
The Web Beyond Popularity

A Really Simple System for Web Scale RSS

Daniel Gruhl
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120.

druhl@almaden.ibm.com

Daniel N. Meredith
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120.

dnm@almaden.ibm.com

Jan H. Pieper
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120.

jhpieper@almaden.ibm.com

ABSTRACT
Popularity based search engines have served to stagnate in-
formation retrieval from the web. Developed to deal with
the very real problem of degrading quality within keyword
based search they have had the unintended side effect of
creating “icebergs” around topics, where only a small mi-
nority of the information is above the popularity water-
line. This problem is especially pronounced with emerging
information–new sites are often hidden until they become
popular enough to be considered above the water-line. In
domains new to a user this is often helpful–they can focus
on popular sites first. Unfortunately it is not the best tool
for a professional seeking to keep up-to-date with a topic as
it emerges and evolves.

We present a tool focused on this audience–a system that
addresses the very large scale information gathering, filter-
ing and routing, and presentation problems associated with
creating a useful incremental stream of information from the
web as a whole. Utilizing the WebFountain platform as the
primary data engine and Really Simple Syndication (RSS)
as the delivery mechanism, our “Daily Deltas” (Delta) ap-
plication is able to provide an informative feed of relevant
content directly to a user. Individuals receive a personal-
ized, incremental feed of pages related to their topic allow-
ing them to track their interests independent of the overall
popularity of the topic.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage and Re-
trieval; H.5.4 [Information Systems]: Information Inter-
faces and Presentation—Hypertext/Hypermedia
; J.m [Computer Applications]: Miscellaneous

General Terms
document routing, crawler, rss, webfountain, internet

Keywords
Daily Delta, RSS, WebFountain

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

1. INTRODUCTION
As the web has expanded over the last dozen or so years,

the means of finding timely and relevant information from
it have evolved in an attempt to cope. The early web was
not unlike many fringe cultures– the only way to find out
about sites was from someone “in the know”. Recommen-
dations of sites of interest were passed by word-of-mouth,
either literally, or through people posting URLs in other
mediums. While this approach provided highly contextual-
ized information, it also severely limited the scope of what
an average person might be able to find.

Web scale search engines shattered the notion that no
one system could index such a large, distributed collection
of information. By providing keyword query access to web
pages they freed users from having to rely on their social
network to provide a relevant starting point for browsing.
This worked well until a combination of hyper-growth in the
volume of information, coupled with malicious commercial
duplicity (i.e., spam) flooded these simple keyword based
engines with noise to the point where their utility was seri-
ously degraded.

In response to this problem we saw the development of
global recommendation algorithms in the form of popular-
ity based ranking in search engines (i.e., HITS[11], PageR-
ank[6], Clever[26], etc.), which leveraged the nascent hyper-
link structure of the web to provide a simple voting mecha-
nism as to the relevance and quality of page content. While
this did much to address the noise problem, the transition
to popularity based ranking resulted in the loss of two of
the more endearing features of the early web: the constant
stream of new material regarding an issue of interest to you,
and the notion that a page only has to be popular to you to
be relevant.

In an attempt to recapture these aspects of the web user
experience, we have looked to another recent phenomenon:
blogs. Over the past few years there has been an explosion
in personal publishing on the web. Blogs, bulletin boards
and wikis provide simple mechanisms for individuals and
collaborators to create content that is highly relevant to a
given community. These sources comprise a large portion of
the “incremental web” that are not possibly changing on a
regular basis, but actually are intended to be updated fre-
quently. The challenge of keeping a reader up to date with
this changing information has led to the use of syndication
systems, notably Really Simple Syndication (RSS)[31] and
Atom[28]. These provide a mechanism to deliver content
along with a notion of how frequently that content is chang-



ing directly to a user. A large class of applications have
emerged that allow such syndicated streams to be opened,
aggregated and presented to a user in a number of ways, on
a variety of devices.

Is it possible to bring this sense of immediacy and rele-
vance that are the hallmark of blogs to the web as a whole?
We have created a system using the WebFountain[15, 24]
platform to provide Web Scale RSS feeds. Built on top of
this system we have explored several applications which uti-
lize these feeds in a number of user scenarios. In addition,
we address some of the challenges in distilling high quality
content from the changing web.

The remainder of this paper will illustrate the problem
and outline our approach to the system (Section 2), pro-
vide some detail on our implementation (Section 3), present
performance and quality results on our system (Section 4),
examine related work in the content acquisition, routing and
presentation spaces (Section 5), and lastly close with some
concluding thoughts and potential for future work (Section 6).

2. APPLICATION AND APPROACH
Alice and Bob are two individuals with particular infor-

mation needs. Alice is a researcher in the field of text an-
alytics, and is disappointed to find that there are no good
discussion forums on the topic. She is looking for a way to
stay up-to-date on this emerging field, and is looking for a
few dozen articles to read on any given day. If she finds
some important ones she would like to be able to save them,
forward them, etc.

Bob is an up-and-coming bartender, and is always looking
for quirky new drink recipes. He specifically wants to find
ones that are not yet mainstream. He’d like to scan a few
hundred of these recipes every day looking for inspiration.
It would be great if he could do this task on the bus on the
way to work.

Neither Alice nor Bob are going to be happy with the state
of the art in modern alert systems as they tend to be some-
what limited. They either restrict their alerts to a limited
set of documents (wire feeds, news, etc.) or they only con-
sider pages that rank highly. Google Alerts[21], for example,
requires a page to be one of the top 20 for the equivalent
query within the Google search engine. While there are over
28,000 hits for the phrase “text analytics” on Google, there
are only a few dozen new pages appearing on the topic ev-
ery day. While the top results for an emerging topic may
change while the topic initially develops, once a topic is sta-
ble and authorities have been established, the membership
of the top result set also stabilizes. This produces a fairly
static list that does not report new content that is still being
generated on the topic.

One caveat is that the popularity of a page or site can be
considered independent of a specific topic. This means that
web pages which have a generally high rank will appear in
the top result set for any topic on which they report. While
this permits new pages to enter the top results for a given
topic, only content from a limited, high popularity set of
sites (Slashdot, CNN, etc.) can do so. Delta addresses the
need to report on content being produced from sites outside
this limited set.

Additionally, no single presentation tool is going to meet
the needs of Alice and Bob. Dozens to hundreds of alerts a
day is going to be too much for an email delivery system,
but Alice wants well developed document handling, while

Figure 1: Basic information flow in the system. The
filtering discussed later can be implemented either
as a service (for query based) or in the mining chain.

Bob wants a presentation that enables rapid scanning, with
preference for a mobile environment.

Developing a system that can keep both Alice and Bob
happy is conceptually quite simple, but an efficient imple-
mentation is an engineering challenge. The success of the
system hinges on the ability to deliver alerts of sufficient
quality to make the system useful, despite often high levels
of noise in the source information feeds.

The overall system employed is fairly straightforward (see
Figure 1). Content is gathered from a variety of sources, de-
pending on the configuration of the system–it can be stored
and indexed for later query, or filtered and routed in real
time. This is not unlike many existing information aggrega-
tion services, consider the ticker tape and news wire services
that have existed for decades[8], but we have extended the
paradigm by allowing aggregation of arbitrary content on
arbitrary topics. By allowing users to define the selection
and filtering criteria, the content which is routed to the user
does not have to be limited to sites which already provide a
feed, and in theory the content does not have to be directly
accessible on the web. Any content which is gathered by
the system can be encapsulated in RSS and provided to the
users.

The characteristics of a good document are easily defined
with respect to web data. It must not be spam or adult
content, the document must contain a reasonable amount of
information which pertains to the topic in question, etc., but
within the scope of our target user’s goal, the bar is set much
higher. Documents must be topical, unique, and present
information which is new to the individual user. This per-
sonalization aspect creates a new type of problem that is
not handled well by a typical search engine. Additionally
not all users are created equal–what is good for one user
with respect to a general topic may not be good for a dif-
ferent user within the same general topic. Thus we have the
requirement to provide complete, personalized ranking and
routing of documents to each individual user. Implementing
such a system in a way that delivers sufficient accuracy in
an efficient, scalable manner is the challenge we undertake
and lay out in the following section.

3. IMPLEMENTATION
Delta explores the issues that arise from web scale feeds.

Delta is built on top of the WebFountain platform, which
queries over 5.6 billion pages, gathers millions of new doc-
uments a day and stores over a petabyte of data which has
been annotated with dozens of classes of new metadata[15,
24]. Using this system, we have implemented the new se-
lection, filtering, caching and presentation features that are
needed to realize Web Scale RSS.



3.1 Content
Alice and Bob’s information needs are different, but both

require an information feed that is broad enough to locate
emerging sources, and fresh enough to assure that the infor-
mation they are provided is actually new.

Providing this source content employs the field of web
crawling or harvesting, one that has been well explored by
previous research efforts (see Section 5.1), so this section
will focus on those requirements that differ from those of a
general web search engine.

As with any content-based system, the quality of out-
put can be directly correlated to the quality of the input
data, and while there are various algorithms for filtering
and removing low quality data, such as spam, adult content
and duplicates from a corpus, a solid web crawling strategy
strives to avoid ingesting this type of content in the first
place. The largest differentiators in our crawl needs are cov-
erage and freshness.

Providing this coverage and freshness means that we can-
not rely on the link structure of the web to guide our crawl–
we are trying to gather good content that is not yet heavily
linked to. Nor can we use an individual focus crawl tech-
nique[12], as the resource cost of training a focus crawler
for every possible feed is beyond reasonable capabilities of
most systems, and introduces a serious scaling limitation if
the goal is to support hundreds of thousands of feeds. The
need for freshness is derived from the basic user expectation
of Delta that content routed to them will be not just new to
them, but also new to the web.

The next sections will outline our strategies to deal with
each of these issues and subsequently gather the best content
for our users.

3.1.1 Finding quality sources
The first strategy for content gathering is broad coverage

of sources which are likely to contain content of interest to
users. The ideal solution would be to crawl everything ev-
ery few minutes and remove junk and duplicates, but this
is obviously not feasible unless the system has infinite ma-
chines and bandwidth, and it doesn’t mind degrading the
performance of the greater Internet.

The opposite extreme would be to exclusively use a fo-
cused crawler[12] to gather documents which are relevant to
known user topics of interest, and only follow links which
are likely to lead to more relevant documents. However,
this can be limiting as it becomes necessary to seed each
new topic, and content which is not connected to the seeds
may be missed. This skipping of “not relevant now” content
is not acceptable as a good corpus of pages is required for the
feed bootstrapping process to ensure that a user is presented
with content immediately upon creating a new feed.

We use a hybrid solution of a broad crawl to examine
links to all sources, but then prioritize each source based
on heuristics such as its IP address, anchor text of links,
and a sample of the source’s content. This source-level clas-
sification is reliable at identifying sites which are likely to
be adult content, spam, and other junk content, as well as
identifying sources which may contain relevant content[19].

3.1.2 Finding fresh content
In addition to our need for broad coverage, Delta also

requires a constant stream of content which is new to the
system, but ideally also new to the web. We want to find

fresh content as soon as it is published on the web, but again
it is unrealistic to attempt to re-crawl every page constantly
to look for changes.

This problem can be partially addressed by looking for
link hubs–pages which are frequently the source of new links
to new and relevant content. Site hub pages for a news site
might include the front page, while hub sites for a discus-
sion forum might be a list of the current discussions. Hub
pages are measured by the frequency at which they provide
new links. In addition, they are prioritized by the proba-
bility that the new links will have high quality content, as
discussed in the next section.

Hubs are crawled using a dynamic re-crawl policy which
crawls the more important and frequently changing hubs
more often. The top hubs should be crawled daily, hourly, or
whatever the maximum change rate is, at which the crawler
expects to find new content[17]. New content from hubs is
crawled immediately.

Our system is also able to exploit the increasing number
of feeds presented by various content providers. When a
feed is discovered, its content is crawled by a specialized in-
gestor, which improves timeliness and confidence in various
metadata, such as date and author.

3.1.3 Query directed crawl strategy
The third strategy is to take hints from user queries to

guide the crawling[30]. User preferences can be measured in
three ways. First, any document which matches a user query
is marked as potentially relevant. Second, users can be asked
to manually mark any documents, which they find especially
relevant or objectionable. Lastly, sites known to be rich in
terms and entities of interest to users can be considered for
inclusion in the high value set.

Based on this input, both sources and hubs can be pri-
oritized based on the past likelihood of containing good
content. While this is not a true focused crawler, it does
produce bias in the crawl frontier and therefore improves
efficiency in resource utilization.

3.2 Document selection
Document selection is the process of determining which

documents are relevant for a particular feed. While the goal
of gathering is to assemble, with sufficiently high recall, all
of the pages that might be relevant, selection tries to raise
the precision of the documents shown to the user as high
as possible. The web provides the traditional problem of a
very low percentage of good documents compared to noise
in any particular area. This means that false positives are a
reality, and the system should present them in a way which
allows the user to dismiss them as quickly as possible.

Given the large number of documents being considered
(millions per day when running, potentially billions while
defining a new feed) a tiered approach is employed. First,
the initial feed selection criteria is defined. Then, given this
smaller set of documents, traditional filtering and routing
techniques are applied to increase the accuracy of a given
feed.

3.2.1 Initial feed definition
Before Alice and Bob begin to receive articles from Delta,

they need to start by defining their respective topics of in-
terest. We’ve chosen to bootstrap this by providing them
with a simple query interface. This has the advantage that



Figure 2: A simple query interface is provided for
initial feed selection.

users already know how to operate such a system and are
thus intuitively able to define new feeds.

While this approach is fairly natural, it has the issue that
queries tend to be overly general in the sense that the aver-
age query length is 2.4 words[34] and overly specific in the
sense that users may not specify all possible terms that actu-
ally define the topic. To address this, while preserving the
simple query approach, we employ a method of query ex-
pansion, although it would be better described as document
expansion.

The documents are annotated with additional higher level
metadata through a variety of sources. Included in this
metadata is a taxonomy tree of entities which groups peo-
ple, places, things, etc. into a hierarchy. We allow users
to select these higher level concepts, and automatically cap-
ture all the documents that include any of the lower level
concepts.

Executing these queries to generate candidates can be per-
formed in one of two ways: an index query based approach
and a mining based approach.

Index Query Based Approach
The WebFountain platform allows us to rank and sort

query results by system ingestion date, thus creating a list
of new pages that match a feed definition independent of
popularity. This approach works well for prototyping new
feeds, but has several drawbacks.

First, it is dependent on the index update rate. New pages
only become visible after they have been added to the active
index. WebFountain refreshes its full web indices once daily,
which leaves us with a delay of up to 24 hours between
ingestion of a relevant page and it being available through
the index. This is similar to the slow feed approach seen
in[10].

Secondly, updating feeds through index queries requires

the system to periodically check if new content has come
available. This can be done whenever the RSS file is polled
by a presentation system, but since many of these systems
check frequently, the result can be hundreds of queries per
day per feed on the system. While caching can address
some of this load, it is more efficient to design the system to
examine the documents for feed membership as they enter
the platform.

Mining Based Approach
Instead of relying on the index for updating existing feeds,

we employ a feed miner that analyzes new documents as they
are streamed into to the system by the crawler. Our Delta
Feed Miner loads the feed definitions into a trie memory
structure[18] that allows matching a large number of terms
against a document with very little overhead. Documents
which match a given query in the trie are considered part
of the initial candidate set for said query. Candidate docu-
ments are then routed to a secondary analysis and filtering
phase which determines the final set of documents. This ap-
proach is more scaleable and removes the delay in updates
resulting from index update latency.

The mining based approach is truly forward looking and
will only deliver newly ingested matching documents. Thus
it is less than ideal for designing and populating new feeds.
The user will not receive immediate feedback on the quality
of the feed definition. Therefore, our system relies on a
hybrid approach of index queries to populate new feeds with
a sufficient number of initial pages. This enables the user
to refine the feed until it captures the user’s intent. Once
defined, a feed is incrementally updated using the mining
based approach. The user can revisit the feed definition and
refine it at any point using the same hybrid method.

3.2.2 Filtering
The feed definitions are used to create a list of candidate

documents. These sets tend to be much smaller than the full
set of newly ingested documents, and are thus more suitable
for traditional filtering and routing approaches. Our filtering
phase is designed to address the following issues:

Duplicates
Without duplicate detection, the system re-suggests docu-

ments that have been modified, but not modified in a man-
ner relevant to the feed definition. For example, if a new
paragraph is added to an online newsletter, the page is con-
sidered updated by the system. But if the new paragraph is
not relevant in a new way to a given feed it should not be
re-suggested to a user.

To address this issue the system keeps track of all pages
that have been selected for a given feed. A fingerprint[7] of
the relevant content for each selected document is associated
with the feed. All future candidate documents must provide
a unique fingerprint in order to be selected for the feed.

Old content
The crawler may encounter a previously uncrawled page

that contains dated content. Sometimes this is acceptable–
such content may be new to the user. However, for news-like
feeds it presents a problem.

WebFountain provides a DateOfPage Miner which attempts
to determine the publishing date of a document by analyzing
the document content. For example by spotting a date in



Figure 3: In feed feedback mechanism to train clas-
sifiers.

the headline of a news article or relying on the last modified
date as reported by the web server. We use the metadata
created by the DateOfPage Miner to remove old content
where possible. However, there is a large set of pages that
do not provide any hint of their publishing date and thus
remain on the candidate list.

Templates
It is also possible for a site template (per page replicated

content) to match a feed definition. These matches are of
little or no value to the user and must be excluded from
selection. We employ a template identification algorithm to
restrict feed matching to the core text of a document. The
algorithm divides a page into a series of logical blocks and
then uses a variety of heuristics on each block to determine
if the block resides within a page template.

Classification
The previous three filters are targeted at removing spuri-

ous content from the candidate document set. Another issue
is that the feed definition mechanism is fairly rudimentary
and does not allow precise topic specification. We provide
further refinement of a feed by applying a classifier. The
classifier is trained by the user via a simple feedback mech-
anism. We selected Naive Bayes[1] classifier, as it is known
to perform well with relatively little training data. Obvi-
ous future work is to explore other more complex filtering
approaches.

Using these tools Alice and Bob can select which post-
filters are appropriate (see Figure 2), and then begin pro-
viding feedback by in-feed links (see Figure 3) to increase
the accuracy of the results. The total document selection
process is summarized in Figure 4. We may apply filters in
a slightly different order depending on cost and effectiveness.

3.3 Feed presentation
Alice and Bob are planning on using their Delta feeds

in very different ways. Alice is looking for a way to work
through dozens of fairly targeted and personally important
web pages. Bob is more interested in scanning hundreds
of pages a day looking for inspiration. Supporting both of
these led us to a display independent method of presenting
information–in our case RSS.

The choice of RSS as a delivery mechanism both greatly
simplifies and greatly complicates the task of creating the
best presentation of the results. Traditional feed viewers
presuppose a certain level of quality of the feeds–while peo-
ple do write useless or irrelevant content in their blogs it is
assumed if this is the rule for a source the user will simply
unsubscribe from the feed.

Produce Candidates

Remove Duplicates

Remove Old Content

Remove Templated Content

...other filters...

Classify

RSS Encapsulate

Figure 4: Document Selection

The presentation of Delta information from the web is an
inherently noisy process. A large fraction of the matches it
produces may be irrelevant. In addition, we need to enable
our feeds with a way to let users share their relevance con-
cerns with the system, providing the feedback needed for
the traditional filtering and routing problem.

3.3.1 User Interface Considerations
Designing an interface which allows for personalized doc-

ument ranking and routing when one doesn’t control the
reader is a challenge. How do you create lightweight feed-
back mechanisms within the system that will be supported
generically by an arbitrary information conduit?

One of the most important features of RSS is that a user
can choose from a number of different interaction paradigms
when working with feeds. From simple online readers like
Google Reader[23] or Bloglines[3], to in browser plugins such
as Sage[32], there is a wide range of existing readers that
present users with options as to how a feed will be pre-
sented. There are also tools which mimic the email and
older NNTP style of working with the feed[37, 38, 41]. And
with the recent release of Flock[36] there appears to be a new
generation of personalized web clients, which merge brows-
ing, editing and publishing content. While this is a boon to
users and creates an extremely flexible delivery mechanism
for the system, it also constrains the facilities available for
user feedback to the system.

In designing the user experience, some assumptions must
be made as to what basic capabilities of the feed readers
must first be established before the mechanism of feedback
can be considered. The basic function of a reader is to parse
the XML of a feed, present a user with the content of the
feed and allow them to browse from the feed to the original



content or links contained in the feed. From this, it can
be assumed that HTTP hyper-link support is present in the
majority of reader clients. This assumption is reinforced by
the RSS specification[31], which explicitly states that entity
encoded HTML is allowed with the description element of a
feed item.

Beyond simple HTML rendering and link support, more
complex feature of the modern web page such as CSS or
JavaScript cannot be assumed to be under the control of
the feed producer and therefore should not be relied upon
when designing our feedback mechanism.

3.3.2 Feedback Mechanism
Given the technological constraints of our reader capabil-

ity assumptions, all feedback in the system is handled by
inserting HTML links and some minor layout code into the
description field of a feed item (see Figure 3). The action
of a user clicking a feedback link is registered by the sys-
tem and accounted for internally. We recognize that there
could be privacy concerns stemming from a user feedback
system of this type. This is partially mitigated by sending
all information back to the system as plain text in the link
itself so that a user can easily tell what information is be-
ing recorded, and the information itself is sent via an SSL
HTTP connection to ensure that third-parties are not able
to harvest the information in transit.

3.3.3 Feedback Properties
The first element of feedback is a good or bad determina-

tion. The Good link signifies that user liked the document
and would like to see others like it. The Bad link indicates
that the document was not what the user was looking for
from this feed. While this lacks granularity, it is simple
enough for most users utilize effectively and provides the
necessary feedback to train the classifier.

The second element of desired feedback is whether or not
a user has seen a routed document before. This is accom-
plished by the Seen it! link in the feed item. This serves
two purposes: 1) feedback on false negatives within dupli-
cate detection and 2) producing a list of sites that a user
looks to for information about a given topic. The system
does not have a priori knowledge of every document the
user has read during their web browsing lifetime, and there-
fore can only build the required knowledge base via user
feedback. Implicit feedback can be harvest by monitoring
which documents in the feed a user views, but the Seen it!
mechanism allows a user to indicate that a document is a
prior view without having to browse away from the feed list.

3.4 Deployment
One of the advantages of RSS is the simplicity of deploy-

ment. Once the RSS file is created it is merely placed on a
static web server and fetched as needed. This means that,
with the exception of user feedback, there can be a strong
decoupling of the system from the user load. A single feed
server machine can support tens of thousands of users, since
the feeds can be generated by the back-end system at op-
portunistic times.

Pre-filter Post-filter
Count Precision Count Precision

Text Analytics 69 .81 47 .89
Mixed Drinks 5906 .41 760 .82

Table 1: Document Count and Precision before and
after filtering in for the two examples.

4. EVALUATION
There were four concerns we had going into the Delta

project:

• Would there be enough information to make up a feed
on a daily basis? Our experience with various alert
systems had been that we received very few alerts per
day.

• Once we got the information, could the feed be se-
lected and transformed so that it had a high enough
relevance. Our rule of thumb was that three out of
every four articles should be relevant (75% precision).

• Could we present feed information effectively in exist-
ing viewers, given the constrained format and generally
lower data quality?

• Could the feeds be created in a way that we could
support tens to hundreds of thousands of users?

4.1 Feed Characteristics
We found that the characteristics of feeds can vary greatly.

Figure 5 shows the number of documents in the system by
week for the time period of September 2005 through early
November 2005 for each of our example feeds. We also pro-
vide a breakdown by day of the first week in November.

Alice’s “Text Analytics” feed is a good example of a fairly
targeted one. The selection criteria is unambiguous and ex-
pressive, and the feed results support this. The Text Ana-
lytics feed turns out to be a low-volume feed, with under a
hundred postings a week and tens a day.

Bob’s mixed drink feed had to be defined a little more
carefully, as “mixed drink” as a query does not work as well
as might be hoped. We quickly discovered that the term
“recipe” with one or more common drink ingredients and a
negation of “cake” did a good job of generating a reasonably
on-topic feed (see Figure 2).

This mixed drink feed represents the other extreme–first,
the volume is significantly higher. With thousands of post-
ings weekly and hundreds every day (see Figure 5) it is un-
likely that it will be possible to read all of them. In fact, it
is fairly clear that this feed is overly broad, unless you are
interested in looking at trends (e.g., the large peak in posts
at the beginning of the college school year in the weekly
chart. . . ). For Bob this is fine as he is merely looking for
something to scan, but for more serious applications there
is an obvious information overload problem which needs to
be addressed here.

4.2 Precision
Both of these initial feeds have a certain amount of noise,

and we were interested in how precise a cleaned up stream
could be produced. We performed an evaluation of the pre-
cision for the best results we could get through tuning the



Figure 5: Pages per week and per day on the Text Analytics and Mixed Drinks feed.

boolean selection criteria for the two sample feeds discussed
in this paper, and then for the post-filtered feeds using a
Naive Bayes classifier with a 40 document training set.

For the week of October 31st, from an initial new doc-
ument set for this experiment of 160,594,704 documents,
query selection produced 69 documents for Alice’s “Text
Analytics” feed. As can be seen in Table 1 the precision
before cleanup was a respectable 81%. Not surprising since
the phrase “text analytics” is fairly selective. After post fil-
tering we saw the feed dropped to 47 documents, but the
precision is boosted to 89%.

The mixed drinks feed started from the same initial feed.
After boolean selection this dropped to 5,906 documents
with a precision of only 41%. This could probably be raised
slightly with more complex subqueries, but such complexity
quickly goes beyond our assumed skill set for users such as
Bob. Post filtering reduced the document set to 760 but
boosted precision to 82%. It seems that there are a few gen-
eral classes of bad documents, which when removed quickly
bring the quality up to a more acceptable level.

We did not explore this much further as the field of doc-
ument filtering is well established [5, 9, 10] and more mean-
ingful numbers will require developing larger, scored repre-
sentative corpora. This is an important future work item
for us, if only to vet the various existing filtering techniques
for use in this domain.

4.3 Presentation
While precision is an important aspect of usability, the

right presentation and user interface often make or break an
application. Alice and Bob’s very different needs illustrate
that one size most certainly does not fit all for the presen-

Index based Mining based
Initial set 1.4-16.4s/query 25-30ms/item
Filtering 15-19ms/item
Formatting 78-127ms/item
Serving tens of ms
Total (20 items) ≈ 19s ≈ 6s

Table 2: Where the time is spent on providing these
feeds.

tation. Fortunately there are many RSS readers available.
Alice needs to work in detail with the results of the “Text

Analytics” feed. Feeds of this nature are often best thought
of as mid-traffic “net-news” like data sources–you want to
read all of the traffic on them, and may want to save the
pages and/or forward them to colleagues for further consid-
eration. This speaks to a newsreader like tool such as the
one included in Thunderbird (see Figure 6). On such a small
feed enabling duplicate removal is not always appropriate–it
is actually useful to know that the ClearForest announce-
ment is getting broad coverage.

As noted above, Bob’s mixed drink feed is broad. In
terms of display, the Thunderbird-style reader might not
be the best bet. Fortunately, other options exist, such as
“in browser” readers like Sage (see Figure 6) that let you
quickly scan the results (note the use of sentence snippeting
to allow rapid browsing). Of course, some of these feeds are
more useful when you are not sitting in front of a computer.
For these occasions PDA based readers[35] that allow you
to take these feeds with you for easy reference (see Figure 6)
might be a more appropriate choice.



Figure 6: The text analytics feed in the Thunderbird
reader. The Mixed Drinks feed in the sage viewer,
and a PDA based reader. Sometimes the right pre-
sentation format makes all the difference.

4.4 Performance
We observed that total feed time ran to a worst case of

around 19 seconds for the query based approach, or six sec-
onds for mining based feeds (see Table 2 for breakdown).
A bigger differentiator is that the query based approach
loads the entire cluster, as opposed to the mining based
approach which can be implemented with scale-out paral-
lelization. Our delta feed miner checks a page against all
existent feeds at the same time, whereas the query based
approach is also an inherently sequential process.

This results in a striking difference in the number of feeds
which can be supported. The query based approach is lower
bounded at about 4500 feeds. Employing the cluster to do
the mining during page ingest, the final filtering can be done
in an off-cluster scale-out architecture. To give an idea of
what can be achieved, at 3 seconds per feed per processor
per day, a 14 dual processor machine Blade Center is able to
maintain roughly 800,000 feeds with daily updates. Obvi-
ously tuning and performance implementations of the filters
could raise this number substantially.

Once the feed files are created the task of serving the RSS
feeds is a trivial static page serve problem, and we have
established that a single Apache[2] server can support tens
of thousands of users a day.

In short, this approach to producing Daily Deltas is amenable
to fairly broad deployment, even in the face of a high degree
of personalization in the content provided.

5. RELATED WORK
The concept of providing an alert-style feed is not new–

clipping services provided essentially identical functionality
for over a hundred years. What is new with Delta is the
scope of the data set considered, and the ability to person-
alize at this scale. Accomplishing this required us to focus
on three main technical areas; the crawl, the document se-
lection process, and the presentation aspects.

5.1 Crawling
We considered several well known strategies to improve

the quality and breadth of the documents gathered by our
crawler: Focus crawling [12], a broad web crawl[17] and feed-
back from the query system to the crawler as e.g. described
in [30]. Site level analysis is well covered by [19], and self
similarity is explored in [16]. Identifying no-longer fresh sites
is explored in [4], and identifying leading blogs is in[25].

5.2 Document Filtering and Routing
Document filtering distinguishes itself from information

retrieval in that it usually employs statistical methods, which
generally lead to better precision and recall compared to
unranked boolean systems. Moreover, a filtering algorithm
must be designed to make routing decisions without knowing
what documents will be seen in the near future.

A lot of research has been done in the area of document
filtering and routing[5, 9, 10, 42, 13, 27, 14]. The focus is
on high speed, stream based filtering and better selection
of relevant documents. Comparing and improving filtering
algorithms is at the core of this discipline.

In this paper, we present a framework for a web-scale doc-
ument filtering and routing system. We demonstrate the
ability to use filtering algorithms with a simple Naive Bayes
classifier[1], which could be swapped with a number of more



sophisticated algorithms. Our query driven system (see Fig-
ure 1) is considered “slow filtering”, whereas the in-line filter
based system is more similar to traditional document filter-
ing and routing systems

Duplicate removal is by shingle[7], and template identifi-
cation follows from[20].

5.3 Topical News Feeds
Information and media monitoring services are not a prod-

uct of the Internet. Firms such as BurrellesLuce[8] have
been providing media monitoring to clients for over a cen-
tury. In an extension of news wire services, companies such
as Topix.net[39] have created web deployed news aggrega-
tion and feeds. While Topix.net does offer over 300,000 indi-
vidual feeds to its users, it specializes in news content which
is targeted to users based on geography and a high level
topic. Topix.net does not offer feeds on arbitrary user top-
ics, nor does it provide mechanisms for feed personalization
to the user (e.g., we could find no Text Analytics, nor Mixed
Drink recipe feed).

5.4 Presentation
Providing news on-line has gone through a number of pre-

sentation approaches, from the “picture of the front page”[29]
approach to Yahoo’s headline lists[40] to Google’s news por-
tal page[22], each approach has it’s strengths and weakness.
Having tried many of them we’ve found that the overall low
quality of the web feeds compared to traditional wire service
feeds requires a format that is easier to scan. The San Fran-
cisco Chronicle site SFGate[33] provides an approach that
facilitates this rapid scanning (and is similar to the Sage[32]
newsreader). We are working on a similar display format
for Delta, but for now are contenting ourselves with existing
RSS readers such as those found in Firefox and Thunder-
bird[37], as well as various Palm RSS readers such as the
Quick News reader from Stand Alone[35].

5.5 Query based RSS feeds
There are a number of email and RSS based alert sys-

tems available on the Internet. To our knowledge none
of these systems provide truly personalized results on web
scale. They are either based on one of the popular search
engines, including Google’s own “Google alerts”[21] or spe-
cialize on a specific segment of the web, e.g. Topix.net as
discussed in Section 5.3.

Search engine based feeds usually forward only pages that
are ranked in the top N results. For example, in Google
Alerts documents have to be in the top 10 for news, the top
20 for the web or the top 50 for newsgroups to be forwarded.
In contrast, Delta will consider the relevance of any newly
crawled document with regard to each of the user defined
feeds.

6. CONCLUSIONS AND FUTURE WORK
In attempting to turn the Web into a Daily Delta feed

we have encountered a number of challenges, from scope
and scale through quality and specificity. We found that
a multi-level approach to document selection, coupled with
an integrated user feedback system and delivery through
standards based feed mechanisms, such as RSS, allows the
creation of useful feeds in a large number of areas. It should
be noted that the exclusion of popularity based ranking does
make the task of selecting only documents above a certain

quality level vastly more difficult. While this is not a new
problem, it must be combatted for systems such as Delta to
meet user expectations.

The combination of RSS and mining based document se-
lection provides a low cost mechanism to support a large
number of feeds. Users may employ the interface best suited
for their particular needs.

Future work includes exploring how other filtering ap-
proaches apply in this domain. We expect that many of
them will need to be tuned to the lower quality, higher vol-
ume conditions found on the web. We have seen strengths
and weaknesses in existing RSS readers with this class of
content, and are looking to provide alternate interfaces that
may be more appropriate.

We have focused on personal feeds, but there is an ob-
vious extension to include community collaboration in the
definition of a feed. Websites such as Slashdot enable a
community of users with similar interest to submit recently
published articles for distribution to the larger group. A
simple permission structure consisting of group read, group
write and world read, world write could easily support this
type of collaboration.

We are excited about the way this approach helps to trans-
form the web for a user back from a popularity contest into
a source of timely, relevant information that a user looks
forward to every day.

7. ADDITIONAL AUTHORS
Additional authors: Alex Cozzi (IBM Almaden Research

Center, email: cozzi@almaden.ibm.com) and Stephen Dill
(IBM Almaden Research Center, email: dill@us.ibm.com)

8. REFERENCES
[1] R. Agrawal, R. Bayardo, and R. Srikant. Athena:

Mining-based Interactive Management of Text
Databases. In Proc. of the Seventh Int’l Conference on
Extending Database Technology (EDBT), Konstanz,
Germany, March 2000.

[2] Apache Software Foundation. The apache http server
project. http://httpd.apache.org, 2005.

[3] Ask Jeeves. Bloglines. http://www.bloglines.com/,
2005.

[4] Z. Bar-Yossef, A. Broder, R. Kumar, and A. Tomkins.
Sic transit gloria telae: Towards an understanding of
the web’s decay. In Proceedings of the Thirteenth
International World Wide Web Conference, New
York, New York, 2004.

[5] N. J. Belkin and W. B. Croft. Information filtering
and information retrieval: two sides of the same coin?
Commun. ACM, 35(12):29–38, 1992.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In WWW7:
Proceedings of the Seventh International Conference
on World Wide Web 7, pages 107–117. Elsevier
Science Publishers B. V., 1998.

[7] A. Z. Broder, S. C. Glassman, and M. S. Manasse.
Syntactic clustering of the web. In Proc. of 6th
International World Wide Web Conference (WWW6),
April 1997.

[8] I. BurrellesLuce. http://www.burrellesluce.com/.



[9] J. P. Callan. Document filtering with inference
networks. In SIGIR, pages 262–269, 1996.

[10] J. P. Callan. Learning while filtering documents. In
SIGIR, pages 224–231. ACM, 1998.

[11] S. Chakrabarti, B. Dom, P. Raghavan,
S. Rajagopalan, D. Gibson, and J. Kleinberg.
Automatic resource compilation by analyzing
hyperlink structure and associated text. In Proceedings
of the 7th International World Wide Web Conference,
volume 30 of Computer Networks and ISDN Systems,
pages 65–74, Brisbane, April 1997. Elsevier.

[12] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused crawling: A new approach to topic-specific
web resource discovery. In Proceedings of the 8th
International World Wide Web Conference (WWW8),
pages 1623–1640, Toronto, Canada, 1999.

[13] K. Collins-Thompson, P. Ogilvie, Y. Zhang, and
J. Callan. Information filtering, novelty detection, and
named-page finding. In TREC, 2002.

[14] W. B. Croft, J. P. Callan, and J. Broglio. Trec-2
routing and ad-hoc retrieval evaluation using the
inquery system. In TREC, pages 75–84, 1993.

[15] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha,
A. Jhingran, T. Kanungo, S. Rajagopalan,
A. Tomkins, J. A. Tomlin, and J. Y. Zien. Semtag and
seeker: bootstrapping the semantic web via automated
semantic annotation. In WWW, pages 178–186, 2003.

[16] S. Dill, R. Kumar, K. McCurley, S. Rajagopalan,
D. Sivakumar, and A. Tomkins. Self-similarity in the
web. In IEEE International Conference on Very Large
Databases (VLDB), Rome, Italy, September 2001.

[17] J. Edwards, K. S. McCurley, and J. Tomlin. An
adaptive model for optimizing performance of an
incremental web crawler. In Proceedings of the 10th
International World Wide Web Conference
(WWW10), pages 106–113, Hong Kong, China, 2001.

[18] E. Fredkin. Trie memory. Commun. ACM,
3(9):490–499, 1960.

[19] D. Gibson. Surfing the web by site. In WWW Alt. ’04:
Proceedings of the 13th International World Wide
Web Conference on Alternate Track Papers & Posters,
pages 496–497, New York, NY, USA, 2004. ACM
Press.

[20] D. Gibson, K. Punera, and A. Tomkins. The volume
and evolution of web page templates. In Proceedings of
the Fourteenth International World Wide Web
Conference, 2005.

[21] Google. Google alerts.
http://www.google.com/alerts.

[22] Google. Google news. http://news.google.com.

[23] Google. Google reader. http://reader.google.com.

[24] D. Gruhl, L. Chavet, D. Gibson, J. Meyer,
P. Pattanayak, A. Tomkins, and J. Zien. How to build
a webfountain: An architecture for very large-scale
text analytics. IBM Systems Journal, 43(1):64–77,
2004.

[25] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins.
Information diffusion through blogspace. In
Proceedings of the Thirteenth International World
Wide Web Conference, New York, New York, 2004.

[26] IBM. Clever.

http://www.almaden.ibm.com/cs/k53/clever.html.

[27] R. Jin, L. Si, C. Zhai, and J. Callan. Collaborative
filtering with decoupled models for preferences and
ratings. In CIKM ’03: Proceedings of the Twelfth
International Conference on Information and
Knowledge Management, pages 309–316, New York,
NY, USA, 2003. ACM Press.

[28] Network Working Group. The atom syndication
format. http://ietfreport.isoc.org/all-ids/
draft-ietf-atompub-format-11.txt, August 2005.

[29] New York Times. Front page scan.
http://www.nytimes.com/pages/pageone/scan/,
2005.

[30] G. Pant, S. Bradshaw, and F. Menczer. Search
engine-crawler symbiosis: Adapting to community
interests. In T. Koch and I. Sølvberg, editors, ECDL,
volume 2769 of Lecture Notes in Computer Science,
pages 221–232. Springer, 2003.

[31] RSS Advisory Board. RSS 2.0 Specification.
http://blogs.law.harvard.edu/tech/rss, January
2005.

[32] Sage Development Team. Sage: a feed reader for
Firefox. http://sage.mozdev.org/, 2005.

[33] San Franscisco Chronicle. SF Gate: News and
Information for the San Francisco Bay Area.
http://sfgate.com, 2005.

[34] C. Silverstein, M. R. Henzinger, H. Marais, and
M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6–12, 1999.

[35] Stand Alone, Inc. Quick news.
http://standalone.com/palmos/quick_news, 2005.

[36] The Flock Development Team. Flock is a free, open
source web browser. http://www.flock.com/, 2005.

[37] Thunderbird Development Team. Thunderbird -
Reclaim Your Inbox.
http://www.mozilla.org/products/thunderbird/,
October 2005.

[38] Toomas Toots, Marcus Hettlage, Karsten Hoffrath.
Feedreader is a lightweight open-source aggregator
that supports rss and atom formats.
http://www.feedreader.com, 2005.

[39] Topix.net, Inc. http://topix.net, 2005.

[40] Yahoo. The top news headlines on current events from
Yahoo! News. http://news.yahoo.com, 2005.

[41] Ykoon B.V. Rssreader - free rss reader is able to
display any rss and atom news feed (xml).
http://www.rssreader.com, 2005.

[42] Y. Zhang and J. P. Callan. The bias problem and
language models in adaptive filtering. In TREC, 2001.


