
Optimizing Scoring Functions and Indexes
for Proximity Search in Type-annotated Corpora
Soumen Chakrabarti

IIT Bombay

soumen@cse.iitb.ac.in

Kriti Puniyani
IIT Bombay

kriti@cse.iitb.ac.in

Sujatha Das
IIT Bombay

gsdas@cse.iitb.ac.in

ABSTRACT
We introduce a new, powerful class of text proximity queries:
find an instance of a given “answer type” (person, place,
distance) near “selector” tokens matching given literals or
satisfying given ground predicates. An example query is
type=distance NEAR Hamburg Munich. Nearness is defined
as a flexible, trainable parameterized aggregation function
of the selectors, their frequency in the corpus, and their dis-
tance from the candidate answer. Such queries provide a
key data reduction step for information extraction, data in-
tegration, question answering, and other text-processing ap-
plications. We describe the architecture of a next-generation
information retrieval engine for such applications, and inves-
tigate two key technical problems faced in building it. First,
we propose a new algorithm that estimates a scoring func-
tion from past logs of queries and answer spans. Plugging
the scoring function into the query processor gives high ac-
curacy: typically, an answer is found at rank 2–4. Second,
we exploit the skew in the distribution over types seen in
query logs to optimize the space required by the new index
structures required by our system. Extensive performance
studies with a 10GB, 2-million document TREC corpus and
several hundred TREC queries show both the accuracy and
the efficiency of our system. From an initial 4.3GB index
using 18,000 types from WordNet, we can discard 88% of
the space, while inflating query times by a factor of only
1.9. Our final index overhead is only 20% of the total index
space needed.

Categories and subject descriptors: [H.3.1 Content
Analysis and Indexing; Linguistic processing] [H.3.3 Infor-
mation Search and Retrieval; Query formulation, Retrieval
models].
General terms: Algorithms, Experimentation.
Keywords: Indexing annotated text.

1. INTRODUCTION
Information Retrieval (IR) and XML query systems are

headed for significant unification. Starting with simple fielded
search [2], IR engines are getting more sophisticated at han-
dling more complex annotation tags inlined with source text
[25]. Meanwhile, XML engines are adding text search fea-
tures [13, 5, 30, 14, 1]. The Unstructured Information Man-
agement Architecture (UIMA, http://www.alphaworks.ibm.
com/tech/uima) is moving to standardize annotation and in-
dexing modules and define a query paradigm based on XML
fragments.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to
classroom use, and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

Ontologies (e.g. http://www.ontoweb.org/), linguistic
knowledge bases [26] and processors [8], semantic taggers
[15, 10], and named entity recognizers are the major sources
of annotations added to a corpus. Consider the noun is-a
(hypernym) hierarchy in WordNet, and suppose every noun
(phrase) in the corpus has been annotated with all its hyper-
nyms. E.g., if the token Einstein appears at some position,
we recognize that a special case of types Physicist and per-
son (among others) appears at this position.

Suitable positional indexes of such annotations, integrated
with text, are key enablers of the Semantic Web vision, be-
cause they let us ask powerful queries that combine syntactic
match with type constraints.

Such queries can be used to guide contextual information
extraction and aggregation where scanning the whole cor-
pus (e.g. the Web) would be prohibitive. E.g., we may be
interested in extracting numeric tokens adjacent to hours
and close to the words laptop and battery. We may even use
instances of specified types to activate instances of other
types, e.g., we may want to instantiate type person near
type money amount and words UN and oil.

Apart from soft aggregation, we can also use such queries
as initial approximations to natural language questions. E.g.,
to answer the question “Who discovered the theory of rela-
tivity”, we can seek instances of person in close proximity to
stems discover, theory and relativity, using a suitable func-
tion to weight and aggregate the evidence from occurrences
of the three keywords. Recent NLP work [21] has enabled
mapping questions to target entity types with high accuracy.
Here we consider the task of retrieving answer candidates
using those types.

In this paper we will work with the is-a relation, but our
system works with any partial order on entities, such as is-
part-of, is-contained-in, etc. While small type systems may
suffice for specific applications, open-domain query systems
need very large type systems to be useful. Bootstrapping
large type systems and semantic relations from the Web [10,
28, 11, 6] is an active research area, but efficient index and
query support are needed to fully realize their potential.

1.1 Our contributions
We identify a broad class of proximity queries that com-

bine text and annotation. Despite its simplicity, our frame-
work is surprisingly general and useful for a number of text
mining applications. We describe a system we are build-
ing around Lucene [2] and UIMA (http://www.alphaworks.
ibm.com/tech/uima) that enables efficient annotation in-
dexing and search. We intend to make the system pub-
licly available. We identify two key technical problems that
must be solved: learning proximity scoring functions and
workload-adaptive index optimization.

Scoring functions are fairly standardized in traditional IR

but largely secret in Web search. Early XML query seman-
tics were set- and path-oriented; later, scoring schemes were
adopted from IR and Pagerank [13, 5, 30, 16, 14, 1], but
these are not yet grounded in evaluation as extensive as
standard IR. Therefore, we must learn good proximity scor-
ing functions automatically before we can consider index
and query optimization.

We design a simple and efficient learning algorithm to fit
a proximity-based scoring function to logs of queries and
known answers. When it is plugged into the query proces-
sor, we get high accuracy: recall at rank 300 increases from
0.8 (standard IR) to 0.9 and typically, a correct answer to-
ken appears at rank 2–4. Surprisingly, we find the best-fit
scoring function to be non-monotonic wrt to the distance
between selectors and candidate tokens.

Large and deep type hierarchies are essential to support
open-domain search. Consequently, the index space required
for the type annotations becomes very large compared to
the standard inverted index, which can be compressed sig-
nificantly [31]. We devise new algorithms that exploit the
skew in the distribution of answer types (atypes) in query
logs (i.e., historical workload statistics) and cut down the
additional index storage requirement by 85–90%, while sac-
rificing query processing speed by a modest factor between
1 and 3. Our indexes occupy about the same total space as
the corpus in gzipped form and an optimized IR index.

We present large-scale experiments with two 5 GB cor-
pora having a million documents each, some 400 million dis-
tinct token positions, an atype hierarchy with 80,000 types
(18,000 non-leaf types), and several hundred real-life queries
from the TREC (http://trec.nist.gov/data/qa.html) com-
petition. We use TREC data mainly because of the “truthed”
collection of questions and answers, but our conclusions ap-
pear general. We present data on both the quality of answers
and the performance of our system.

1.2 Related work
IR engines can support basic proximity clauses with user-

supplied windows. The popular IR package Lucene [2] pro-
vides basic fielded search with typically a limited number
of fields, and does not natively support proximity clauses
across fields. INDRI [25] has a rich and powerful query lan-
guage that can support hard proximity clauses across tagged
fields, but a hard proximity window must be specified by the
user; also, we do not know of any workload-sensitive index
optimization in INDRI.

The Bindings Engine [4] (BE) is a critical breakthrough
toward semantic pattern searches, and is specifically opti-
mized for text, but it depends strongly on immediate juxta-
position of ground constants with patterns to instantiate, as
in “cruel ProperNoun said” or “cities such as NounPhraseList”.
BE is reported as using a handful of types (parts of speech
and named entities like person, place, time) which still leads
to an index 10 times larger than an IR index. However,
thanks to the more restricted query class, BE uses more
sequential disk access than our system.

The database and XML communities are steadily adding
IR support [20]. COMPASS [14] and XXL [30] are notable
systems integrating text and structure search, but to our
knowledge do not learn textual proximity. COMPASS sup-
ports “concept” searches of the form “concept=value” where
the concept may have soft aliases, but not “concept near
value” in our sense.

Index space is a significant concern in adding IR support
to XML systems. Florescu et al. [12] survey work in the
database and XML communities and propose a text ex-
tension to XML-QL that allow element-level word matches.
They report an index that is 12 times larger than the uncom-
pressed XML source, and do not consider proximity-based
scoring.

In principle, we can turn our corpus into a giant XML
graph with one token per node and try to apply activation-
based query systems such as ObjectRank [3], XRank [16]
or TeXQuery [1]. However, given an average English to-
ken is 4–5 bytes, and compresses down to 0.5–1 byte in the
IR index, even a 32-bit ID per such node would be pro-
hibitive. Another problem is that (as we shall see) good
scoring functions in the linear token space do not necessar-
ily decay monotonically with distance.

Elegant data structures have been proposed to deal with
“hard” proximity constraints [23, 27], but they do not sup-
port learnable proximity scores, type containment or self-
tuning indexes that exploit the query distribution. Earlier
IR systems have exploited query skew in index-pruning [9]
and caching [29] to achieve impressive reduction of IR index
sizes and query times, but do not consider queries involving
a type hierarchy.

2. SYSTEM ARCHITECTURE
Figure 1 shows our system architecture. The system input

consists of a text corpus, an atype taxonomy with associated
annotators, and pairs of sample queries with truthed re-
sponse tokens embedded in their document contexts. From
the query-response pairs, we learn a scoring function that
rewards and combines proximity between candidate tokens
and matched selectors. This module is described in Sec-
tion 3. The scoring function is plugged into the query pro-
cessor. We also optimize our indexes using the query logs;
this is described in Section 4.

2.1 Atype taxonomy, corpus and annotators
The atype taxonomy is a DAG where nodes are atypes

and edges represent the is-a relation. A number of sources
can provide atype taxonomy information. Here we use Word-
Net [26], but we are also integrating data from http://en.
wikipedia.org/ to increase recall. Is-a instances can also be
bootstrapped from the Web effectively [11]. In this paper,
we will refer to nodes using WordNet synset notation, e.g.,
Einstein#n#2 is the second noun sense of Einstein, meaning
genius.

The corpus is a set of documents. Each document is
a sequence of tokens. Tokens can be compound, such as
New_York. An annotator module (Figure 1) connects some
tokens to nodes in the atype taxonomy. E.g. the string token
Einstein might be connected to both senses Einstein#n#1
(the specific Physicist) Einstein#n#2 (genius). Now, through
is-a connections in WordNet, we know that Einstein is-a
person#n#1. Disambiguation can be integrated into the an-
notator module, but is an extensive research area in NLP
[24] and is outside our current scope.

2.2 Query and candidate responses
A query consists of two parts. The first part is an atype

from the taxonomy. The second part is a set of indexable
predicates on token strings. The simplest predicate is string
or stem equality, but we can also use a fixed library of regular

Atype: subset

Text corpus

Corpus annotated with
links to lexical network

Annotators

Named entity
recognizer

Lexical network
(atype) connector

Atypes: full

Forward In
de

xe
r

P
as

s1

Queries from query logs Atype workloadProximity scoring
function learner

Answer tokens in context
Rank SVM

Log-linear

Smooth log-linear

Smoothed atype
distribution

queryProb(atype)

Workload-driven
atype subset

chooserRegistered atype subset
P

as
s2

Q
ue

ry
 p

ro
ce

ss
or

S
co

rin
g

fu
nc

tio
n

corpusCount(atype) stats

Reachability

Stems

Train Test

C
an

di
da

te

at
yp

e
di

st
rib

ut
io

n

C
ro

ss
-

va
lid

at
io

n

T
yp

ed
 p

ro
xi

m
ity

 q
ue

ry
T

op
k

to
ke

ns

Section 3

Section 4

Figure 1: System architecture. In this paper we are concerned with the blocks highlighted with dotted lines:
learning a scoring function, and workload-driven index optimization.

expressions, also called surface patterns. (Multiple atypes
can be allowed easily, but we will not discuss this here.)

To find the distance between Hamburg and Munich, we
might use the atype linear_measure#n#1 and literal matches
for Hamburg and Munich. The system and experiments in
this paper used only equality predicates on stems; in such
cases, we call string literals selectors. The atype may also
be specified by a surface pattern, in this example, say, by
[:digit:]+, a sequence of digits.

Any token in the corpus that is connected to a descendant
of linear_measure#n#1 is a candidate answer token. We
admit a candidate only if at least one selector appears within
W (typically, 50) tokens of the candidate. Many IR systems
use similar pruning policies.

The score of a candidate depends on the selectors that
appear nearby, as described in Section 3. For some applica-
tions, we simply need to report k candidate tokens in order
of decreasing score. In other applications such as question
answering, a short context around the candidate is submit-
ted to a more sophisticated NLP module.

2.3 Indexes
The query processor opens a cursor on the posting list

for each atype and selector, and does a BE-style [4] multi-
way merge while pushing candidate tokens with scores into
a scoring heap. In Section 4 we will build smaller indexes
where most atypes will be “missing”—in that case, the query
atype must be generalized to a coarser atype, and tentative
result tokens checked using a forward index and a reachabil-
ity index (described later in this section).

2.3.1 The stem and full atype indexes
As shown in Figure 1, in the first pass we build, apart from

the forward and reachability indexes, two ordinary inverted
indexes [31]. One maps from stems to posting lists. Each
posting is a record containing a document ID where the stem
appears, the number of times it appears in the document,
and a list of token offsets where it appears. For English

corpora, the size of the positional index is typically between
15–40% of size of the original (uncompressed) corpus, de-
pending on the index compression techniques used. An IR
index provides efficient sequential access through a posting
list, so that multiple postings can be merged efficiently.

While indexing a stem, we also look for any atype at-
tached to the token, and then follow all is-a links in the atype
DAG up to the roots. For example, from the token Einstein
in some document d, we can reach synsets physicist#n#1,
intellectual#n#1, scientist#n#1, person#n#1, organism#n#1,
living_thing#n#1, object#n#1, causal_agent#n#1, entity#n#1.
We index all these atypes as if they all occurred at the same
token offset in d as Einstein, in a second inverted index
called the (full) atype index, i.e., in the full atype index, the
posting list of each of the above atypes will include d.

A realistic and useful atype taxonomy can be quite deep—
many prominent noun classes in WordNet are 6–12 links
down from the noun roots. Consequently, as Figure 2 shows,
the full atype index is almost the size of the uncompressed
original corpus, over thrice the size of the gzipped corpus,
and almost five times the size of the stem index. This would
be unacceptable in most search applications, definitely large-
scale services that need to cache substantial parts of the
index in RAM. Luckily the query workload is very skewed,
so we can choose only a subset of atypes to index; this is the
topic of Section 4.

2.3.2 Search using stem and full atype indexes
The posting list for a term (an atype or a selector) helps

us scan through (docid, tokenOffset) pairs in increasing lex-
icographic order. We use a bounded max-heap (of size k
where k is the number of results sought) to keep track of the
highest k scores. The memory required is bounded by the
sum of the size of the score heap and the space required for
holding all occurrences of candidates and selectors within a
single document. We scan the postings lock-step, completely
processing one document and inserting all its candidate lo-

Corpus/index Size (GB)
Original corpus 5.72
Gzipped corpus 1.33
Stem index 0.91
Full atype index 4.30
Reachability index 0.005
Forward index 1.16

Figure 2: Relative sizes of the corpus and various
indexes for TREC 2000.

cations into the score heap (evicting low-score locations if
needed) and then move on to the next document.

2.3.3 Reachability index
In Section 4 we will also need a reachability index:

given two atypes a1 and a2, or an atype a1 and a token
w, it can quickly (in O(1) time) tell us if a2 or w is-a a1 i.e.
if a1 is an ancestor or generalization of a2 or w in the atype
taxonomy. Because a type hierarchy is “largely” a tree, a
simple Dewey coding [16] of the atype taxonomy leads to a
reachability index small enough (5MB from 80,000 atypes
of which 18,000 are non-leaf, see Figure 2) to fit easily in
RAM. Given a token, we can verify if it is a candidate, but
the reachability index does not give us a direct index into
candidate positions in the corpus. Obtaining compact reach-
ability indices for arbitrary graphs is more complicated [7].

2.3.4 Forward index
Another useful index is the forward index which basi-

cally stores the original corpus as close to the gzipped size
as possible, while allowing fast (docid, tokenOffset) queries,
returning the actual token (which can now be tested using
the reachability index). Most search systems need to keep
around a forward index to generate query-specific snippets
along with the top responses. We will use the reachability
and forward indexes in conjunction in Section 4.

The forward index1 is built in two passes over the corpus.
In the first pass, we count the frequency of each token in the
corpus. Then we sort tokens by frequency and assign them
variable-length integer IDs; frequent tokens get shorter IDs.
In the second pass, we rescan the corpus and store packed
bit-vectors for each document that can be unpacked and
mapped back to tokens or token IDs.

Observe in Figure 2 that the forward index is even smaller
than the gzipped corpus. Also, the forward index plus the
reachability index add up to only about 25% of the full atype
index.

Access to the forward index does require one random disk
access per probe (a disk block generally holds several com-
plete documents), but, as we shall see in Section 4, these
accesses happen only for tokens that are top contenders for
answering the query.

2.4 Experimental setup and evaluation
We used the TREC collection because it comes with a

set of questions that can be mapped to precise atypes [21],
and “truthed” answer passages. We used the TIPSTER
and AQUAINT corpora adding up to over two million doc-
uments, which led to over 400 million term positions. Ap-
proximately 500 TREC questions were annotated with an
atype.

1Implemented partly by Kuldeep Gharat, IIT Bombay.

Query time is measured as usual using real time and CPU
time as appropriate. Our experiments were run on otherwise-
unloaded P3/Xeon computers with 2–4GB RAM and Ul-
tra320 SCSI disk. Index size is measured in bytes on disk.

The quality of a ranking of candidate tokens is measured
in two standard ways. First, we measure the “recall-at-k”:
if our system returns k top-scoring tokens, in what fraction
of questions do we nail an answer token (in the correct docu-
ment and context specified by TREC)? Second, we measure
the “mean reciprocal rank” or MRR used in the TREC com-
munity: if the first answer to query q is at rank rq, award a
score of 1/rq, and average over the query set Q to get the
MRR 1/|Q|

∑
q∈Q(1/rq).

3. LEARNING TO SCORE CANDIDATES
Our goal here is to learn how to score and rank candidate

tokens. The score of a candidate token (i.e., one that is a
subtype or instance of the query atype) depends on three
sets of quantities: statistical properties of matched selec-
tors in the vicinity, the distance between those selectors and
the candidate, and the manner in which contributions from
different selectors are aggregated at the candidate token.

Selector energy.Each matched selector s has an associ-
ated positive number called its energy, denoted energy(s).
A common notion of energy is the inverse document fre-
quency or IDF standard in IR: the number N of documents
in the corpus divided by the number Ns of documents con-
taining the selector token s. This is a linear form of IDF,
the logarithmic form log(1+N/Ns) is more commonly used.
We use the term selector energy in place of the more famil-
iar term weight to highlight that our scoring function has a
spreading-activation form.

Gap and Decay.The gap between a candidate token w
and a matched selector s, called gap(w, s), is one plus the
number of intervening tokens. We consider each selector as
spreading activation or energy to the candidate. We define
the energy transmitted by the selector to the candidate to be
energy(s) decay(gap(w, s)), where decay(g) is some function
of the gap.

In many graph-based scoring systems such as ObjectRank
[3], XRank [16] or TeXQuery [1] it is common to exploit a
monotone decreasing decay(g) = δg, where 0 < δ < 1 is a
magic decay factor, for fast query execution. However, as we
shall see, this form may not perfectly match data behavior.

Aggregation.A selector s can appear multiple times near
a candidate, we call this set {si}. If a is the candidate, our
generic scoring function looks like

score(a) = ⊕
s
�
i
energy(si) decay(gap(si, a)), (1)

where � aggregates over multiple occurrences of s and ⊕
aggregates over different selectors. Sum or max can be used
for � and ⊕, although sum behaves poorly as � because
even a low-IDF selector can make the score less reliable by
appearing often near a candidate.

Our query processor does not require any assumptions on
the aggregation function, but we can think of other execu-
tion strategies that can take advantage of � = max and
⊕ = Σ.

person#n#1

IS-A

CandidateSelectors

Closest occurrence
of stem “invent”

te
le

vi
si

on

w
as

in
ve

nt
ed in

19
25

.

In
ve

nt
or

Jo
hn

 B
ai

rd

w
as

bo
rn

E
ne

rg
y�

Second-closest
occurrence
of stem “invent”

Figure 3: Selector activation example. Stems televi-
sion and invent are selectors, person#n#1 is the atype,
John Baird is an atype candidate.

3.1 Data collection and representation
A few thousand TREC questions are available annotated

with atypes [21]. We collected questions for which the an-
swer tokens prescribed by TREC included at least one in-
stance or subtype of the atype of the question. We report
results on 261 usable questions from TREC 2000. For each
question, we need positive (answer) and negative (candidate
but not answer) tokens, and, to learn their distinction well,
we should collect negative tokens that are “closest” to the
positive ones, i.e., strongly activated by selectors.

To achieve this, we used the full atype index to locate all
candidate tokens, and made a generous estimate of the acti-
vation from (the nearest occurrence of) each selector. This
generous estimate used the log IDF as energy and no decay ,
i.e., energy was accrued unattenuated at the candidate posi-
tion. For each query, we retained all positive answer tokens
and the 300 negative tokens with top scores. Overall, we
finished with 169662 positive and negative contexts. 5-fold
cross-validation (i.e. 80% training, 20% testing in each fold)
was used.

The next job was to turn contexts into feature vectors.
Recall that there must be at least one selector match within
W tokens of the candidate a. We set up this window with
2W + 1 tokens centered at a, and retain only one instance
of each selector, the one closest to a2.

As a first-cut, we can represent a context by a W -dimens-
ional vector f , where fj is the energy sourced at position
±j wrt the candidate. If we are not sure which energy(·)
function to use (log or linear form), we can always stick both
values in a 2W -dimensional feature vector. Clearly, we can
extend to more than two forms of the energy function, and
can use separate parameters for the left and right context.
In experiments, the log form by itself with symmetric decay
gave better results, so, for simplicity, we will assume we have
W -dimensional feature vectors.

3.2 Learning decay with hinge loss
For every gap value 1 ≤ j ≤ W , suppose the decay is βj .

Then the score of a feature vector f is
∑W

j=1 fjβj , or β · f . If

f+ (f−) is a feature vector for a positive (negative) context,
β should ensure that β ·f+ > β ·f−, or β ·(f+−f−) > 0. From

2Ties were broken arbitrarily. Obviously, we can also aggre-
gate over multiple occurrences of a selector if � warrants.

the answer contexts collected as above, we construct pairs
(f+

i , f−i) of positive and negative answer contexts, indexed
by i, so that the constraints on β look like

β · (f+
i − f−i) ≥ 0 for all i. (2)

Herbrich et al. [17] and Joachims [19] suggested elegant max-
margin solutions to ordering problems that we generically
call RankSVM:

min
β,s≥0

1
2
β′β + C

∑
i si s.t. for all i, β · xi + si ≥ 1 (3)

where xi is shorthand for the difference vector f+
i − f−i and

no offset parameter β0 is needed. As with support vector
classifiers, C is a tuned parameter that trades off the model
complexity ‖β‖ against violations of the ordering require-
ments.

From our application perspective, 169662 passage con-
texts and millions of difference vectors x is just a begin-
ning; the data is still sparse and any additional data helps
accuracy. However, RankSVM executed millions of itera-
tions with hundreds of millions of kernel evaluations, and,
for some folds, failed to terminate in a day on a 3GHz CPU.

3.3 Learning decay with exponential loss
In equation (3), xi is assigned penalty C max{0, 1−β ·xi},

which can be bounded above by C exp(−β · xi), giving us
the unconstrained optimization that we call RankExp:

min
β

1
2
β′β + C

∑
i exp(−β · xi) (4)

which may be potentially less accurate than a hinge-loss
formulation, but allows us to use simpler optimizers such
as L-BFGS [22]. This lets RankExp scale much better with
increasing training set size, as shown in Figure 4. On iden-
tical data sets, for C ∈ [0.01, 0.3] the fraction of orderings
satisfied by RankSVM and RankExp, as well as the MRRs
were typically within 3% of each other, while RankExp took
14–40 iterations or 10–20 minutes to train and RankSVM
took between 2 and 24 hours.

0

200000

400000

600000

800000

1000000

0 0.1 0.2 0.3FractionTrainingSize

R
el

at
iv

eC
P

U
T

im
e

Exp,C=0.3 Exp,C=3 SVM

Figure 4: Relative CPU times needed by RankSVM
and RankExp as a function of the number of order-
ing constraints.

3.4 Typical parameters and roughness
Figure 5 shows a typical β vector, where βj gives the rel-

ative importance of a selector match at gap j (βjs can be
shifted or scaled without changing the ranking). We did not
expect the clearly non-monotonic behavior near j = 0, and
only in hindsight found that this is a property of language
(perhaps already appreciated by linguists): selectors are of-
ten named entities, and are often connected to the answer
token via prepositions and articles that creates a gap. This

goes against conventional wisdom that spreading activation
should monotonically decay with distance. We believe that
a more detailed study of proximity functions in IR, taking
linguistic effects into account, is overdue.

 j aw

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50Gap j-->

be
ta

(j)

Rough
Smooth

Figure 5: βj shows a noisy unimodal pattern.

In spite of the prominent non-monotonicity near j = 1 . . . 5,
there is much noise at larger gap. To bias the learner to
greater smoothness, we can pin a phantom βW+1 = 0, and
penalize deviation of βj from βj+1:

min
β

∑W
j=1(βj − βj+1)

2 + C
∑

i exp(−β · xi), (5)

where C is set by cross-validation. Figure 5 shows the
smooth β, which also improves cross-validation accuracy
slightly. It also gives us confidence in the non-monotonic
nature of the best decay function.

3.5 Accuracy of learnt score function
In a standard IR system [31], the score of a snippet would

be decided by a vector space model using selectors alone.
We gave the standard score the additional benefit of con-
sidering only those snippets centered at an atype candidate,
and considering each matched selector only once (use only
IDF and not TF). Even so, a basic IR scoring approach was
significantly worse than the result of plugging in the scoring
function learnt by RankExp, as shown in Figure 6. Both
recall and MRR (see Section 2.4) over held-out test data
improve substantially.

β from Train Test R300 MRR
IR-IDF - 2000 211 0.16
RankExp 1999 2000 231 0.27
RankExp 2000 2000 235 0.31
RankExp 2001 2000 235 0.29

Figure 6: End-to-end accuracy using RankExp β is
significantly better than IR-style ranking. Train and
test years are from 1999, 2000, 2001. R300 is recall
at k = 300 out of 261 test questions. C = 0.1, C = 1
and C = 10 gave almost identical results.

4. WORKLOAD-TUNED ATYPE INDEX
As we saw in Figure 2, for a 5.72GB corpus, the stem

index occupied only 0.91GB while the full atype index took
4.30 GB. In this section we explore how to exploit the skew in
the distribution of query atypes to achieve a graceful trade-
off between index space and query performance.

4.1 Characterizing a skewed workload
Figure 7 shows a sample from TREC query logs. There

is much skew, but, as is generally appreciated in the Web

search community, the distribution is heavy-tailed and the
skew may be somewhat misleading.

100 integer#n#1
78 location#n#1
77 person#n#1
20 city#n#1
10 name#n#1
7 author#n#1
7 company#n#1
6 actor#n#1
6 date#n#1
6 number#n#1
6 state#n#2
5 monarch#n#1
5 movie#n#1

5 president#n#2
5 inventor#n#1
4 astronaut#n#1
4 creator#n#2
4 food#n#1
4 mountain#n#1
4 musical_instrument#n#1
4 newspaper#n#1
4 sweetener#n#1
4 time_period#n#1
4 word#n#1
3 state#n#1
3 university#n#1

Figure 7: Highly skewed atype frequencies in TREC
query logs.

The atype subset selection algorithm we propose uses an
estimate of the probability of seeing an atype a in a new
query, queryProb(a). For WordNet alone, a can have over
18,000 (non-leaf) values, and the skew makes it difficult to
estimate the probabilities of atypes never seen in past data—
even thousands of questions will mostly hit a few atypes, but
new data will always surprise us.

This is a standard issue in language modeling [24], and a
variety of smoothing schemes are known. We use the well-
known Lidstone smoother:

queryProb(a) =
queryCount(a) + `∑
a′ queryCount(a′) + `

, (6)

where 0 < ` ≤ 1 is a parameter to be set via cross-validation.
Several times, we randomly split the workload into halves
W1 and W2, estimate queryProb(a) using W1, and estimate
the probability of W2 as∑

a∈W2

queryCountW2
(a) log

(
queryProbW1

(a)
)
.

Results are shown in Figure 8; it is fairly easy to pick off a
prominently best ` for a given data set.

-4500

-4000

-3500

-3000

-2500

-2000
1.E-16 1.E-13 1.E-10 1.E-07 1.E-04 1.E-01

Lidstone

Lo
g

Li
ke

lih
oo

d

Figure 8: Log likelihood of validation data against
the Lidstone smoothing parameter `.

4.2 Pre-generalize and post-filter
Let the full set of atypes be A and imagine that some

subset R ⊆ A are registered, meaning that, when tokens
are attached to the taxonomy during indexing (Section 2.3)
and we walk up is-a links, only registered atypes are included
in the index. Given such a registered atype index R and a
query with atype a, we

1. find the best (defined later) registered generalization
g in the taxonomy (see commments below)

2. perform a proximity search using g and the selectors
in the query, which ensures recall, but generally low-
ers precision (therefore we must inflate k in the top-k
search to some k′ > k, more about this later)

3. use a forward index to get the actual instance token i
of g in each high-scoring response

4. retain response i if a reachability index probe certi-
fies that i is-a a (this consumes some more time and
eliminates a fraction of responses)

5. in case fewer than k results survive, repeat with a
larger k′; this is very expensive

The central issue is how to choose the registered subset R.
Another issue is the choice of k′.

(While selecting R, we pretend all roots of A are included
in R as sentinels, but we can avoid actually indexing these.
While processing a query, in case no g can be found, we can
pretend every word is a potential candidate, a situation that
will essentially never arise given a reasonable algorithm for
selecting R.)

4.3 Index space and query bloat models
With |A| in tens of thousands, actually computing the

atype subset index for many different candidate subsets R
and evaluating query times would be prohibitively expen-
sive. (One pass of atype indexing using Lucene on a 5 GB
corpus takes a few hours.) Therefore we need estimates of
the index storage required if R were indexed instead of A,
as well as the impact on query times. We need to be able
to compute these quantities quickly from bulk statistics col-
lected from the corpus and workload.

An exact estimate of inverted index size is difficult in the
face of index compression techniques [31]. The posting list
for an atype a (or a token in general) has corpusCount(a)
entries in it, so as a first approximation, it takes space pro-
portional to corpusCount(a). Therefore, if subset R is in-
dexed, the space needed can be approximated as∑

a∈R corpusCount(a). (7)

Figure 9 shows that this crude approximation is surprisingly
accurate.

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

0.0E+00 5.0E+08 1.0E+09 1.5E+09 2.0E+09 2.5E+09

Estimated Index Size

O
bs

er
ve

d
In

de
x

S
iz

e

Figure 9:
∑

a∈R corpusCount(a) is a very good pre-
dictor of the size of the atype subset index. (Root
atypes are not indexed.)

Next we consider the bloat in query processing time ow-
ing to our incomplete atype index. In general, this depends
on co-occurrence statistics between all possible atypes and
all possible words. Even with a small number of tables and

attributes, estimating multidimensional “selectivity” of se-
lect and join predicates for query optimization in relational
databases is a challenging problem [18]. With over a million
distinct tokens (“attributes”) and O(10000) atypes in our
setting, we must necessarily make simplifying assumptions.

Query bloat happens in two stages: first, scanning the IR
index posting lists takes longer because the posting list of
the more general atype g ∈ R is longer than the posting
list of the query atype a; and second, because we are now
obliged to screen the results using expensive forward index
accesses.

For the first part, we assume that the time spent scanning
posting of the atype a and intersecting them with selector
postings takes time proportional to corpusCount(a).

Histogram of Multimerge Access Time

0

20

40

60

80

0 0.05 0.1 0.15 0.2 0.25
Average Time (msec)

N
o

O
f D

oc
s

Histogram of Forward Index Access Time

0

15

30

45

60

0 2 4 6 8
Average Time (msec)

N
o

O
f D

oc
s

Figure 10: Distributions of tscan and tforward.

The second part depends on k′, the number of results
sought from the pre-generalized query. It also depends on
the average time tscan it takes to process one document dur-
ing the merge of postings (Section 2.3.2), and the average
time tforward it takes to probe the forward index for one
document and do the reachability test (Section 2.3.3 and
Section 2.3.4). Figure 10 shows sample distributions of tscan
and tforward; luckily, they are sufficiently peaked and cen-
tered to use point estimates. The overall query bloat factor
is therefore

tscan corpusCount(g) + k′tforward

tscan corpusCount(a)

Now we come to the question of what k′ should be. If
we make the crude assumption that the selectors occur in-
dependently of the candidates, we see

k′ = k
corpusCount(g)

corpusCount(a)
(8)

as a natural and simple choice (but see Section 4.4), using
which we can write the query bloat factor as

corpusCount(g)

corpusCount(a)
+ k

tforward

tscan

corpusCount(g)

corpusCount(a)2
.

We call this queryBloat(a, g), the bloat because a had to be
generalized to g ∈ R, and for a given R, write the estimated

queryBloat(a, R) =

{
1 if a ∈ R

min
g∈R,a IsA g

queryBloat(a, g) else(9)

Note that at query execution time the choice of g from a
given R is simple, but choosing a good R ahead of time is
nontrivial.

0

100

200

300

400

500

0 5 10 15 20 25

Estimated Bloat

O
bs

er
ve

d
B

lo
at

Figure 11: Scatter of observed against estimated
query bloat.

Figure 11 shows a study of estimated bloat compared to
observed bloat. The fit is not nearly as good as with the
other half of our model in Figure 9, because 1. IO wait times
are highly nondeterministic because of file-system buffering
and RAID, and 2. To remain practical, our model ignores the
effect of selectors. Similar variability is seen in the Bindings
Engine [4, Figure 3, page 447] as well. In the relational
query optimizer literature, join size estimates (and therefore
CPU/IO cost estimates) are often relatively crude [18] but
nevertheless lead to reasonable query plans.

For a specific R picked by AtypeSubsetChooser (Sec-
tion 4.5) and 138 sample queries where g 6= a given R, Fig-
ure 12 shows the cumulative distribution of the ratio of the
observed to estimated bloat. As can be seen, 68% of the
queries have observed bloats less than five times the esti-
mated bloats, and 75% are within 10×. The fit of observed
to estimated bloats is reasonable for most queries, with only
a few queries exhibiting a large difference between the two.

Ratio ≤ Count % Ratio ≤ Count %
.5–1 16 11.6 10–20 110 79.7
1–2 78 56.5 20–50 123 89.1
2–5 93 67.3 50–100 128 92.8
6–10 104 75.3 100–200 138 100

Figure 12: Histogram of observed-to-estimated
bloat ratio for individual queries with a specific R
occupying an estimated 145 MB of atype index.

4.4 Choice ofk′
When the value of corpusCount(g)

corpusCount(a)
is small, equation (8) is

reasonable, but when it is large, k′ is too conservative, wast-
ing resources. In practice, we found that clipping at a con-
stant multiple x of k works well, i.e.,

k′ = k min
{

x, corpusCount(g)
corpusCount(a)

}
(10)

Figure 13 shows that clipping at x ≈ 100 is a good choice.
Note that this is not a correctness issue because in case the
query “runs dry” we will always restart with a larger k′.
(The quality of our choice of R was largely unaffected by x.)

4.5 Choosing an atype subset
We thus have a bi-criteria optimization problem: given the

corpus, query workload W , and atype set A, choose R ⊆ A
so as to minimize

∑
r∈R corpusCount(r) and also minimize

the expected query bloat∑
a∈A

queryProb
W

(a) queryBloat(a, R). (11)

1

51

101

151

201

251

301

351

0 20 40 60 80 100
 x

N
o

of
 Q

ue
st

io
ns

 th
at

 n
ee

d
qu

er
y

re
st

ar
t (

ou
t o

f 2
90

)

Figure 13: The effect of the choice of x on the ability
of our system to produce top-k results without a
query restart.

This optimization problem can be shown to be NP hard,
even when the type hierarchy is a tree. Therefore we look for
practical heuristics. We adopt a greedy approach of starting
R with only the roots of A and progressively adding the
locally “most profitable” atype c. Here “profit” depends
inversely on the additional space δS that will be required
by the posting list of c, and directly on the reduction δB of
expected bloat that will result from including c in R. We use
the ratio δB/δS to pick the best c at every step. Once c is
included, each descendant h might see a reduction in bloat.
If h’s bloat decreases, all ancestors u of h must update their
δB/δS scores.

The pseudocode is shown in Figure 14. There are a few
false starts and subtleties about the algorithm that we can-
not elaborate owing to lack of space. E.g., we cannot run it

AtypeSubsetChooser(A, W)

1: R← {roots of A}, candidates C ← A \R
2: initial estimated space S ←

∑
r∈R corpusCount(r)

3: using equations (6) and (9), expected bloat
B ←

∑
a∈R∪C queryProbW (a) queryBloat(a, R)

4: UpdateBloatsAndScores(∀c ∈ C, commit=false)
5: while R is small and/or B is large do
6: choose c ∈ C with the largest score(c)
7: UpdateBloatsAndScores(c, commit=true)
8: end while

UpdateBloatsAndScores(a, commitFlag)

1: B′ ← B, S′ ← S + corpusCount(a)
2: “cousins” of a to be patched U ← ∅
3: for each h 6∈ R, h ∈ C, h IsA a do
4: b = queryBloat(h, R), b′ = queryBloat(h, R ∪ a)
5: if b′ < b (bloat reduces) then
6: B′ ← (b′ − b) queryProbW (h)
7: if commitFlag then
8: U ← U ∪ {g : g ∈ C, g 6= a, h IsA g}
9: end if

10: end if
11: end for
12: score(a)← (B −B′)/(S′ − S)
13: if commitFlag then
14: move a from C to R
15: S ← S′, B ← B′

16: UpdateBloatsAndScores(∀u ∈ U, commit=false)
17: end if

Figure 14: The inputs are atype set A and workload
W . The output is a series of trade-offs between index
size of R and average query bloat over W .

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

1.E+12

1.E+14

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9
Estimated Index Size

E
st

im
at

ed
 M

ax
im

um
 B

lo
at

1.00E-15 1.00E-06 1.00E-03 1.00E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9
Estimated Index Size

R
ob

us
t A

ve
ra

ge
 B

lo
at

Figure 15: Estimated space-time tradeoffs produced
by AtypeSubsetChooser. The y-axis uses a log scale.
Note that the curve for ` = 10−3 (suggested by Fig-
ure 8) has the lowest average bloat.

“in reverse”, starting with R = A and discarding unworthy
atypes.

Our experimental testbed has been described in Section 2.4.
For picking ` we used a workload of 1200 atypes obtained
from TREC 1999, 2000 and 2001, with a 60/40 train/test
split; then the smoothed workload was used to pick R. For
bloat and timing experiments we separated out 259 queries
(with 304 atypes) from TREC 2000 (these were also used in
Section 3).

4.5.1 Estimated space-time tradeoff
Figure 15 (upper chart) shows the reduction in estimated

maximum bloat over all queries as AtypeSubsetChooser
grows R. Each curve is for a different Lidstone parameter `.
The estimated average bloat over all queries would be overly
influenced by a few outliers (see Figure 12). Therefore we
discard the lowest and highest 2% of bloats and show a ro-
bust average over the rest (lower chart).

The curves in Figure 15 show a prominent knee: by the

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

1.E+12
1.E-20 1.E-16 1.E-12 1.E-08 1.E-04 1.E+00

Lidstone

E
st

im
at

ed
 B

lo
at

AverageBloat MaximumBloat

Figure 16: Estimated bloat for various values of `
for a specific estimated index size of 145MB. The
y-axis uses a log scale.

1

6

11

16

21

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9 2.5E+9 3.0E+9

Observed Index Size

A
ve

ra
ge

 B
lo

at

Observed Estimated

1

501

1001

1501

2001

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9 2.5E+9 3.0E+9

Observed Index Size

M
ax

im
um

 B
lo

at

Figure 17: Estimated and observed space-time
tradeoffs produced by AtypeSubsetChooser.

time the (estimated) index size is allowed to grow to 145MB,
the robust average bloat is 7, and it drops to 2 with an
estimated index size of only 300 MB (` = 10−3).

Very low ` results in low queryProb for atypes not seen
in the training set, leading to an excessively aggressive dis-
carding of atypes and consequently high test-set bloats. As
` is increased, queryProb increases, forcing AtypeSubset-
Chooser to conservatively include more atypes not seen in
the training set.

It is comforting to see in Figure 16 that the best trade-off
happens for roughly the same value of ` that provided the
largest cross-validated log-likelihood in Figure 8. This need
not have happened: maximizing workload likelihood is not
the same as reducing query bloat.

4.5.2 Observed space-time trade-off
Next we ran multiple queries with various Rs having dif-

ferent index sizes to find actual running times and hence,
actual bloats (Figure 17). The average observed bloat curve
follows the estimated bloat curve in Figure 15 quite closely.
In fact, averaged over many queries, our simple bloat pre-
diction model does even better than at a per-query level (see
Figure 11). With a modest 515 MB atype subset index, the
average bloat is brought down to only 1.85.

4.5.3 Query execution dynamics
Figure 18 shows the average time taken per query, for

various Rs with increasing index sizes, broken down into
Lucene scan+merge time taken if R = A (“FineTime”),
Lucene scan+merge time using a generalized g if R ⊂ A
(“PreTime”), and the post-filtering time (“PostTime”). As
can be seen, there are regimes where scan time dominates
and others where filtering time dominates. This highlights
why the choice of a good R is a tricky operation: we cannot
assume cost estimates that are any simpler.

0

2000

4000

6000

8000

10000

12000

14000

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9
Estimated Index Size

A
ve

ra
ge

 T
im

e
(m

se
c)

PreTime PostTime FineTime

Figure 18: Average time per query (with and with-
out generalization) for various estimated index sizes.

5. SUMMARY AND CONCLUSION
We have identified an important class of proximity queries

in annotated text, and are building a system around Lucene
and UIMA to answer such queries. This system can be
used as a foundation for information extraction and shal-
low language-processing tasks. In this paper we described
our solutions to two important technical problems: design
of scoring function and workload-driven optimization of in-
dexes. Even though the worst-case index reduction problem
is intractable, we exploited skew in real-life workload to give
sound engineering solutions.

Several related issues and extensions suggest themselves.
Will our approach successfully extend to relatively “wild”
Web text, other important semantic relations and general
entity-relationship graphs? How to deal with dynamic cor-
pus updates and support distributed indices? Can we evolve
query planners that choose more intelligently between se-
quential posting access and random forward index access
[14, 30]? Can we give provable guarantees for structured
tasks such as information extraction?

6. REFERENCES
[1] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram.

TeXQuery: A full-text search extension to XQuery. In
WWW Conference, pages 583–594, New York, 2004.

[2] Apache Software Group. Jakarta Lucene text search
engine. GPL Library, 2002.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Authority-based keyword queries in databases using
ObjectRank. In VLDB, Toronto, 2004.

[4] M. J. Cafarella and O. Etzioni. A search engine for
natural language applications. In WWW Conference,
pages 442–452, 2005.

[5] T. T. Chinenyanga and N. Kushmerick. An expressive
and efficient language for XML information retrieval.
JASIST, 53(6):438–453, 2002.

[6] P. Cimiano, G. Ladwig, and S. Staab. Gimme’ the
context: Context-driven automatic semantic
annotation with C-PANKOW. In WWW Conference,
pages 332–341. ACM Press, 2005.

[7] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels.
SIAM Journal of Computing, 32(5):1338–1355, 2003.

[8] H. Cunningham, K. Humphreys, R. Gaizauskas, and
Y. Wilks. GATE: A TIPSTER-based general
architecture for text engineering. In Proceedings of the
TIPSTER Text Program (Phase III) 6 Month
Workshop. Morgan-Kaufmann, 1997.

[9] E. S. de Moura et al. Improving web search efficiency
via a locality-based static pruning method. In WWW
Conference, pages 235–244, Chiba, Japan, 2005.

[10] S. Dill et al. SemTag and Seeker: Bootstrapping the
semantic Web via automated semantic annotation. In
WWW Conference, 2003.

[11] O. Etzioni, M. Cafarella, et al. Web-scale information
extraction in KnowItAll. In WWW Conference, New
York, 2004. ACM.

[12] D. Florescu, D. Kossman, and I. Manolescu.
Integrating keyword searches into XML query
processing. In WWW Conference, pages 119–135,
Amsterdam, 2000.

[13] N. Fuhr and K. Grosjohann. XIRQL: A query
language for information retrieval in XML documents.
In Research and Development in Information
Retrieval, pages 172–180, 2001.

[14] J. Graupmann, M. Biwer, C. Zimmer, P. Zimmer,
M. Bender, M. Theobald, and G. Weikum.
COMPASS: A concept-based Web search engine for
HTML, XML, and deep Web data. In VLDB, pages
1313–1316, 2004.

[15] R. V. Guha and R. McCool. Tap: A semantic web
test-bed. J. Web Sem., 1(1):81–87, 2003.

[16] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In SIGMOD Conference,
pages 16–27, 2003.

[17] R. Herbrich, T. Graepel, and K. Obermayer. Support
vector learning for ordinal regression. In International
Conference on Artificial Neural Networks, pages
97–102, 1999.

[18] Y. E. Ioannidis and S. Christodoulakis. On the
propagation of errors in the size of join results. In
SIGMOD Conference, pages 268–277, 1991.

[19] T. Joachims. Optimizing search engines using
clickthrough data. In SIGKDD Conference. ACM,
2002.

[20] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and
R. Ramakrishnan. On the integration of structure
indexes and inverted lists. In ICDE, page 829, 2004.

[21] V. Krishnan, S. Das, and S. Chakrabarti. Enhanced
answer type inference from questions using sequential
models. In EMNLP/HLT, 2005.

[22] D. C. Liu and J. Nocedal. On the limited memory
BFGS method for large scale optimization. Math.
Programming, 45(3, (Ser. B)):503–528, 1989.

[23] U. Manber and R. A. Baeza-Yates. An algorithm for
string matching with a sequence of don’t cares.
Information Processing Letters, 37(3):133–136, 1991.

[24] C. D. Manning and H. Schütze. Foundations of
Statistical Natural Language Processing. MIT Press,
Cambridge, MA, 1999.

[25] D. Metzler and W. B. Croft. Combining the language
model and inference network approaches to retrieval.
Inf. Process. Manage., 40(5):735–750, 2004.

[26] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller. Introduction to WordNet: An online lexical
database. International Journal of Lexicography, 1993.

[27] S. Muthukrishnan. Efficient algorithms for document
retrieval problems. In SODA, pages 657–666, 2002.

[28] S. D. Richardson, W. B. Dolan, and L. Vanderwende.
MindNet: Acquiring and structuring semantic
information from text. In COLING, pages 1098–1102.
ACL, 1998.

[29] T. Suel and X. Long. Three-level caching for efficient
query processing in large Web search engines. In
WWW Conference, Chiba, Japan, 2005.

[30] A. Theobald and G. Weikum. The XXL search engine:
ranked retrieval of XML data using indexes and
ontologies. In SIGMOD, page 615, 2002.

[31] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan-Kaufmann, May 1999.

