community that is largely contained
within this target.

When expanding the seed with a truncated walk, a target
community serves as a bottleneck, containing much of the
probability for a significant number of steps. Since proba-
bility is removed from low-probability vertices, this prevents
the support of the walk from expanding quickly beyond the

bottleneck. In contrast, expanding the seed set using a fixed-
depth expansion entirely ignores the bottleneck defining the
community. Some branch of the BFS tree is likely to cross
the bottleneck and rapidly expand in the main graph be-
fore a large fraction of the nodes in the community have
been reached. Thus a fixed depth expansion will be a bad
approximation to the community, and might also be an im-
practically large “candidate set” for further processing.

The goal of examining a small number of nodes is clear
enough, but we also need to pin down what we mean by a
“good” community containing a given seed set. We will do
this by describing the limitations of several possible ways to
define good communities.

Several papers including [4] have defined a community to
be a subgraph bounded by a small cut, which can be ob-
tained by first growing a candidate set using BFS, and then
pruning it back using ST max-flow. Unfortunately, a small
seed set will often be bounded by a cut that is smaller than
the cut bounding the target community, so the mininum cut
criterion will not want to grow the seed set. Flake et al. ad-
dress this problem by performing this process several times,
adding nodes from the candidate set at each step to ensure
expansion.

Another idea for ensuring a reasonable expansion of the
seed set that is less ad hoc than most is to optimize for
conductance instead of cutsize alone. Graph conductance
(aka the normalized cut metric) is a quotient-style metric
that provides an incentive for growing the seed set. Unfor-
tunately, the conductance score can be improved by adding
barely related nodes (or even a disconnected component) to
the seed set. We need to ensure that only nearby nodes are
added to the seed set.

This raises a subtle but important point. While stronger
parametric flow methods do exist for finding low-conductance
cuts within an expanded neighborhood of the seed set, our
walk-based method’s weaker spectral-style guarantee on con-
ductance is counterbalanced by a valuable “locality” prop-
erty which ensures that we output a community consisting
of nodes that are closely related to the seed set. In practice
we try to get the best of both worlds by cleaning up the
walk-based cuts with a conservative use of flow that does
not disturb this locality property very much. Experiments
show that the results compare well with stronger optimiza-
tion techniques.

The random walks techniques are remarkable because they
produce communities with conductance guarantees, yet can
be computed locally rather than on the whole graph, of-
ten while touching fewer nodes than BFS would. The best
low-conductance cuts are more likely than minimum cuts to
non-trivially expand the seed set, but still ensure a small
boundary defining a natural community. Finally, in a cer-
tain sense that we will discuss in section 2.5, the added nodes
are close to the seed set.

2. RANDOM WALK METHODS
As part of their work on graph partitioning and graph

sparsification [12], Spielman and Teng present a method for
finding cuts based on the mixing of a random walk starting
from a single vertex. In that paper, the method is used as
a subroutine to produce balanced separators and multiway
partitions.

In this section, we describe how to use the techniques de-
veloped by Spieman-Teng to find communities from a seed

set, and describe how the size and quality of the seed set af-
fects the results. In sections 2.1-2.3 we present background
on random walks and sweeps. In section 2.4 we show that
any seed set that makes up a significant fraction of a target
community will produce good results with our seed expan-
sion method, and that most seed sets that are chosen ran-
domly from within a target community will also produce
good results. In section 2.5 we present a stripped-down
version of the local partitioning techniques developed by
Spielman-Teng, and describe quantitatively how the size and
quality of the seed set affect the running time and guaran-
tees. In section 2.6 we describe the truncation method used
by Spielman-Teng, and describe the heuristics and practical
modifications we have employed to keep the running time
and total number of vertices examined small.

2.1 Notation
The results in this section apply to graphs that are un-

weighted and undirected. Let A denote the adjacency ma-
trix of the graph under consideration, and let D be the diag-
onal matrix where Di,i = d(vi), the degree of the ith vertex.
The volume of a set of vertices is

Vol(S) =
∑

u∈S

d(u).

The edge border is denoted

∂(S) = { {u, v} | {u, v} ∈ E, u ∈ S, v 6∈ S } ,
the cutsize is denoted |∂(S)|, and the conductance of a set
of vertices is

φ(S) =
|∂(S)|

min
(

Vol(S),Vol(S̄)
) .

This definition of conductance should not be confused with
the conductance associated with a particular random walk
on the graph. In particular, the conductance associated with
a lazy random walk is a factor of 2 smaller.

2.2 Lazy random walks and sweeps
Given a seed set S for which we hope to find a community,

we begin with the probability distribution p0 = ψS , where

ψS =

{

d(x)/Vol(S) if x ∈ S,
0 otherwise.

We then simulate several steps of a lazy random walk, com-
puting the probability distributions pt, where

pt = M tp0,

and where M is the lazy random walk transition matrix

M =
1

2
(I +AD−1).

If the graph is connected, then pt converges to the station-
ary distribution ψV . We are not interested in this limiting
distribution, but rather in the distributions obtained after
a small number of walk steps. We compute pt for all t up
to some specified time T . After each step, we sort the ver-
tices in descending order according the degree-normalized
probabilities

rt(v) = pt(v)/d(v),

letting vt
i be the ith vertex in this order, so that

r(vt
i) ≥ r(vt

i+1).

This ordering defines a collection of sets St
0, . . . , S

t
J , where

St
j = {vt

i | 1 ≤ i ≤ j}, and J is the number of vertices with
nonzero values of p(u)/d(u). The cutsizes, volumes, and
conductances for every set St

1, . . . , S
t
J can be computed in

time proportional to Vol(St
J), by determining the change to

St
i due to the addition of vertex vt

i+1. This process is referred
to as a sweep. We will show that under certain conditions
one of the sweep sets St

j will be a good community for the
seed S.

To make the degree-normalized distribution pt(u)/d(u)
more intuitive, one can view each vertex as consisting of
d(u) minivertices, two minivertices x(u,v) and x(v,u) for each
undirected edge {u, v}. The vector rt can be interpreted
as a probability distribution qt on minivertices by letting
qt(x(u,v)) = rt(u). During the t-th step of the lazy walk,
1
2
qt(x(u,v)) is the amount of probability sent from u to v.
To bound the mixing of the lazy random walk, we consider

an ordering of the minivertices so that qt(x
t
i) ≥ qt(x

t
i+1).

Using the shorthand notation qt(i) = qt(x
t
i), we then define

Pt(k) =

k
∑

i=1

qt(i),

and the related quantity

Ht(k) =

[

Pt(k) −
k

2m

]

.

The functions Pt(k) and Ht(k) provide a strong way to
bound how well the walk has mixed; Pt(k) is the maximum
amount of probability on any set of k minivertices at time
t, and thus the amount of probability that flows over any
set of k edges at time t is at most 1

2
Pt(k). The maximum

amount of probability on a set of vertices A is at most

Pt(Vol(A)) = Ht(Vol(A)) +
Vol(A)

Vol(G)
,

and the L1-distance between pt and the stationary distribu-
tion ψV can be written

|pt − ψV | = 2 max
A⊆V

〈pt − ψV , 1A〉 = 2max
k

[Ht(k)] .

We will need the following monotonicity lemma, which is
a corollary of the result of Lovász and Simonovits [10].

Lemma 1. Pt+1(k) ≤ Pt(k), for any k ∈ [0, 2m].

2.3 Mixing of lazy random walks
For large seed sets, the initial distribution p0 may already

be moderately well mixed, which will lead to better bounds
on Pt(k). In particular, we have the following lemma.

Lemma 2. If p0 = ψS, then

H0(k) ≤ cmin(
√
k,

√
m− k),

where c =
√

1
Vol(S)

.

Proof. This follows easily from the definition of ψS .

The following lemma due to Spielman and Teng is a strength-
ening of a result of Lovász and Simonovits [10] [11]. It
shows that the lazy random walk mixes well unless one of
the sweeps sets St

j has both small conductance and large
drop in degree-normalized probability between the vertices
inside and outside of St

j .

Lemma 3. Let p0 = ψS and let φ and α be some fixed

constants. Either

HT (k) ≤ H0(k)

(

1 − φ2

8

)T

+ αT, (1)

or there exists a sweep cut St
j with t ≤ T such that

1. φ(St
j) ≤ φ, and

2. qt(k0 − φk̄0) − qt(k0 + φk̄0) ≥ 2α

φk̄0
,

where k0 = Vol(St
j) and k̄0 = min(k0, 2m− k0).

Proof. This is Lemma 3.7 of [12]

2.4 Good seed sets
Lemma 3 shows that in the absence of a good sweep cut,

the walk mixes rapidly. If we can show that the walk does
not mix as rapidly as the lemma should imply, then one
of the sweep cuts must be good. One way to do this is to
present a target community C that has small volume, but
contains a large amount of probability from pT , and use this
to place a lower bound on HT (Vol(C)).

The amount of probability that has escaped from C after
T steps, which we will write 〈MTψS , C̄〉, depends on both
the target community C and the seed set S. For every set
C with small conductance, there are a variety of seed sets
for which 〈MTψS , C̄〉 is not much larger than φ(C) · T . To
motivate this, consider the amount of escaping probability
when the seed set is the entire target set C. The following
lemma is also due to Spielman-Teng.

Lemma 4. For any step t, 〈M tψC , C̄〉 ≤ 1
2
φ(C) · t.

Proof. Since our starting distribution is p0 = ψC , each
minivertex in C initially has probability 1

Vol(C)
. Therefore

P0(|∂(C)|) = |∂(C)| · 1

Vol(C)
= φ(C).

By the monotonicity lemma, Pi(|∂(C)|) ≤ φ(C) for all i.
The amount of probability leaving C during the ith walk
step is at most 1

2
Pi(|∂(C)|), so the amount of of probability

on C̄ after t steps is at most 1
2
φ(C) · t.

Any set that is fairly large and nearly contained in the
target community is also a good seed set. The bounds in
the lemma below are weak for smaller seed sets, but are
sufficient for seed sets that make up a significant fraction of
the target community.

Lemma 5 (Large seed sets). Let S be a seed set such

that Vol(C) ≤ βVol(S), and Vol(S ∩ C) ≥ (1 − δ)Vol(S).
Then, for any step t,

〈M tψS , C̄〉 ≤ (1 − δ)
1

2
βφ(C) · t+ δ.

Proof. Assume for now that S ⊆ C. The maximum
amount of probability on any minivertex from p0 = ψS is

1
Vol(S)

, and so

P0(|∂(C)|) = |∂(C)| · 1

Vol(S)
≤ |∂(C)| β

Vol(C)
= βφ(C).

By the monotonicity lemma, Pi(|∂(C)|) ≤ βφ(C) for all i.
The amount of probability leaving C during the ith walk
step is at most 1

2
Pi(|∂(C)|), and so 〈M tψS , C̄〉 ≤ 1

2
βφ(C) · t.

For the general case where Vol(S ∩ C̄) = δ, ψS can be
decomposed as

ψS = (1 − δ)ψS∩C + δψS∩C̄ .

Therefore,

〈M tψS , C̄〉 ≤ (1 − δ)〈M tψS∩C , C̄〉 + δ〈M tψS∩C̄ , C̄〉

≤ (1 − δ)
1

2
βφ(C) · t+ δ.

Seed sets chosen randomly from within a target commu-
nity are also likely to be good seed sets for that community.
The following result is stated without proof, since it follows
by applying a Chernoff-type bound to a weighted sum of
independent random variables in the usual way.

Lemma 6 (Random seed sets). Let S be a set where

each vertex from C is included in S independently with prob-

ability ε. Let ∆ = maxv∈C d(v). For any single specific time

t, the bound

〈M tψS , C̄〉 ≤ φ(C)t

holds with probability at least

1 −
(

e
−εtφ(C)Vol(C)

40∆ + e
−εVol(C)

32∆

)

.

2.5 Communities from a seed set
The following is a stripped-down version of a theorem of

Spielman-Teng, extended for a seed set instead of a single
starting vertex.

Theorem 1. Given a seed set S, choose two parameters

φ and β, let T = 4
φ2 ln(16β) and compute p1, . . . , pT starting

from p0 = ψS. Assume that there exists a set of vertices C
such that Vol(C) ≤ 1

2
Vol(G), and such that S is a fairly

good seed set for C in that 〈MTψS , C̄〉 ≤ aφ(C) · T . If the

parameters φ and β have been chosen so that

1.
Vol(C)
Vol(S)

≤ β, and

2. φ(C) ≤ φ2

32a ln(16β)
,

then there exists a sweep cut St
j with t ≤ T such that

1. φ(St
j) ≤ φ, and

2. qt(k0 − φk̄0) − qt(k0 + φk̄0) ≥ φ

4 ln(16β)k0
,

where k0 = Vol(St
j) and k̄0 = min(k0, 2m− k0).

Proof. If equation (1) from Lemma 3 were to hold with
parameters φ (as chosen in the statement of the theorem)
and α (to be set later), then this would imply

1 − aφ(C)T ≤ 〈MTψS , C〉

≤ Vol(C)

Vol(G)
+

√

Vol(C)

Vol(S)

(

1 − φ2

8

)T

+ αT.

We wish to set T so that we obtain a contradiction. If we
assert that aφ(C)T ≤ 1

8
and αT ≤ 1

8
, it suffices to choose T

such that

1

4
≤

√

Vol(C)

Vol(S)

(

1 − φ2

8

)T

≤
√

βe−
φ2

8
T , (2)

so it suffices to take T = 8
φ2 ln(4

√
β) = 4

φ2 ln(16β). With

this T , the requirement that aφ(C)T ≤ 1
8

is satisfied if

φ(C) ≤ 1
8aT

= φ2

32a ln(16β)
. We can take α = φ2

32 ln(16β)
and

still satisfy the requirement that αT ≤ 1
8
. Since equation (1)

does not hold with this choice of φ,α, and T , Lemma 3 im-
plies that one of the sweep cuts has the desired properties.

The sweep cut St
j can be viewed as a community of the seed

S. In addition to having small conductance, there is a signif-
icant drop in probability outside St

j by Theorem 1. Figure
3 shows an example of this simultaneous small conductance
cut and probability drop.

While these guarantees on St
j are fairly clear, the way

that the community is related to the seed set is more subtle.
The most obvious thing we can say about this relationship
is probably the most important: the community is obtained
by taking all vertices where the value of rt(v) = pt(v)/d(v)
is above a certain threshold. If we view rt(v) as a measure
of closeness to the seed set, this is a strong guarantee.

Unfortunately, rt(v) is not a good measure of closeness to
the seed set when t becomes large. As t tends to infinity,
rt(v) tends to a constant, and the ordering of the vertices
determined by rt(v) tends to the same ordering determined
by the second-largest eigenvector of I +D−1A, which is in-
dependent of the seed set if the graph is connected. This
means that the vertices from the seed set are not guaran-
teed to have the largest values of rt(v), and so the seed set is
not necessarily contained in the resulting community. How-
ever, we have an upper bound on the number of walk steps
taken, and we claim that rt(v) is a good measure of relation-
ship to the seed set for small values of t. In practice, we have
observed that requiring the community to be determined by
a threshold on the values of rt(v) rules out more degenerate
behavior than requiring only that the community contains
the seed.

We cannot hope that the resulting community St
j will

closely match the target community C, without placing ad-
ditional assumptions on the communities inside C. Instead,
the target community is used to ensure that some commu-
nity for S will be found, and this community is likely to be
mostly contained within the target community. This can
be made precise if a stronger restriction is placed on φ(C).
Spielman-Teng showed that if φ(C) is roughly φ3, then the
gap in probability described in Theorem 1 can be used to
show that the majority of vertices in St

j are contained in C.

2.6 Truncation
The actual subroutine created by Spielman-Teng, called

Nibble, has a stronger guarantee than the method we have
presented here. One aspect of Nibble that we would like
to reproduce is the ability to find a small community near
the seed set while keeping the number of vertices examined
small. This is accomplished by using truncated walk distri-
butions in place of exact walk distributions.

In the truncated walk, the probability on any vertex where
rt(v) ≤ ε is set to 0 after each step. This ensures that
the support of the truncated walk Suppt is small, which
gives a bound on the running time of the algorithm, since
the time required to perform a step of the random walk
and a sweep depends on Vol(Suppt). For the theoretical
guarantees to apply, the truncation parameter ε must be

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1000 10000

im
pr

ov
em

en
t f

ac
to

r

vol (number of nodes on seed side of cut)

changes to Early sweep cuts due to max-flow post-processing

.GOV

Phrases Movies

Figure 1: A plot of the factors by which cutsize gets
better and enclosed probability gets worse as a re-
sult of sliding window ST max flow post-processing.
The top 3 lines show that for all three tasks the cut-
size is often improved by 10 to 50 percent. The bot-
tom 3 lines (hard to see, but just below y=1.0) show
how much enclosed probability is lost due to the re-
arrangement of nodes caused by the post-processing.
Usually less than 1 percent is lost.

small enough so that εT is smaller than the probability gap
q(k0 − φk̄0) − q(k0 + φk̄0) implied by Theorem 1.

In our experiments we perform a more severe kind of
truncation, at a stronger level than is supported by these
guarantees. We specify a target volume k0, sort the ver-
tices in terms of pt(v)/d(v) for the current truncated prob-
ability vector pt, and let i0 be the last index such that
Vol({vt

1, . . . , v
t
i0
}) ≤ k0. We then remove the probability

from all vertices vt
j where j > i0. In section 3.6 we will

experimentally show that a target cluster can be accurately
found by setting k0 somewhat larger than the cluster size.

3. EXPERIMENTS ON THREE DATASETS

3.1 From theory to experiment
The previous sections contained theorems proving that

given a sufficiently distinct target set (a subgraph with small
enough conductance) and a sufficiently “good” seed set lying
mostly within it, a lazy local random walk will grow the seed
set and return a low-conductance community for the seed
set. We also proved that good seed sets are not rare, and
that a big enough or random subset of the target set should
be good.

Due to constant factors, it is often hard to tell whether a
theoretical method will work in practice. Therefore in the
following subsections we will describe sanity check experi-
ments on three datasets in which we used a sparse matrix
viewer to choose target sets and seed sets that appeared
likely to satisfy the preconditions of the theorems, so that
we could check whether the method actually recovered the
target sets with reasonable accuracy.

3.2 Cut improvement with flow
There are several reasons for using flow to clean up the

sweep cuts. First, it is generally a good idea to do this for
any spectral-type graph partitioning method [9]. Second,

count recall URLs starting with:
1381 0.672 www-pao.ksc.nasa.gov/kscpao/
829 0.997 science.ksc.nasa.gov/shuttle/
203 0.975 www.jsc.nasa.gov/Bios/
162 1.000 neurolab.jsc.nasa.gov/
104 1.000 science.ksc.nasa.gov/htbin/
42 1.000 shuttle.ksc.nasa.gov/shuttle/
25 0.925 science.ksc.nasa.gov/persons/
21 0.875 liftoff.msfc.nasa.gov/shuttle/
20 1.000 science.ksc.nasa.gov/docs/
18 0.750 www.ksc.nasa.gov/shuttle/
14 1.000 science.ksc.nasa.gov/facilities/
11 0.916 www.ksc.nasa.gov/persons/
76 other mostly nasa related

Table 1: Contents of cluster grown from 25 percent
of the science.ksc.nasa.gov/shuttle URLs.

aggressive probability truncation can produce cuts that are
even noisier than usual. Third, in the following sections
we will see empirical evidence that flow-based improvement
makes the sweep cut method less sensitive to the number of
walk steps that are taken.

However, this post-processing needs to be done with care;
in some preliminary experiments in which we grew well past
the size of the target set and then used parametric flow to
shrink back to the cut with optimal conductance of any cut
containing the seed set, we sometimes got surprising solu-
tions containing distant, essentially unrelated nodes. Those
results were a clear demonstration that conductance and
containment of the seed set do not entirely capture our
goals in seed set expansion. We actually want to find a low-
conductance set that is obtained by adding nearby nodes to
the seed set. Back in section 2.5 we argued that if a set of
nodes contains a lot of probability from a random walk that
hasn’t run for too many steps, then it has a version of the
desired locality property.

TS
graph nodes

in sweep order

min ST cut

sliding window covers 0.1 total probability

To improve the sweep cuts without sacrificing the local-
ity property, we did some conservative post-processing with
repeated ST max flow calculations across a sliding window
covering 10 percent of the total probability.1 These calcula-
tions were free to rearrange the lower probability nodes near
a bottleneck, but not the higher probability nodes near the
seed set, thus allowing us to reduce the cutsize without risk-
ing the loss of too much enclosed probability. The plots in
Figure 1 show that our actual losses of enclosed probability
were typically at least an order of magnitude smaller than
the cutsize improvement factors.

1A different rule of thumb that is more motivated by the
theory is that the sweep cut St

j can be safely improved using
a window in which the number of “active” vertices to the
left and right of j be such that the amount of active volume
on each side is |∂(St

j)|.

Figure 2: A low-resolution view of a small part of
the .GOV adjacency matrix showing the block asso-
ciated with the Kennedy Space Center.

3.3 .GOV Graph, KSC Seedset
The starting point for this graph was TREC’s well-known

.GOV web dataset. To make the graph’s block structure
more obvious (so that we could visually choose a seed set
that probably satisfies the requirements of the theory), we
repeatedly deleted all nodes with in- or out-degree above
300 or equal to 1 or 2. Then we symmetrized the graph
and extracted the largest connected component, yielding an
undirected graph with 536560 nodes and 4412473 edges, and
node degrees ranging from 3 to 394.

After inspecting this graph’s adjacency matrix (see Fig-
ure 2), we chose for our target cluster a distinct matrix
block containing roughly 3000 URL’s associated with the
Kennedy Space Center. Among these URL’s were 830 begin-
ning with science.ksc.nasa.gov/shuttle. We randomly
selected 230 of these nodes as a seed set. Jumping ahead to
our results, Table 1 shows that by growing this seed set we
can recover nearly all of the science.ksc.nasa.gov/shuttle
URL’s, plus large fractions of several other families of URL’s
that relate to the Kennedy Space Center.

Figure 3-top shows the probability distribution after 60
steps of a lazy random walk starting with uniform proba-
bility on the seed set and zero probability elsewhere. Along
the x axis nodes are sorted in order of decreasing degree-
normalized probability, which we call “sweep order”. On the
left are the high probability nodes that are close to the seed
set. Lower probability nodes appear towards the right of the
plot and beyond. The sharp decrease in probability around
2500-3000 nodes is the signature of the low-conductance bot-
tleneck that we are interpreting as a cluster boundary.

Each curve in Figure 3-bottom shows a “cutsize sweep”
in which we evaluate all cuts between adjacent nodes in the
sweep order defined by the probability distribution at some
step in the local random walk.2 The two curves here are
for 30 and 90 steps. Notice that both sweeps show a dip
in cutsize around 2500-3000 nodes, which again reveals the
bottleneck at the cluster boundary.

2It might seem confusing that our sweep plots show cutsize
while the random walks algorithm optimizes conductance.
However, conductance is a particular way of combining our
twin goals of 1) growing the seed set and 2) finding a small
boundary. These plots of cutsize as a function of node count
display a range of possible tradeoffs between these two goals.

 0
 0 1000 2000 3000 4000 5000

no
de

 p
ro

ba
bi

lit
y

(a
rb

itr
ar

y
un

its
)

nodes (sorted in order of decreasing probability)

.GOV Graph, KSC Seed Set

60 Walk Steps

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

cu
ts

iz
e

(s
m

al
le

r
is

 b
et

te
r)

number of nodes on seed-side of cut

sw
ee

p,
 3

0
w

al
k

st
ep

s

sw
ee

p,
 9

0
w

al
k

st
ep

s

flow-improved cuts

Figure 3: The top plot shows the sharp decrease in
degree-normalized walk probability caused by the
bottleneck which defines the boundary of the KSC
cluster in the .GOV graph. In the bottom plot this
bottleneck shows up as the dip in cutsize near 2750
nodes. We note that these two plots are consistent
with the two conclusions of theorem 1.

Comparing the 30- and 90-step sweeps, we see that the 30-
step sweep looks better towards the left, while the 90-step
sweep looks better towards the right. This is because the
spreading probability is revealing information about larger
sets later. We also see that the flow-improved solutions for
30 and 90 steps are nearly the same; apparently the flow-
based post-processing helps us get good results for a wider
range of stopping times.

3.4 Sponsored Search Graph, Betting Seedset
This task illustrates what can happen when cluster nest-

ing causes there to be more than one reasonable community
for the seed set. The data originated in Yahoo’s “spon-
sored search” business (Google’s “ad words” is roughly sim-
ilar). In this business advertisers make bids on (bidded
phrase, advertiser URL) pairs, which can be encoded in a
bipartite graph with bidded phrases on one side and adver-
tiser URL’s on the other, with each bid represented by an
edge. Co-clustering this graph reveals block structure show-
ing that the overall advertising market breaks down into
numerous submarkets associated with flowers, travel, finan-
cial services, etc. For our experiment we used a 2.4 million

Figure 4: A low-resolution view of part of a very
small version of the Yahoo sponsored search bipar-
tite incidence matrix. The gambling co-cluster con-
tains a sports betting subcluster.

node, 6 million edge bipartite graph built from part of an old
version of the sponsored search bid database. Node degrees
ranged from 1 to about 30 thousand.

Based on earlier experiences we expected that this dataset
would contain a distinct gambling cluster which would con-
tain a subcluster focused on sports betting (see the matrix
picture in Figure 4). For a seed set we used grep to find
all bidded phrases and advertiser URL’s containing the sub-
string “betting”. This resulted in a 594-node seed set which
includes nodes on both sides of the bipartite graph, and is
probably mostly contained within the sports betting sub-
cluster.

Our seed set lies within the sports betting cluster, and
this in turn lies within the gambling cluster. To which of
these clusters should the seed set be expanded? Perhaps the
algorithm should tell us about both of the possible answers.
In fact, when there are nested clusters surrounding a seed
set, over time the local random walk method often does tell
us about more than one possible answer as the probability
distribution spreads out.

This behavior can be very clearly seen in the probabil-
ity distributions plotted in Figure 5-top. At 15 steps there
is a sharp decrease in probability marking the boundary of
the 3000-node betting subcluster. At 180 steps there is a
different sharp decrease in probability marking the bound-
ary of the enclosing 8000-node gambling cluster. Notice
that within this larger cluster the probabilities are becoming
quite uniform at 180 steps, so it is no longer easy to see the
boundary of the inner cluster.

The cutsize sweeps of Figure 5-bottom show what all this
means in terms of cuts. At 15 steps the boundary of the
inner cluster is sharply defined by a dip in cutsize near 3000
nodes. Also at this point we are starting to get a rough pre-
view of the boundary of the enclosing cluster. This preview
is much improved by the flow-based post-processing.

At 180 steps, the inner dip in cutsize delimiting the bet-
ting subcluster has been washed out (but can be somewhat
recovered with flow) but now we have a good dip near 8000
nodes which is the boundary of the outer gambling cluster.

3.5 Movie/Actress Graph, Spain Seedset
This task has even more cluster nesting than the previous

one. The graph is bipartite and was built from the IMDB file
relating movies and actresses. It has a clear block structure

 2000 4000 6000 8000 10000

no
de

 p
ro

ba
bi

lit
y

 (
ar

bi
tr

ar
y

un
its

)

nodes (sorted in order of decreasing probability)

Sponsored Search Graph, Betting Seed Set

180 Walk Steps

15 Walk Steps

 1000

 10000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

cu
ts

iz
e

(s
m

al
le

r
is

 b
et

te
r)

number of nodes on seed-side of cut

sw
ee

p,
 1

5
w

k
st

ep
s

sw
eep, 1

80 w
k s

teps

flow-improved cuts

Figure 5: These plots are for the sponsored search
task where the seed set lies within two nested clus-
ters. The top plot shows that at different stages
of the walk we see two different sharp decreases in
node probability that mark the boundaries of these
two clusters. In the bottom plot the two boundaries
show up as dips in cutsize near 3000 and 8000 nodes.
Flow-based post-processing improves the cuts and
reduces sensitivity to stopping time.

that is strongly correlated with countries.3 Therefore we
use country-of-production labels for the movies as cluster
membership labels for purposes of choosing seed sets and
measuring precision and recall.

We cleaned up the problem a bit by deleting all multi-
country movies and many non-movie items such as television
shows and videos. We combined several nearly synonymous
country labels (e.g. USSR and Russia) and then deleted all
but the top 30 countries. Finally we deleted all degree-1
nodes and extracted the largest connected component. We
ended up with a bipartite graph with 77287 actress nodes,
121143 movie nodes, and 566756 edges. The minimum de-
gree was 2, and the maximum degree was 690.

For a target cluster we chose Spain, whose matrix block
can be seen in Figure 10. It appears to part of a super-
cluster containing other Spanish- and Portuguese-language
countries. One can also see many cross edges denoting ap-

3Also many countries contain sub-blocks delimited by dis-
ruptive events like the silent / talkie transition, or WWII.

 2000

 4000

 6000

 8000

 10000

 12000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

cu
ts

iz
e

(s
m

al
le

r
is

 b
et

te
r)

number of nodes on seed-side of cut

movies/actresses dataset, sp05 seed set, 40 and 210 walk steps

flow-improved cuts

sweep, 210 walk steps

sw
ee

p,
 4

0
w

al
k

st
ep

s

Figure 6: Cutsize sweeps for the movies / actresses task. The dip near 6500 nodes marks the boundary
of the Spain cluster which immediately contains the 179-node seed set. The dip near 17500 nodes is the
boundary of a super-cluster containing Spanish-language countries plus Portugal. The dip near 45000 nodes
is the boundary of a super-cluster containing Romance-language countries. As usual, earlier in the walk we
get the inner cluster boundaries, while later in the walk we get the outer cluster boundaries. Flow-based
post-processing sharpens the boundaries, especially those that are not the current focus of the walk.

pearances of Spanish actresses in French and Italian movies,
and vice versa, so a Romance-language supercluster would
not be surprising. For a seed set we randomly selected 5
percent of the movies produced in Spain. This seed set con-
tained 179 movie nodes, and 0 actress nodes.

The curves in Figure 6 show cutsize sweeps based on the
probability distribution after 40 and 210 walk steps. The
40-step sweep (open circles) contains a sharp dip at 6500
nodes which marks the boundary of the Spain cluster with
high accuracy. Beyond this bottleneck the 40-step sweep is
pretty sketchy, but the flow-based cuts derived from it (filled
circles) are already surprisingly good.

The open triangle curve in Figure 6 shows that at 210
steps, the random walk has already washed out the bound-
ary of the Spain cluster, but is now giving a better view
of the enclosing hierarchy of four superclusters, especially
those containing 9000 and 17500 nodes. The filled triangles
show that flow-based post-processing recovers the washed-
out boundary of the Spain cluster, and greatly improves the
boundaries of the 27000 and 45000 node superclusters.

Because we have country labels for the movies we can in-
terpret these clusters, and also measure the accuracy with
which they are being recovered. The following table con-
tains precision and recall measurements for the movies4 in
the sets of nodes delimited by the (flow-improved) leftmost,
middle, and rightmost dips in Figure 6. These precision
and recall measurements show that the 6500-node set is a
good approximation of our target cluster of Spain. The

4but not the actresses, for which we lack country labels.

17500-node set (which has the smallest conductance) is a
very good approximation of a mostly Spanish-language su-
percluster containing Spain, Mexico, and Argentina, plus
Portugal. The 45000-node set is a good approximation of
a Romance-language supercluster containing the previous 4
countries plus Brazil, Italy, and France.

quotient = cutsize / nodes preci. recall cluster contents
0.255835 = 1666 / 6512 0.956 0.979 Spain
0.109531 = 1910 / 17438 0.979 0.995 Spanish+Portugal
0.129574 = 5821 / 44924 0.958 0.988 Romance language

3.6 Sweeps from Truncated Walks
In the experiments up to now we have done full walks

with probability spreading to the whole graph. The compu-
tation can be made more local by doing a truncated walk,
as discussed in section 2.6. Here we briefly examine the
qualititative effect of truncating to a fixed number of nodes
after each step. Figure 7 compares cut sweeps over node
orderings derived from truncated and untruncated walks on
the sponsored search and movies/actresses graphs. In the
first two plots we truncated to the top 10000 nodes after
each step. Up through the bottlenecks near 8000 and 6500
nodes, respectively, these new sweeps look similar to the
earlier sweeps over full walks. In the final plot we trun-
cated to 6000 nodes on the movies/actresses task, which is
a bit too small for recovering the 6500-node Spain cluster. In
this case the results are degraded, but somewhat recoverable
with flow-based post-processing.

 0

 2000

 4000

 6000

 8000

 10000

Cutsize

 0 2000 4000 6000 8000 10000 Nodes

bidded phrases dataset, betting seed set, 20 walk steps

wal
k

with
 fu

ll p
ro

bs

w
al

k
w

ith
 tr

un
ca

te
d

pr
ob

ab
ili

tie
s

 2000

 4000

 6000

 8000

 10000

 12000

Cutsize

 0 2000 4000 6000 8000 10000 12000 14000 Nodes

movies/actresses dataset, sp05 seedset, 40 walk steps

wal
k

with
 fu

ll p
ro

ba
bi

liti
es

w
al

k
w

ith
 tr

un
ca

te
d

pr
ob

ab
ili

tie
s

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

Cutsize

 0 1000 2000 3000 4000 5000 6000 7000 8000 Nodes

movies/actresses dataset, sp05 seedset, 40 walk steps

w
al

k
w

ith
 fu

ll
pr

ob
ab

ili
tie

s

w
al

k
w

ith
 to

o
m

uc
h

tr
un

ca
tio

n

flow-improved cuts

Figure 7: The first two plots show how a truncated walk that only keeps the top 10000 probabilities after
each step can still find 8000- and 6000-node clusters in the sponsored search and movies/actresses datasets.
In the final plot we truncated to 6000 nodes, leading to degraded results that were improvable with flow.

C
D

E

A
B

A
E

E
A

r_values

r_values (new)

r_values

nd_ids

nd_ids

nd_ids

nd_ids

probabilities, mostly zero

flags, mostly zero

Truncate to n3 highest−r nodes.

Rev_sort (A,E,n2).

(B,n1) <− (E,n3); goto top.

Sweep (gr,E,n3), evaluating cuts.

Gather from (E,C) to A,

yielding (C,D,E,n2).
Push_probability (gr,A,B,n1),

Invariant: (C, D) all zeros.

clearing nonzeros in (C,D).

maxlive

maxlive

n_nodes

n1

n2

n2

n3

Figure 8: Sketch of one iteration in code whose run
time is (nearly) independent of the graph size.

IM eighth IM full
n nodes 22 M 191 M
n edges 79 M 788 M
max deg 12883 403161
avg deg 7.20 8.25
graph space 724 M 7069 M
C+D space 199 M 1720 M
A+B+E space 0.64 M 0.64 M
avg n1 3399 3040
avg n2 14210 14010
bogus msec / iter 159.7 1234.3
actual msec / iter 9.2 13.5

Figure 9: Stats for runs in which we expanded 100
different seed sets for 100 iterations each in two very
large graphs. Iterations on IM full only took 1.5
time longer, even though the graph is 8 times bigger.

4. FAST IMPLEMENTATION
One of the main features of the truncated random walks

partitioning method is that its time and space requirements
can be independent of the graph size. We will describe some
code that basically achieves this time independence. [How-
ever, it still uses O(n) working space.] Our data structures,
and the algorithm for one iteration are sketched in Figure
8. The graph contains n nodes and m edges, and is repre-
sentable in CSR format in (n+1)*4 + 2*m*4 bytes.

We use five working arrays. C is a scratch array for prob-
abilities containing n doubles, mostly zero. D is a scratch
array containing n flag bytes, mostly zero. Together they
occupy 9 ∗ n bytes.5 We use parallel arrays of doubles and
node id’s to compactly represent small sets of nonzero val-
ues associated with “active” nodes. “Maxlive” is an upper
bound on the number of active nodes. B and E are two
arrays of node id’s each consuming 4 ∗ maxlive bytes. A is
an array of r-values (degree-normalized probabilities) con-
suming 8 ∗ maxlive bytes.

The key to speed and scalability is to never do any O(n)-
time operation, including clearing arrays C or D, except at
program initialization time. While expanding a seed set, we
only do operations whose time depends on the number of
active nodes.

Push probability(gr, A,B, n1) works as follows. The in-
put (A,B, n1) represents the n1 currently active nodes. We
zero the counter n2. The arrays C and D are already ze-
roed. For each active node we push half of its probability to
itself, while the other half is evenly divided and pushed to
its neighbors. To push some probability p to node j, we do:
{C[j]←C[j]+p; if (0=D[j]) {D[j]←1; E[n2]← j; n2←n2+1}}.

We end up with n2 nonzero probabilities scattered in C.
The n2 entries in E tell where they are, so we can gather
them back into A, simultaneously clearing the nonzeros in
C and D.

We now describe some timings on two large graphs. The
191-million node graph IM full is a symmetrized version of
the buddy list graph for users of Yahoo Instant Messen-
ger. We used an out-of-core reimplementation of Metis to
partition this graph into 8 big pieces, one of which is the
22-million node graph IM eighth. We also used Metis [6]
to break both graphs into numerous tiny pieces of size 150-

5Note that we could get below O(n) working space by using
hash tables for C and D. An even fancier program could
use hash tables to store the relevant part of the graph, with
the full graph stored on disk or on a remote server.

200. For each graph, we randomly selected 100 of these tiny
pieces to serve as seed sets for 100 runs of our truncated ran-
dom walk procedure. Each run went for 100 iterations. We
used volume-based truncation, on each step cutting back to
a volume (sum of degrees) of 20000. On average, the proba-
bility pushing step grew the active set from about n1 = 3000
nodes out to about n2 = 14000 nodes, then the truncation
step cut it back to about n3 = 3000 nodes.

Figure 9 summarizes these graphs and runs, which were
done on a 4-processor 2.4 GHz Opteron with 64 Gbytes of
RAM. The average time per iteration was only 9.2 and 13.5
msec for the two graphs. Iterations on IM full took 1.5 times
longer, even though the graph is 8 times bigger. We actually
hoped that the iteration time would be the same. A possible
explanation for the increase is that there were more cache
misses for the bigger graph (the probability pushing step
involves a pattern of “random” memory accesses). To put
these times into perspective, we also list some “bogus” times
where we actually checked our invariant that the C and D
arrays are zeroed at the top of the loop. This checking takes
O(n) time, resulting in a huge increase in time per step, and
a factor of 8 increase from the smaller to larger graph.

4.1 Choosing Parameters
So far we haven’t said much about how to choose values

for the parameters T (the number of walk steps), and k0

(the truncation size). It is clear from the previous sections
that a seed set can have several possible communities; to
choose between them we would need to retain some freedom
in choosing parameter values. According to Theorem 1, it

suffices to set T to be roughly log(β)

φ2 , where φ is a lower

bound on the desired conductance and β is an upper bound

on the expansion factor Vol(C)
Vol(S)

. [We note that the method

often works with much smaller values for T .]
One can obtain an algorithm that depends on a single

parameter by choosing a value of φ and searching through

several values of β, setting T = log(β)

φ2 , and k0 = βVol(S).

The table below shows the results of such a search on the
movies/actresses task, with φ set to .1, and with β set to 2i

for each i between 5 and 10. For each value of i, we return
the cut with the smallest conductance found by any of the
T sweeps. The following table reports the conductance and
volume of this cut, and also the step t at which it was found.

i T k0 conductance volume t
5 500 27616 .1280 27621 480
6 600 55232 .0452 37499 250
7 700 110463 .0240 103720 700
8 800 220972 .0193 103894 280
9 900 441856 .0162 127374 620
10 1000 883712 .0129 835500 780

5. REFERENCES

[1] Krishna Bharat and Monika R. Henzinger. Improved
algorithms for topic distillation in a hyperlinked
environment. In ACM SIGIR-98, pages 104–111,
Melbourne, AU, 1998.

[2] Soumen Chakrabarti, Byron E. Dom, and Piotr Indyk.
Enhanced hypertext categorization using hyperlinks.
In Laura M. Haas and Ashutosh Tiwary, editors,
Proceedings of ACM SIGMOD-98, pages 307–318,
Seattle, US, 1998. ACM Press, New York, US.

Figure 10: A low-resolution view of part of the
movies vs actresses incidence matrix. The Spain
co-cluster lies within a supercluster of Spanish-
and Portuguese-language countries. Also there are
many edges leading from Spain to other Romance-
language countries. See section 3.5.

[3] Fan Chung and Lincoln Lu. Connected components in
random graphs with given degree sequences. Annals of

Combinatorics, 6:125–145, 2002.

[4] Gary Flake, Steve Lawrence, and C. Lee Giles.
Efficient identification of web communities. In Sixth

ACM SIGKDD, pages 150–160, Boston, MA, August
20–23 2000.

[5] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan
Pedersen. Combating web spam with trustrank. In
VLDB, pages 576–587, 2004.

[6] George Karypis and Vipin Kumar. A fast and high
quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing,
20:359 – 392, 1999.

[7] Jon M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM,
46(5):604–632, 1999.

[8] Ravi Kumar, Prabhakar Raghavan, Sridhar
Rajagopalan, and Andrew Tomkins. Trawling the Web
for emerging cyber-communities. Computer Networks,
31(11–16):1481–1493, 1999.

[9] Kevin J Lang. Fixing two weaknesses of the spectral
method. In NIPS, 2005.

[10] László Lovász and Miklós Simonovits. The mixing rate
of markov chains, an isoperimetric inequality, and
computing the volume. In FOCS, pages 346–354, 1990.

[11] László Lovász and Miklós Simonovits. Random walks
in a convex body and an improved volume algorithm.
Random Struct. Algorithms, 4(4):359–412, 1993.

[12] Daniel A. Spielman and Shang-Hua Teng.
Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In
ACM STOC-04, pages 81–90, New York, NY, USA,
2004. ACM Press.

[13] M. Toyoda and M. Kitsuregawa. Creating a web
community chart for navigating related communities,
2001.

