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ABSTRACT 

We propose using the Stream Control Transmission Protocol 

(SCTP), a recent IETF transport layer protocol, for reliable web 

transport. Although TCP has traditionally been used, we argue 

that SCTP better matches the needs of HTTP-based network 

applications. This position paper discusses SCTP features that 

address:  (i) head-of-line blocking within a single TCP 

connection, (ii) vulnerability to network failures, and (iii) 

vulnerability to denial-of-service SYN attacks. We discuss our 

experience in modifying the Apache server and the Firefox 

browser to benefit from SCTP, and demonstrate our HTTP over 

SCTP design via simple experiments. We also discuss the benefits 

of using SCTP in other web domains through two example 

scenarios ─ multiplexing user requests, and multiplexing resource 

access. Finally, we highlight several SCTP features that will be 

valuable to the design and implementation of current HTTP-based 

client-server applications.  

Categories and Subject Descriptors 

C.2.5 [Computer-Communication Networks]: Local and Wide-

Area Networks – Internet; C.2.6 [Computer-Communication 

Networks]: Internetworking – Standards; C.4 [Performance of 

Systems]: Design Studies; Fault Tolerance; Reliability, 

availability and serviceability. 

General Terms 

Performance, Design, Security.  

Keywords 

SCTP, Stream Control Transmission Protocol, fault-tolerance, 

head-of-line blocking, transport layer service, web applications, 

web transport. 

1. INTRODUCTION 
HTTP requires a reliable transport protocol for end-to-end 

communication. While historically TCP has been used for this 

purpose, RFC2616 does not require TCP; but until now, no 

reasonable alternative existed. The Stream Control Transmission 

Protocol (SCTP), specified in RFC2960, is a recently 

standardized reliable transport protocol which provides a set of 

innovative transport layer services unavailable from TCP (or 

UDP). In this paper, we argue that these services can enhance web 

transfers, making SCTP a better choice for web transport.  
 

 

SCTP was originally designed within the IETF SIGTRAN 

working group to address the shortcomings of TCP for telephony 

signaling over IP networks [2]. SCTP has since evolved into a 

general purpose IETF transport protocol, and is well beyond a 

laboratory research project. More than 25 SCTP implementations 

currently exist, including kernel implementations for FreeBSD, 

NetBSD, OpenBSD, Mac OS X, Linux, Solaris, AIX, and HP-

UX; and user-space implementations for Windows, on proprietary 

platforms for Cisco, Nokia, Siemens, and other vendors. Eight 

interoperability workshops over the past five years have fine-

tuned these implementations [14]. 

Of SCTP’s new services and features, SCTP multistreaming 

provides an application with logically separate data streams to 

transfer multiple independent objects, SCTP multihoming 

provides transparent fault-tolerance to applications on 

multihomed end hosts, and SCTP’s four-way handshake during 

association (SCTP’s term for a connection) establishment avoids 

denial-of-service SYN attacks. In this paper, we discuss these 

features and their applicability to web transfers. 

The paper is organized as follows. Section 2 details how SCTP 

solves three specific limitations that occur when HTTP-based 

client-server applications use TCP: head-of-line blocking, 

disruption due to network failures, and SYN attacks. Section 3 

overviews our modifications to Apache and Firefox architectures 

to operate over SCTP. We also analyze how their original 

architectures limit full utilization of SCTP’s new features. In 

Section 4, we explore web domains other than general browsing, 

and articulate how these domains can benefit from SCTP. Section 

5 elaborates other SCTP features and relevant SCTP work that 

might be useful for HTTP-based network applications. Section 6 

summarizes and concludes the paper. 

2. HTTP OVER TCP CONCERNS 
In this section, we discuss three major concerns in using TCP for 

web transport, and how our choice ─ SCTP ─ effectively 

addresses all of these concerns.  

2.1 Head of line blocking 
Consider the simple case of a web browser displaying a web page. 

Using HTTP/1.1 that supports persistent and pipelined 

connections, the browser opens a new transport connection to the 

server, and sends an HTTP GET request with the desired URI. 

The server returns an HTTP response with the page contents. This 

page may contain URIs of embedded objects. The browser parses 

the content for these URIs, and sends pipelined HTTP GET 

requests for each of the URIs. As responses arrive from the server, 

the browser displays the webpage with its embedded objects. 
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In general, objects embedded within a web page are independent 

of each other. That is, requesting and displaying each object in the 

page does not depend on the reception of other embedded objects. 

This “degree of freedom” is best exploited by concurrently 

downloading and rendering the independent embedded objects. 

At the transport layer, TCP offers a single sequential bytestream 

to an application; all application data are serialized and sent 

sequentially over the single bytestream. In addition, TCP provides 

in-order delivery within this bytestream ─  if a transport protocol 

data unit (TPDU) is lost in the network, successive TPDUs 

arriving at the TCP receiver will not be delivered to the 

application until the lost TPDU is retransmitted and received.  

Hence, when TCP is used for web transport, a lost TPDU carrying 

a part of a web object may block delivery of other successfully 

received independent web objects. This problem, known as head-

of-line (HOL) blocking, is due to the fact that TCP cannot 

logically separate independent application level objects in its 

transport and delivery mechanisms.  

HOL blocking also results in unnecessary filling of the receiver’s 

transport layer buffer space. Reliable transport protocols such as 

TCP use a receiver buffer to store TPDUs that arrive out-of- 

order. Once missing TPDUs are successfully retransmitted, data in 

the receiver buffer is ordered and delivered to the application. 

This buffer fill up is unnecessary in cases when ‘later received’ 

TPDUs belong to a different application object than the earlier 

lost TPDU(s).  The required amount of buffer space increases 

with the loss probability in the transmission path, and the number 

of independent objects to be transferred.  

Note that HOL blocking is particularly exacerbated in domains 

with low bandwidth and/or high loss rates. With the proliferation 

of mobile phones, and the increasing use of web browsers and 

other web applications on mobile phones, increased HOL 

blocking will cause significant user-perceived delays. 

To alleviate HOL blocking, web browsers usually open multiple 

TCP connections to the same web server [5]. All HTTP GET 

requests to the server are distributed among these connections, 

avoiding HOL blocking between the corresponding responses. 

However, multiple independent objects transferred within one of 

the several parallel connections still suffer from HOL blocking. 

Using multiple TCP connections for transferring a single 

application’s data introduces many negative consequences for 

both the application and the network. Previous work such as 

Congestion Manager [6] and Transaction TCP [17] analyze these 

consequences in depth, which we summarize: 

• Aggressive behavior during congestion: TCP’s algorithms 

maintain fairness among TCP (and TCP-like) connections. A 

TCP sender reduces its congestion window by half when 

network congestion is detected [13]. This reduction is a well 

understood and recommended procedure for maintaining 

stability and fairness in the network [18,19]. An application 

using multiple TCP connections gets an unfair share of the 

available bandwidth in the path, since all of the application’s 

TCP connections may not suffer loss when there is 

congestion in the transmission path. If m of the n open TCP 

connections suffer loss, the multiplicative decrease factor for 

the connection aggregate at the sender is (1 - m/2n) [8]. This 

decrease factor is often greater than one-half, and therefore 

an application using parallel connections is considered an 

aggressive sender. This aggressive behavior leads to 

consumption of an unfair share of the bottleneck bandwidth 

as compared to applications using fewer connections. 

• Absence of integrated loss detection and recovery: Web 

objects are typically small, resulting in just a few TPDUs per 

HTTP response. In these cases, a TPDU loss is often 

recoverable only through an expensive timeout at the web 

server due to an insufficient number of duplicate acks to 

trigger a fast retransmit [8]. Though this problem is lessened 

in HTTP/1.1 due to persistent connections and pipelined 

requests, it still exists while using multiple TCP connections 

since separate connections cannot share ack information for 

loss recovery. 

• Increased load on web server: The web server has to allocate 

and update a Transmission Control Block (TCB) for every 

TCP connection. Use of parallel TCP connections between 

client and server increases TCB processing load on the 

server. Under high loads, some web servers may choose to 

drop incoming TCP connection requests due to lack of 

available memory resources.  

• Increased connection establishment latency: Each TCP 

connection goes through a three-way handshake for 

connection establishment before data transfer is possible. 

This handshake wastes one round trip for every connection 

opened to the same web server.  Any loss during connection 

setup can be expensive since a timeout is the only means of 

loss detection and recovery during this phase. Increasing the 

number of connections increases the chances of losses during 

connection establishment, thereby increasing the overall 

average transfer time.  

Congestion Manager (CM) [6] attempts to solve the first two 

problems. CM is a shim layer between the transport and network 

layers which aggregates congestion control at the end host, 

thereby enforcing a fair sending rate when an application uses 

multiple TCP connections to the same end host. “TCP Session” 

[7] proposes integrated loss recovery across multiple TCP 

connections to the same web client (these multiple TCP 

connections are together referred to as a TCP session). All TCP 

connections within a session are assumed to share the 

transmission path to the web client. A Session Control Block 

(SCB) is maintained at the sender to store information about the 

shared path such as its congestion window and RTT estimate. 

Both, CM and TCP Session, still require a web browser to open 

multiple TCP connections to avoid HOL blocking, thereby 

increasing the web server’s load.  

Apart from solving the network related problems due to parallel 

TCP connections, there has also been significant interest in 

designing new transport and session protocols that better suit the 

needs of HTTP-based client-server applications than TCP. Several 

experts agree (for instance, see [28]) that the best transport 

scheme for HTTP would be one that supports datagrams, provides 

TCP compatible congestion control on the entire datagram flow, 

and facilitates concurrency in GET requests.  WebMUX [29] was 

one such session management protocol that was a product of the 

(now historic) HTTP-NG working group [30]. WebMUX 

proposed use of a reliable transport protocol to provide web 

transfers with “streams” for transmitting independent objects. 

While the WebMUX effort did not mature, SCTP is a current 

IETF standards-track protocol with several implementations and a 

growing deployment base, and offers many of the core features 

that were desired of WebMUX. 



 

We propose using SCTP’s multistreaming feature ─ a previously 

unavailable transport layer service specifically designed to avoid 

HOL blocking when transmitting logically independent 

application objects. An SCTP stream is a unidirectional data flow 

within an SCTP association. Independent application objects can 

be transmitted in different streams to maintain their logical 

separation during transfer and delivery. Note that an SCTP 

association is subject to congestion control similar to TCP. Hence, 

all SCTP streams within an association are subject to shared 

congestion control, and thus multistreaming does not violate 

TCP’s fairness principles.  

 

 

Figure 1. Multistreamed association between two hosts 

 

Figure 1 illustrates a multistreamed association between hosts A 

and B. In this example, host A uses three output streams to host B 

(numbered 0 to 2), and has only one input stream from host B 

(numbered 0). The number of input and output streams in an 

SCTP association is negotiated during association setup. 

SCTP uses stream sequence numbers (SSNs) to preserve data 

order within each stream. However, maintaining order of delivery 

between TPDUs transmitted on different streams is not a 

constraint. That is, data arriving in-order within an SCTP stream 

is delivered to the application without regard to data arriving on 

other streams.  

To transfer independent web objects without HOL blocking, each 

object can be sent in a separate stream, all within a single 

association. SCTP uses a single global Transmission Sequence 

Number (TSN), which provides integrated loss detection and 

recovery across streams; loss in one stream can be detected via 

acks for data on other streams. Also congestion control is shared; 

a web browser using this solution will be no more aggressive than 

a web browser using a single TCP connection. Connection 

establishment latency does not increase with multistreaming.  

While every association setup requires a four-way handshake, data 

transfer can begin in the third leg (See Section 2.3).  

In KAME SCTP implementation [12][14], the SCTP TCB is 

approximately twice the size of a TCP TCB. The memory 

overhead per inbound or outbound stream is 16 bytes, causing the 

TCB memory requirements for two parallel TCP connections to 

be roughly equal to the requirements for a single SCTP 

association with two pairs (inbound and outbound) of streams. 

However, to achieve higher concurrency, memory overhead when 

increasing the number of TCP connections is much greater than 

when increasing the number of streams within an SCTP 

association.  

The size of a TCP TCB is quite high (~700 bytes) when compared 

to memory overhead for a pair of SCTP streams (32 bytes).  Using 

these values, the memory requirements for the TCP and SCTP 

cases can be approximated as: 

For n parallel TCP connections 

= [n * (TCP TCB size)] bytes 

= [n * 700] bytes 

For 1 SCTP association with n pairs of streams 

= [(SCTP TCB size) + (n * 32)] bytes 

= [(2 * TCP TCB size) + (n * 32)] bytes 

= [1400 + (n * 32)] bytes 

From the above calculations, it is evident that the memory 

required for the TCP case increases rapidly with n (n > 2) when 

compared to the SCTP case. Note that with SCTP multistreaming, 

apart from the lower memory overhead, a web server also incurs 

the lower processing load of only one TCB per web client. 

We discuss a more detailed mapping of HTTP over SCTP, and 

our implementation of this mapping in Section 3.  

2.2 Network Failures 
Critical web servers rely on redundancy at multiple levels to 

provide uninterrupted service during resource failures. A host is 

multihomed if it can be addressed by multiple IP addresses [4]. 

Multihoming a web server offers redundancy at the network layer, 

provided that the web server remains accessible even when one of 

its IP addresses becomes unreachable, say due to an interface or 

link failure, severe congestion, or slow route convergence around 

path outages.  

Multihoming end hosts is becoming increasingly economical. For 

instance, today’s relatively inexpensive access to the Internet 

motivates home users to have simultaneous wired and wireless 

connectivity through multiple ISPs, thereby increasing the end 

host’s fault tolerance at an economically feasible cost.  

TCP is ignorant of multihoming. Even if end hosts have multiple 

interfaces, an application using TCP cannot leverage this network 

layer redundancy, since TCP allows the application to bind to 

only one network address at each end of a connection. For 

example, in Figure 2, assume that host A runs a web server and 

host B runs a web client. Using TCP, the web client can use one 

interface (B1), to connect to one interface (A1) at the web server. 

If A1 fails, the web server becomes unreachable to all the clients 

connected through A1, including B, and the corresponding TCP 

connections are aborted. Unfortunately, the redundant active 

network interface, A2, could not be used by the clients connected 

through A1. 

 

 

Figure 2. Multihomed end hosts 

 

To provide applications on multihomed end hosts with resilience 

to such failures, SCTP supports multihoming ─ a transport layer 



 

feature providing transparent network failure detection and 

recovery. SCTP allows binding a transport layer association to 

multiple IP addresses at each end host. An end point chooses a 

single primary destination address for sending new data. SCTP 

monitors the reachability of each destination address through two 

mechanisms: acks of data and periodic probes known as 

heartbeats. Failure in reaching the primary destination results in 

failover, where an SCTP endpoint dynamically chooses an 

alternate destination to transmit the data, until the primary 

destination becomes reachable again.  

In Figure 2, a single SCTP association is possible between 

addresses A1, A2 at the server and B1, B2 at the client. Assuming 

A1 is the primary destination for the client, if A1 becomes 

unreachable, multihoming keeps the SCTP association alive 

through failover to alternate destination A2, and allows the end 

host applications to continue communicating seamlessly.  

Ongoing research on Concurrent Multipath Transfer (CMT) [15], 

proposes to use multihoming for parallel load sharing. During 

scenarios where multiple active interfaces between source and 

destination connect through independent paths, CMT 

simultaneously uses these multiple paths to transfer new data, 

increasing throughput for a networked application. Thus, a 

multihomed web client and server running on SCTP can leverage 

CMT’s throughput improvements for web transfers.  

2.3 SYN Attacks 
A SYN attack is a common denial of service (DoS) technique that 

has often disabled the services offered by a web server. During the 

three-way TCP connection establishment handshake, when a TCP 

server receives a SYN, the TCP connection transitions to the TCP 

half-open state. In this state, the server allocates memory 

resources, stores state for the SYN received, and replies with a 

SYN/ACK to the sender. The TCP connection remains half open 

until it receives an ACK for the SYN/ACK resulting in 

connection establishment, or until the SYN/ACK expires with no 

ACK. However, the latter scenario results in unnecessary 

allocation of server’s resources for the TCP half open connection. 

When a malicious user orchestrates a coordinated SYN attack, 

1000’s of malicious hosts flood a predetermined TCP server with 

IP-spoofed SYN requests, causing the server to allocate resources 

for many half open TCP connections. The server’s resources are 

thus held by these fabricated SYN requests, denying resources to 

legitimate clients. Such spoofed SYN attacks are a significant 

security concern, and an inherent vulnerability with TCP’s three-

way handshake. Web administrators try to reduce the impact of 

such attacks by limiting the maximum number of half open TCP 

connections at the server, or through firewall filters that monitor 

the rate of incoming SYN requests.  

To protect an end host from such SYN attacks, SCTP uses a four-

way handshake with a cookie mechanism during association 

establishment. The four-way handshake does not increase the 

association establishment latency, since data transfer can begin in 

the third leg. As shown in Figure 3, when host A initiates an 

association with host B, the following process ensues: 

1. A sends an INIT to B.  

2. On receipt of the INIT, B does not allocate resources to the 

requested association. Instead, B returns an INIT-ACK to A with a 

cookie that contains: (i) necessary details required to identify and 

process the association (ii) life span of the cookie, and (iii) 

signature to verify the cookie’s integrity and authenticity.  

3. When A receives the INIT-ACK, A replies with a COOKIE-

ECHO, which echoes the cookie that B previously sent. This 

COOKIE-ECHO may carry A’s application data to B. 

4. On receiving the COOKIE-ECHO, B checks the cookie’s 

validity, using the state information in the cookie. If the cookie 

verifies, B allocates resources and establishes the association.  

 

 

Figure 3. SCTP association establishment 

 

With SCTP’s four-way handshake, a web client that initiates an 

association must maintain state before the web server does, 

avoiding spoofed connection request attacks.  

3. APACHE AND FIREFOX OVER SCTP 
To investigate the viability of HTTP over SCTP, we modified 

Apache and Firefox to run over SCTP in FreeBSD 5.4 [12].  

These modified implementations are publicly available [20]. In 

this section, we list our design guidelines, and discuss the 

rationale behind our final design. We then present the relevant 

architectural details of Apache and Firefox, and describe our 

changes to their implementation. Finally, we discuss their 

architectural limitations which do not allow the application to 

fully benefit from SCTP multistreaming. These limitations are 

possibly shared by other web servers and browsers as well. 

3.1 Design Guidelines 
Two guidelines that governed our HTTP over SCTP design were: 

• Make no changes to the existing HTTP specification, to 

reduce deployment concerns 

• Minimize SCTP-related state information at the server so that 

SCTP multistreaming does not become a bottleneck for 

performance.  

An important design question to address was:  which end (the 

client or server) should decide on the SCTP stream to be used for 

an HTTP response? Making the web server manage some form of 

SCTP stream scheduling is not desirable, as it involves 

maintaining additional state information at the server. Further, the 

client is better positioned to make scheduling decisions that rely 

on user perception and the operating environment. We therefore 

concluded that the client should decide object scheduling on 

streams.  



 

We considered two designs by which the client conveys the 

selected SCTP stream to the web server:  (1) the client specifies 

the stream number in the HTTP GET request and the server sends 

the corresponding response on this stream, or (2) the server 

transmits the HTTP response on the same stream number on 

which the corresponding HTTP request was received. Design (1) 

can use just one incoming stream and several outgoing streams at 

the server, but requires modifications to the HTTP GET request 

specification. Design (2) requires the server to maintain as many 

incoming streams as there are outgoing streams, increasing the 

memory overhead at the server. The KAME SCTP TCB uses 16 

bytes for every inbound or outbound stream.   We considered this 

memory overhead per stream to be insignificant when compared 

to changes to HTTP specification, and chose option (2). 

3.2 Apache 
We chose the Apache (version 2.0.55) open source web server for 

our task. In this section, we give an overview of Apache’s 

architecture, and their modifications to use SCTP streams. 

3.2.1 Architecture 
The Apache HTTP server has a modular architecture. The main 

functions related to server initialization, listen/accept connection 

setup, HTTP request parsing, memory management are handled 

by the core module. The remaining accessory functions such as 

request redirection, authentication, dynamic content handling are 

performed by separate modules. The core module relies on the 

Apache Portable Runtime (APR), a platform independent API, for 

network, memory and other system dependent functions.  

Apache has a set of multi-processing architectures that can be 

enabled during compilation. We considered the following 

architectures: (1) prefork ─ non-threaded pre-forking server and 

(2) worker ─ hybrid multi-threaded multi-processing server. With 

prefork, a configurable number of processes are forked during 

server initialization, and are setup to listen for connections from 

clients. With worker, a configurable number of server threads and 

a listener thread are created per process. The listener thread listens 

for incoming connections from clients, and passes the connection 

to a server thread for request processing.  

In both architectures, a connection structure is maintained 

throughout a transport connection’s lifetime. Apache uses filters 

─ functions through which different modules process an incoming 

HTTP request (input filters) or outgoing HTTP response (output 

filters). The core module’s input filter calls the APR read API for 

reading HTTP requests. Once the HTTP request syntax is verified, 

a request structure is created to maintain state related to the HTTP 

request. After processing the request, the core module’s output 

filter calls the APR send API for sending the consequent HTTP 

response.  

3.2.2 Changes 
To adapt Apache to use SCTP streams, the APR read and send 

API implementations were modified to collect the SCTP input 

stream number on which a request is read, and to send the 

response on the corresponding output stream. During a request’s 

lifetime, a temporary storage place stores the SCTP stream 

number for the request. The initial design was to use the socket or 

connection structures for the purpose. But, pipelined HTTP 

requests from potentially different SCTP streams can be read from 

the same socket or connection, overwriting previous information. 

Hence these structures were avoided. In our implementation, 

stream information related to an HTTP request is stored in the 

request structure, and is exchanged between the APR and the core 

module through Apache’s storage buffers (bucket brigades).  

Apache uses a configuration file that allows users to specify 

various parameters. We made changes to the Listen directive 

syntax in the configuration file so that a web administrator can 

specify the transport protocol – TCP or SCTP, to be used by the 

web server.  

3.3 Firefox 
We chose the Firefox (version 1.6a1) browser since it is a widely 

used open-source browser.  In this section, we briefly discuss 

Firefox’s architecture, and its adaptation to work over SCTP 

streams.  

3.3.1 Architecture 
Firefox belongs to the Mozilla suite of applications which have a 

layered architecture. A set of applications, such as Firefox and 

Thunderbird (mail/news reader), belong to the top layer. These 

applications rely on the services layer for access to network 

services. The services layer uses platform independent network 

APIs offered by the Netscape Portable Runtime (NSPR) library in 

the runtime layer. NSPR maintains a methods structure with 

function pointers to various I/O and other management functions 

for TCP and UDP sockets. 

Firefox has a multi-threaded architecture. To render a web page 

inside a Firefox tab, first the HTTP protocol handlers parse the 

URL, and use the socket services to open a TCP connection to the 

web server. Once the TCP connection is setup, an HTTP GET 

request for the web page is sent. After the web page is retrieved 

and parsed, further HTTP requests for embedded objects are 

pipelined over the same TCP connection if the connection 

persists; else over a new TCP connection.  

In the version we used, Firefox never opened more than one TCP 

connection for a simple transaction to the same web server. 

However, when we requested multiple news-feeds from the same 

web server in different tabs (“Open all in tabs” feature, where 

multiple pages are displayed concurrently), Firefox opened 

multiple TCP connections to the same web server, one for each 

tab. 

3.3.2 Changes 
Adapting Firefox to work on SCTP streams involved 

modifications in its services layer to open an SCTP socket instead 

of a TCP socket, and creating a new methods structure in NSPR 

for SCTP related I/O and management functions. 

During SCTP association setup with the server, Firefox requests a 

specific number of SCTP input and output streams. (In SCTP, this 

request can be negotiated down by the server in the INIT-ACK.) 

For our purposes, the number of input streams is set to equal the 

number of output streams, thus assuring that the Firefox browser 

receives a response on the same stream number as the one on 

which it sends a request.  

Our Firefox changes provide flexibility to do HTTP request 

scheduling over SCTP streams. The current implementation picks 

SCTP streams in a round-robin fashion. Other scheduling 

approaches can be considered in the future. For example, in a 

lossy network environment, such as wide area wireless 

connectivity through GPRS, a better scheduling policy might be 

‘smallest pending object first’ where the next GET request goes 

on the SCTP stream that has the smallest sum of object sizes 

pending transfer. Such a policy reduces the probability of HOL 



 

blocking among the response for the most recent GET request and 

the responses for previous requests transmitted on the same SCTP 

stream. 

With Firefox’s current design, the choice of the transport protocol 

(TCP or SCTP) must be decided at compile time. In the future, it 

will be beneficial to have this choice as a configurable parameter. 

3.4 SCTP Multistreaming Avoids HOL 
We present two simple experiments to visualize the differences 

between the current HTTP over TCP design, and our HTTP over 

SCTP multistreaming design. Our goal is to demonstrate how 

HTTP over SCTP multistreaming avoids HOL blocking.  

The experiment topology, shown in Figure 4, uses three nodes: a 

custom web client (FreeBSD 5.4) and an Apache server (FreeBSD 

5.4) connected by Dummynet (FreeBSD 4.10) [24]. Dummynet’s 

traffic shaper configures a 56Kbps duplex link, with a queue size 

of 50KB and zero added propagation delay between client and 

server. This link has no loss in the direction from client to server, 

and 10% loss from server to client. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Experiment Topology 

 

In both experiments, the client requests a web page containing 5 

embedded 5.5KB objects (for example, a photo album page 

containing 5 embedded JPEG images) from the Apache server.  In 

the first experiment, the web client and Apache communicate over 

a single TCP connection, and, in the second they communicate 

over a single SCTP association with one stream for each 

embedded object. 

Using timestamp information collected from tcpdump [25] traces 

at the client, Figures 5 and 6 plot PDU receipt times at the 

transport and application layers in the TCP and SCTP runs, 

respectively.  A point labeled ‘n’ denotes the arrival of one of 

object n’s TPDUs at the receiving transport layer.  A 

corresponding ‘X’ denotes the earliest calculated time when the 

data in that TPDU is delivered by the transport layer to the 

application.  

In both scenarios, TPDU 6 (2nd TPDU of object 2) is lost, and its 

retransmission arrives just after time=4 seconds. This loss causes 

the remaining TPDUs to arrive ‘out-of-order’ at the client’s 

transport layer. In HTTP over TCP (Figure 5), HOL blocking by 

object 2, causes TCP to delay delivery of data in objects 3, 4 and 

5 until the successful retransmission of TPDU 6. Note that even 

after this retransmission, TCP is still blocked from delivering 

object 5 to the application due to loss of TPDU 19 (5th TPDU of 

4th object). In HTTP over SCTP (Figure 6), the TPDUs for each 

object arrive on a different SCTP stream. Hence, the loss1 of 

TPDU 6 – object 2’s TPDU, does not block application delivery 

of objects 3, 4 or 5. Note that in Figure 6, the initial four PDUs of 

object 4 are delivered without HOL blocking. The final TPDU of 

object 4 is lost and is delivered only after the retransmission 

arrives.  

We believe that SCTP multistreaming and the absence of HOL 

blocking opens up opportunities for a new range of browser and 

server features, which we discuss in detail in the following 

sections.   
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Figure 5. HOL blocking in HTTP over TCP 
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Figure 6. No HOL blocking in HTTP over SCTP 

 

3.5 Browser/Server Architectural Discussion  
Even if SCTP can deliver requests and responses of independent 

web objects without HOL blocking, the current Apache and 

Firefox architectures are unable to take full advantage of SCTP’s 

multistreaming benefits. We explain a browser side architectural 

limitation, and propose a solution. We also explain a server side 

                                                                 

1 In our SCTP experiment, each application write generated an SCTP 

TPDU, causing a one to one correspondence between a TPDU’s 

Transmission Sequence Number (TSN) and the TPDU number.   

 



 

architectural change that can enhance the server’s performance, 

especially in lossy environments. 

3.5.1 Browser Limitation 
If SCTP has received partial data for n independent web objects 

on different streams, SCTP will deliver these n partial responses 

to the web browser as long as TPDUs within each stream arrived 

in sequence.  A web browser now has the opportunity to read and 

render these n responses concurrently. This browser capability, 

known as parallel rendering, can be optionally used to improve 

user perception since multiple web objects start appearing in 

parallel on the corresponding web page. 

Parallel rendering is difficult to realize with the current Firefox 

architecture. Firefox dedicates a single thread to a transport layer 

connection. This design reflects Firefox’s assumption regarding 

TCP as the underlying transport. With TCP, objects can be 

received only sequentially within a single connection; hence a 

single thread to read the HTTP responses is sufficient. In the 

modified implementation, a single thread gets dedicated to an 

SCTP association. Consequently, the thread sends the pipelined 

HTTP GET requests, and reads the responses in sequence.  

Therefore, multiple streams within an SCTP association are still 

handled sequentially by the thread, allowing the thread to render 

at most one response at a time.  

One possible solution to realize parallel rendering in Firefox (or 

any multi-threaded web browser) is to use multiple threads to 

request and render web page objects via one SCTP association. 

Multiple threads, one for each object, send HTTP GET requests 

over different SCTP streams of the association.  The number of 

SCTP streams to employ for a web page can be either user 

configurable, or dynamically decided by the browser. The same 

thread that sends the request for an object can be responsible for 

rendering the response. However, it is necessary that a single 

‘reader’ thread reads all the HTTP responses for a web page, since 

TPDUs from a web server containing the different responses can 

arrive interleaved at the browser’s transport layer (discussed in 

Section 3.6).   

Multiple threads enable parallel rendering but require 

considerable changes to Firefox’s architecture. We suspect most 

common web browsers to suffer from a similar architectural 

limitation. 

3.5.2 Server Enhancement 
The original multi-threaded Apache dedicates one server thread to 

each TCP connection. Our adaptation over SCTP multistreaming 

dedicates a server thread to an SCTP association. In this design, 

the server thread reads HTTP requests sequentially from the 

association, even if requests arrive on different streams in the 

association.  

Apache might achieve better concurrency in serving user requests 

if its design enabled multiple threads to read from different SCTP 

streams in an association, each capable of delivering independent 

requests without HOL blocking. We hypothesize that in lossy 

and/or low bandwidth environments, this design can provide 

higher request service rates when compared to Apache over TCP, 

or our current Apache over SCTP. 

3.6 Object Interleaving  
In this section, we use “imaginary” scenarios to illustrate object 

interleaving. Object interleaving ensues when a browser and a 

server, capable of transmitting HTTP requests and responses 

concurrently, communicate over different streams of an SCTP 

association. For example, object interleaving will be observed 

when a multi-threaded browser and server, modified as described 

in Section 3.5, communicate over SCTP streams.  Since such 

browser and server implementations are in progress, we use 

imaginary data to illustrate the concept.  

We use two scenarios in our demonstration. Each scenario shows 

one of the two extreme cases ─ the presence of an ideal object 

interleaving, and no interleaving. In both scenarios, a multi-

threaded browser requests 5 objects from a multi-threaded web 

server. Every object is the same size and is distributed over 5 

TPDUs, resulting in a total of 25 TPDUs for each transfer. The 

transfers do not experience any loss or propagation delay. The 

transmission time for each TPDU is around 180ms, resulting in a 

total transfer time of ~4.4 seconds. 

In the first scenario, the multi-threaded browser and server are 

adapted as discussed in Section 3.5. The browser uses 5 threads to 

send GET requests concurrently on 5 SCTP streams. Due to this 

concurrency, the GET requests get bundled into SCTP TPDUs at 

the browser’s transport layer. For our illustration, we consider an 

ideal bundling where all 5 requests get bundled into one TPDU. 

When this TPDU reaches the server’s transport layer, multiple 

server threads concurrently read the 5 requests from SCTP and 

send responses. The concurrency in sending responses causes 

TPDUs containing different objects to get interleaved at the 

server’s, and hence the browser’s transport layer, causing object 

interleaving. Note that the degree of object interleaving depends 

on (1) the browser’s request writing pattern, which dictates how 

requests get bundled into SCTP TPDUs at browser’s transport 

layer, and (2) the sequence in which the server threads write the 

responses for these requests.  

For the second scenario, the multi-threaded browser and server 

are adapted to use SCTP multistreaming, but do not have the 

necessary modifications to concurrently send requests or 

responses.  The browser uses a single thread to sequentially send 

the 5 GET requests over 5 SCTP streams. Each request gets 

translated to a separate SCTP PDU at the browser’s transport 

layer. These 5 SCTP PDUs, and hence the 5 HTTP requests arrive 

in succession at the web server, which uses a single thread to read 

and respond to these requests. These responses arrive sequentially 

at the browser’s transport layer.  

Figure 7 illustrates the ideal object interleaving at the browser’s 

transport layer, where the first 5 TPDUs are the first TPDUs of all 

the 5 responses. The next 5 TPDUs correspond to the second 

TPDUs of the 5 responses and so on. Figure 8 illustrates the 

scenario of no object interleaving, and shows how TPDUs 

corresponding to the 5 responses are delivered one after the other 

to the browser.  

A browser can optionally take advantage of object interleaving to 

progressively render these 5 objects in parallel, vs. complete 

rendering of each object in sequence.  For example, a browser can 

render a piece of all 5 objects by time=0.75 seconds (Figure 7) vs. 

complete rendering of object 1 (Figure 8). By time=2.75 seconds, 

more than half of all 5 objects can be rendered in parallel with 

object interleaving  vs. complete rendering of objects 1 through 3 

in case of no interleaving. The dark and the light rectangles in 

Figure 7, help visualize the interleaving, and thus the progressive 

appearance of objects 2 and 4 on a web page.  

Apart from progressive parallel rendering in web browsers, 

HTTP-based network applications can take advantage of object 

interleaving in other possible ways. For example, if a critical web 



 

client can make better decisions using progressive pieces of all 

responses vs. complete responses arriving sequentially, the web 

application’s design can gain from object interleaving.   
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Figure 7. HTTP over SCTP with object interleaving 
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Figure 8. HTTP over SCTP without object interleaving 

 

We point out that object interleaving between a browser and 

server communicating over TCP is infeasible without explicit 

application level markers that differentiate TPDUs belonging to 

different interleaved objects. We feel that such markers try to 

emulate SCTP multistreaming at the application layer. Also, loss 

of a single TCP PDU in an interleaved transfer exacerbates the 

HOL blocking since the loss blocks application delivery of 

multiple objects.  

Browser architectures that facilitate object interleaving can be 

designed such that the browser is able to control the amount of 

interleaving for each web transfer. For example, Section 3.5 

modifications to a multi-threaded browser will empower it with 

such flexibility as follows. If the browser uses a single thread to 

send GET requests sequentially on different SCTP streams, the 

responses will arrive without any interleaving, as shown in Figure 

8. On the other hand, if the browser uses multiple threads to send 

the requests concurrently on different SCTP streams, the TPDUs 

will arrive interleaved as shown in Figure 7. With this flexibility, 

the web browser can make on-the-fly decisions about how much 

object interleaving to beget for each web transfer based on prior 

knowledge about the type of objects being transferred. Such 

knowledge can be either implicit or explicitly obtained from the 

web server. 

4. OTHER MULTISTREAMING GAINS 
We now consider two other web scenarios where SCTP 

multistreaming might provide a better solution than existing TCP-

based solutions. 

4.1 Multiplexing User Requests 
Several web server farms and providers of Internet service use 

TCP connection multiplexers to improve efficiency [16]. The 

main goal of these multiplexers is to decrease the number of TCP 

connection requests to a server, and thereby reduce server load 

due to TCP connection setup/teardown and state maintenance.  

The multiplexer, acting as an intermediary, intercepts TCP 

connection open requests from different clients, and multiplexes 

HTTP requests from different clients onto a set of existing TCP 

connections to the server. 

In this scenario, a multiplexer is forced to maintain several open 

connections to its web server to avoid HOL blocking between 

independent users’ requests and responses. Hence, a tradeoff 

exists in deciding the number of open connections ─ fewer 

connections decrease the server load on connection maintenance, 

whereas more connections reduce HOL blocking between 

different users’ requests.   

SCTP multistreaming can be leveraged to reduce both HOL 

blocking and server load in such an environment. A proxy in front 

of an SCTP-capable web server can intercept incoming SCTP 

association open requests from different users. This proxy can 

maintain just one SCTP association to the web server, and can 

channel incoming requests from different users on different SCTP 

streams within this association. Since SCTP multistreaming 

avoids HOL blocking, this solution is equivalent to having a 

separate session or connection per user. This setup incurs minimal 

resource consumption at the server since all data between proxy 

and server go over a single SCTP association. This design also 

takes advantage of integrated congestion management and loss 

recovery within the SCTP association (Section 2.1). 

There could be scenarios where a web server runs on SCTP to 

take advantage of its many features, but a web browser does not 

have SCTP support. To facilitate seamless service to such 

browsers, we can extend the multiplexing proxy to act as an 

application level gateway between HTTP-over-TCP and HTTP-

over-SCTP implementations. The proxy can intercept TCP 

connection open requests, multiplex user requests on different 

streams of a single SCTP association to the server, and forward 

server responses to the clients on TCP.  This setup ensures the 

benefits of SCTP multistreaming at the server side, even when the 

web clients are not SCTP-aware. 

4.2 Multiplexing Resource Access 
Today’s web servers deliver much more to users than just 

browsing content. For example, business services such as 

financial planning and tax preparation are offered over the web, 

and the user accesses these services through a web browser. There 

are also web applications such as online games and web-based 

mail that are accessible by a browser. In such web applications, a 

user first establishes a session with the server, and the bulk of the 

user’s data is stored and processed at the server.  



 

Most organizations rely on third-party data centers to host and 

maintain their web-based software services. For load sharing and 

better performance, a data center might employ various 

scheduling policies to logically group and host many web 

applications on a server. Consider a policy where multiple web 

applications that will be accessed by the business clients or 

employees of a single organization are grouped and hosted on the 

same web server. For example, the data center might host an 

organization’s customer relationship management software and its 

mail server on the same web server. In such a case, the employees 

of the organization will access the two resources concurrently 

from the web server. Instead of opening separate TCP connections 

for each resource, the user’s browser and the web server can 

multiplex the resource access on different streams of a single 

SCTP association, reducing load at the server. 

5. OTHER USEFUL SCTP FEATURES 
Apart from multistreaming, multihoming and protection from 

SYN attacks, we present other features and related work on SCTP 

which we believe could be useful to HTTP-based network 

applications or web applications. 

• Preservation of message boundaries: SCTP offers a 

message-oriented data transfer to an application, as opposed 

to TCP’s byte stream data transfer. SCTP considers data 

from each application write as a separate message. This 

message’s boundary is preserved since SCTP guarantees 

delivery of a message in its entirety to a receiving 

application. Web applications where the client and server 

exchange data as messages can benefit from this feature, and 

avoid using explicit application level message delimiters.  

• Partial Reliability: RFC3758 describes PR-SCTP, a partial 

reliability extension to RFC2960. This extension enables 

partially reliable data transfer between a PR-SCTP sender 

and receiver. In TCP, and plain SCTP, all transmitted data 

are guaranteed to be delivered. Alternatively, PR-SCTP gives 

an application the flexibility to notify how persistent the 

transport protocol should be in trying to deliver a particular 

message, by allowing the application to specify a “lifetime” 

for the message. A PR-SCTP sender tries to transmit the 

message during this lifetime. Upon lifetime expiration, a PR-

SCTP sender discards the message irrespective of whether or 

not the message was successfully transmitted.  This timed 

reliability in data transfer might be useful to web applications 

that regularly generate new data obsolescing earlier data, for 

example, an online gaming application, where a player 

persistently generates new position coordinates. A game 

client can use PR-SCTP, and avoid transmitting the player’s 

older coordinates when later ones are available, thereby 

reducing network traffic and processing at the game server. 

• Unordered data delivery: SCTP offers unordered data 

delivery service. An application message, marked for 

unordered delivery, is handed over to the receiving 

application as soon as the message’s TPDUs arrive at the 

SCTP receiver. Since TCP preserves strict data ordering, 

using a single TCP connection to transmit both ordered and 

unordered data results in unwanted delay in delivering the 

unordered data to the receiving application. Hence, 

applications such as online game clients that need to transmit 

both ordered and unordered data open a TCP connection for 

the ordered data, and use a separate UDP channel to transmit 

the unordered data [23]. These applications can benefit from 

SCTP by using a single SCTP association to transmit both 

types of data. As opposed to UDP’s best effort transmission, 

which burdens the application to implement its own loss 

detection and recovery, messages can be transmitted reliably 

using SCTP’s unordered service.  

• SCTP shim layer: To encourage application developers and 

end users to widely adopt SCTP and leverage its benefits, a 

TCP-to-SCTP shim layer has been developed [22]. The shim 

is a proof of concept and translates application level TCP 

system calls into corresponding SCTP calls. By using such a 

shim layer, a legacy TCP-based web application can 

communicate using SCTP without any modifications to the 

application’s source code.  

6. CONCLUSION 
Though SCTP has TCP-like congestion and flow control 

mechanisms targeted for bulk data transfer, we argue that SCTP’s 

feature-set makes it a better web transport than TCP. 

Performance-wise, SCTP’s multistreaming avoids TCP’s HOL 

blocking problem when transferring independent web objects, and 

facilitates aggregate congestion control and loss recovery. 

Functionality-wise, SCTP’s multihoming provides fault-tolerance 

and scope for load balancing, and a built-in cookie mechanism in 

SCTP’s association establishment phase provides protection 

against SYN attacks. 

We shared our experiences in adapting Apache and Firefox for 

SCTP multistreaming, and demonstrated the potential benefits of 

HTTP over SCTP streams. We also presented current architectural 

limitations of Apache and Firefox that inhibit them from 

completely realizing the benefits of multistreaming.  

We discussed other systems on the web where SCTP 

multistreaming may be advantageous, and hypothesized the 

potential gains of using SCTP in such areas. We also outlined 

other relevant SCTP features that are useful to HTTP based 

network applications. 

The authors hope that this position paper raises interest within the 

web community in using SCTP as the transport protocol for web 

technologies, and welcome further research and collaboration 

along these lines. 
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