

SCTP: An innovative transport layer protocol for the web
Preethi Natarajan

1
, Janardhan R. Iyengar

1
, Paul. D. Amer

1
 and Randall Stewart

2

1
Protocol Engineering Lab, CIS Dept

University of Delaware

{nataraja, iyengar, amer}@cis.udel.edu

2
Internet Technologies Division

Cisco Systems

rrs@cisco.com

ABSTRACT

We propose using the Stream Control Transmission Protocol

(SCTP), a recent IETF transport layer protocol, for reliable web

transport. Although TCP has traditionally been used, we argue

that SCTP better matches the needs of HTTP-based network

applications. This position paper discusses SCTP features that

address: (i) head-of-line blocking within a single TCP

connection, (ii) vulnerability to network failures, and (iii)

vulnerability to denial-of-service SYN attacks. We discuss our

experience in modifying the Apache server and the Firefox

browser to benefit from SCTP, and demonstrate our HTTP over

SCTP design via simple experiments. We also discuss the benefits

of using SCTP in other web domains through two example

scenarios ─ multiplexing user requests, and multiplexing resource

access. Finally, we highlight several SCTP features that will be

valuable to the design and implementation of current HTTP-based

client-server applications.

Categories and Subject Descriptors

C.2.5 [Computer-Communication Networks]: Local and Wide-

Area Networks – Internet; C.2.6 [Computer-Communication

Networks]: Internetworking – Standards; C.4 [Performance of

Systems]: Design Studies; Fault Tolerance; Reliability,

availability and serviceability.

General Terms

Performance, Design, Security.

Keywords

SCTP, Stream Control Transmission Protocol, fault-tolerance,

head-of-line blocking, transport layer service, web applications,

web transport.

1. INTRODUCTION
HTTP requires a reliable transport protocol for end-to-end

communication. While historically TCP has been used for this

purpose, RFC2616 does not require TCP; but until now, no

reasonable alternative existed. The Stream Control Transmission

Protocol (SCTP), specified in RFC2960, is a recently

standardized reliable transport protocol which provides a set of

innovative transport layer services unavailable from TCP (or

UDP). In this paper, we argue that these services can enhance web

transfers, making SCTP a better choice for web transport.

SCTP was originally designed within the IETF SIGTRAN

working group to address the shortcomings of TCP for telephony

signaling over IP networks [2]. SCTP has since evolved into a

general purpose IETF transport protocol, and is well beyond a

laboratory research project. More than 25 SCTP implementations

currently exist, including kernel implementations for FreeBSD,

NetBSD, OpenBSD, Mac OS X, Linux, Solaris, AIX, and HP-

UX; and user-space implementations for Windows, on proprietary

platforms for Cisco, Nokia, Siemens, and other vendors. Eight

interoperability workshops over the past five years have fine-

tuned these implementations [14].

Of SCTP’s new services and features, SCTP multistreaming

provides an application with logically separate data streams to

transfer multiple independent objects, SCTP multihoming

provides transparent fault-tolerance to applications on

multihomed end hosts, and SCTP’s four-way handshake during

association (SCTP’s term for a connection) establishment avoids

denial-of-service SYN attacks. In this paper, we discuss these

features and their applicability to web transfers.

The paper is organized as follows. Section 2 details how SCTP

solves three specific limitations that occur when HTTP-based

client-server applications use TCP: head-of-line blocking,

disruption due to network failures, and SYN attacks. Section 3

overviews our modifications to Apache and Firefox architectures

to operate over SCTP. We also analyze how their original

architectures limit full utilization of SCTP’s new features. In

Section 4, we explore web domains other than general browsing,

and articulate how these domains can benefit from SCTP. Section

5 elaborates other SCTP features and relevant SCTP work that

might be useful for HTTP-based network applications. Section 6

summarizes and concludes the paper.

2. HTTP OVER TCP CONCERNS
In this section, we discuss three major concerns in using TCP for

web transport, and how our choice ─ SCTP ─ effectively

addresses all of these concerns.

2.1 Head of line blocking
Consider the simple case of a web browser displaying a web page.

Using HTTP/1.1 that supports persistent and pipelined

connections, the browser opens a new transport connection to the

server, and sends an HTTP GET request with the desired URI.

The server returns an HTTP response with the page contents. This

page may contain URIs of embedded objects. The browser parses

the content for these URIs, and sends pipelined HTTP GET

requests for each of the URIs. As responses arrive from the server,

the browser displays the webpage with its embedded objects.

• Prepared through collaborative participation in the Communication and

Networks Consortium sponsored by the US Army Research Lab under

Collaborative Tech Alliance Program, Coop Agreement DAAD19-01-2-

0011. The US Gov’t is authorized to reproduce and distribute reprints

for Gov’t purposes notwithstanding any copyright notation thereon.

• Supported by the University Research Program, Cisco Systems, Inc.

Copyright is held by the International World Wide Web Conference

Committee (IW3C2). Distribution of these papers is limited to classroom

use, and personal use by others.

WWW 2006, May 23–26, 2006, Edinburgh, Scotland.

ACM 1-59593-323-9/06/0005.

In general, objects embedded within a web page are independent

of each other. That is, requesting and displaying each object in the

page does not depend on the reception of other embedded objects.

This “degree of freedom” is best exploited by concurrently

downloading and rendering the independent embedded objects.

At the transport layer, TCP offers a single sequential bytestream

to an application; all application data are serialized and sent

sequentially over the single bytestream. In addition, TCP provides

in-order delivery within this bytestream ─ if a transport protocol

data unit (TPDU) is lost in the network, successive TPDUs

arriving at the TCP receiver will not be delivered to the

application until the lost TPDU is retransmitted and received.

Hence, when TCP is used for web transport, a lost TPDU carrying

a part of a web object may block delivery of other successfully

received independent web objects. This problem, known as head-

of-line (HOL) blocking, is due to the fact that TCP cannot

logically separate independent application level objects in its

transport and delivery mechanisms.

HOL blocking also results in unnecessary filling of the receiver’s

transport layer buffer space. Reliable transport protocols such as

TCP use a receiver buffer to store TPDUs that arrive out-of-

order. Once missing TPDUs are successfully retransmitted, data in

the receiver buffer is ordered and delivered to the application.

This buffer fill up is unnecessary in cases when ‘later received’

TPDUs belong to a different application object than the earlier

lost TPDU(s). The required amount of buffer space increases

with the loss probability in the transmission path, and the number

of independent objects to be transferred.

Note that HOL blocking is particularly exacerbated in domains

with low bandwidth and/or high loss rates. With the proliferation

of mobile phones, and the increasing use of web browsers and

other web applications on mobile phones, increased HOL

blocking will cause significant user-perceived delays.

To alleviate HOL blocking, web browsers usually open multiple

TCP connections to the same web server [5]. All HTTP GET

requests to the server are distributed among these connections,

avoiding HOL blocking between the corresponding responses.

However, multiple independent objects transferred within one of

the several parallel connections still suffer from HOL blocking.

Using multiple TCP connections for transferring a single

application’s data introduces many negative consequences for

both the application and the network. Previous work such as

Congestion Manager [6] and Transaction TCP [17] analyze these

consequences in depth, which we summarize:

• Aggressive behavior during congestion: TCP’s algorithms

maintain fairness among TCP (and TCP-like) connections. A

TCP sender reduces its congestion window by half when

network congestion is detected [13]. This reduction is a well

understood and recommended procedure for maintaining

stability and fairness in the network [18,19]. An application

using multiple TCP connections gets an unfair share of the

available bandwidth in the path, since all of the application’s

TCP connections may not suffer loss when there is

congestion in the transmission path. If m of the n open TCP

connections suffer loss, the multiplicative decrease factor for

the connection aggregate at the sender is (1 - m/2n) [8]. This

decrease factor is often greater than one-half, and therefore

an application using parallel connections is considered an

aggressive sender. This aggressive behavior leads to

consumption of an unfair share of the bottleneck bandwidth

as compared to applications using fewer connections.

• Absence of integrated loss detection and recovery: Web

objects are typically small, resulting in just a few TPDUs per

HTTP response. In these cases, a TPDU loss is often

recoverable only through an expensive timeout at the web

server due to an insufficient number of duplicate acks to

trigger a fast retransmit [8]. Though this problem is lessened

in HTTP/1.1 due to persistent connections and pipelined

requests, it still exists while using multiple TCP connections

since separate connections cannot share ack information for

loss recovery.

• Increased load on web server: The web server has to allocate

and update a Transmission Control Block (TCB) for every

TCP connection. Use of parallel TCP connections between

client and server increases TCB processing load on the

server. Under high loads, some web servers may choose to

drop incoming TCP connection requests due to lack of

available memory resources.

• Increased connection establishment latency: Each TCP

connection goes through a three-way handshake for

connection establishment before data transfer is possible.

This handshake wastes one round trip for every connection

opened to the same web server. Any loss during connection

setup can be expensive since a timeout is the only means of

loss detection and recovery during this phase. Increasing the

number of connections increases the chances of losses during

connection establishment, thereby increasing the overall

average transfer time.

Congestion Manager (CM) [6] attempts to solve the first two

problems. CM is a shim layer between the transport and network

layers which aggregates congestion control at the end host,

thereby enforcing a fair sending rate when an application uses

multiple TCP connections to the same end host. “TCP Session”

[7] proposes integrated loss recovery across multiple TCP

connections to the same web client (these multiple TCP

connections are together referred to as a TCP session). All TCP

connections within a session are assumed to share the

transmission path to the web client. A Session Control Block

(SCB) is maintained at the sender to store information about the

shared path such as its congestion window and RTT estimate.

Both, CM and TCP Session, still require a web browser to open

multiple TCP connections to avoid HOL blocking, thereby

increasing the web server’s load.

Apart from solving the network related problems due to parallel

TCP connections, there has also been significant interest in

designing new transport and session protocols that better suit the

needs of HTTP-based client-server applications than TCP. Several

experts agree (for instance, see [28]) that the best transport

scheme for HTTP would be one that supports datagrams, provides

TCP compatible congestion control on the entire datagram flow,

and facilitates concurrency in GET requests. WebMUX [29] was

one such session management protocol that was a product of the

(now historic) HTTP-NG working group [30]. WebMUX

proposed use of a reliable transport protocol to provide web

transfers with “streams” for transmitting independent objects.

While the WebMUX effort did not mature, SCTP is a current

IETF standards-track protocol with several implementations and a

growing deployment base, and offers many of the core features

that were desired of WebMUX.

We propose using SCTP’s multistreaming feature ─ a previously

unavailable transport layer service specifically designed to avoid

HOL blocking when transmitting logically independent

application objects. An SCTP stream is a unidirectional data flow

within an SCTP association. Independent application objects can

be transmitted in different streams to maintain their logical

separation during transfer and delivery. Note that an SCTP

association is subject to congestion control similar to TCP. Hence,

all SCTP streams within an association are subject to shared

congestion control, and thus multistreaming does not violate

TCP’s fairness principles.

Figure 1. Multistreamed association between two hosts

Figure 1 illustrates a multistreamed association between hosts A

and B. In this example, host A uses three output streams to host B

(numbered 0 to 2), and has only one input stream from host B

(numbered 0). The number of input and output streams in an

SCTP association is negotiated during association setup.

SCTP uses stream sequence numbers (SSNs) to preserve data

order within each stream. However, maintaining order of delivery

between TPDUs transmitted on different streams is not a

constraint. That is, data arriving in-order within an SCTP stream

is delivered to the application without regard to data arriving on

other streams.

To transfer independent web objects without HOL blocking, each

object can be sent in a separate stream, all within a single

association. SCTP uses a single global Transmission Sequence

Number (TSN), which provides integrated loss detection and

recovery across streams; loss in one stream can be detected via

acks for data on other streams. Also congestion control is shared;

a web browser using this solution will be no more aggressive than

a web browser using a single TCP connection. Connection

establishment latency does not increase with multistreaming.

While every association setup requires a four-way handshake, data

transfer can begin in the third leg (See Section 2.3).

In KAME SCTP implementation [12][14], the SCTP TCB is

approximately twice the size of a TCP TCB. The memory

overhead per inbound or outbound stream is 16 bytes, causing the

TCB memory requirements for two parallel TCP connections to

be roughly equal to the requirements for a single SCTP

association with two pairs (inbound and outbound) of streams.

However, to achieve higher concurrency, memory overhead when

increasing the number of TCP connections is much greater than

when increasing the number of streams within an SCTP

association.

The size of a TCP TCB is quite high (~700 bytes) when compared

to memory overhead for a pair of SCTP streams (32 bytes). Using

these values, the memory requirements for the TCP and SCTP

cases can be approximated as:

For n parallel TCP connections

= [n * (TCP TCB size)] bytes

= [n * 700] bytes

For 1 SCTP association with n pairs of streams

= [(SCTP TCB size) + (n * 32)] bytes

= [(2 * TCP TCB size) + (n * 32)] bytes

= [1400 + (n * 32)] bytes

From the above calculations, it is evident that the memory

required for the TCP case increases rapidly with n (n > 2) when

compared to the SCTP case. Note that with SCTP multistreaming,

apart from the lower memory overhead, a web server also incurs

the lower processing load of only one TCB per web client.

We discuss a more detailed mapping of HTTP over SCTP, and

our implementation of this mapping in Section 3.

2.2 Network Failures
Critical web servers rely on redundancy at multiple levels to

provide uninterrupted service during resource failures. A host is

multihomed if it can be addressed by multiple IP addresses [4].

Multihoming a web server offers redundancy at the network layer,

provided that the web server remains accessible even when one of

its IP addresses becomes unreachable, say due to an interface or

link failure, severe congestion, or slow route convergence around

path outages.

Multihoming end hosts is becoming increasingly economical. For

instance, today’s relatively inexpensive access to the Internet

motivates home users to have simultaneous wired and wireless

connectivity through multiple ISPs, thereby increasing the end

host’s fault tolerance at an economically feasible cost.

TCP is ignorant of multihoming. Even if end hosts have multiple

interfaces, an application using TCP cannot leverage this network

layer redundancy, since TCP allows the application to bind to

only one network address at each end of a connection. For

example, in Figure 2, assume that host A runs a web server and

host B runs a web client. Using TCP, the web client can use one

interface (B1), to connect to one interface (A1) at the web server.

If A1 fails, the web server becomes unreachable to all the clients

connected through A1, including B, and the corresponding TCP

connections are aborted. Unfortunately, the redundant active

network interface, A2, could not be used by the clients connected

through A1.

Figure 2. Multihomed end hosts

To provide applications on multihomed end hosts with resilience

to such failures, SCTP supports multihoming ─ a transport layer

feature providing transparent network failure detection and

recovery. SCTP allows binding a transport layer association to

multiple IP addresses at each end host. An end point chooses a

single primary destination address for sending new data. SCTP

monitors the reachability of each destination address through two

mechanisms: acks of data and periodic probes known as

heartbeats. Failure in reaching the primary destination results in

failover, where an SCTP endpoint dynamically chooses an

alternate destination to transmit the data, until the primary

destination becomes reachable again.

In Figure 2, a single SCTP association is possible between

addresses A1, A2 at the server and B1, B2 at the client. Assuming

A1 is the primary destination for the client, if A1 becomes

unreachable, multihoming keeps the SCTP association alive

through failover to alternate destination A2, and allows the end

host applications to continue communicating seamlessly.

Ongoing research on Concurrent Multipath Transfer (CMT) [15],

proposes to use multihoming for parallel load sharing. During

scenarios where multiple active interfaces between source and

destination connect through independent paths, CMT

simultaneously uses these multiple paths to transfer new data,

increasing throughput for a networked application. Thus, a

multihomed web client and server running on SCTP can leverage

CMT’s throughput improvements for web transfers.

2.3 SYN Attacks
A SYN attack is a common denial of service (DoS) technique that

has often disabled the services offered by a web server. During the

three-way TCP connection establishment handshake, when a TCP

server receives a SYN, the TCP connection transitions to the TCP

half-open state. In this state, the server allocates memory

resources, stores state for the SYN received, and replies with a

SYN/ACK to the sender. The TCP connection remains half open

until it receives an ACK for the SYN/ACK resulting in

connection establishment, or until the SYN/ACK expires with no

ACK. However, the latter scenario results in unnecessary

allocation of server’s resources for the TCP half open connection.

When a malicious user orchestrates a coordinated SYN attack,

1000’s of malicious hosts flood a predetermined TCP server with

IP-spoofed SYN requests, causing the server to allocate resources

for many half open TCP connections. The server’s resources are

thus held by these fabricated SYN requests, denying resources to

legitimate clients. Such spoofed SYN attacks are a significant

security concern, and an inherent vulnerability with TCP’s three-

way handshake. Web administrators try to reduce the impact of

such attacks by limiting the maximum number of half open TCP

connections at the server, or through firewall filters that monitor

the rate of incoming SYN requests.

To protect an end host from such SYN attacks, SCTP uses a four-

way handshake with a cookie mechanism during association

establishment. The four-way handshake does not increase the

association establishment latency, since data transfer can begin in

the third leg. As shown in Figure 3, when host A initiates an

association with host B, the following process ensues:

1. A sends an INIT to B.

2. On receipt of the INIT, B does not allocate resources to the

requested association. Instead, B returns an INIT-ACK to A with a

cookie that contains: (i) necessary details required to identify and

process the association (ii) life span of the cookie, and (iii)

signature to verify the cookie’s integrity and authenticity.

3. When A receives the INIT-ACK, A replies with a COOKIE-

ECHO, which echoes the cookie that B previously sent. This

COOKIE-ECHO may carry A’s application data to B.

4. On receiving the COOKIE-ECHO, B checks the cookie’s

validity, using the state information in the cookie. If the cookie

verifies, B allocates resources and establishes the association.

Figure 3. SCTP association establishment

With SCTP’s four-way handshake, a web client that initiates an

association must maintain state before the web server does,

avoiding spoofed connection request attacks.

3. APACHE AND FIREFOX OVER SCTP
To investigate the viability of HTTP over SCTP, we modified

Apache and Firefox to run over SCTP in FreeBSD 5.4 [12].

These modified implementations are publicly available [20]. In

this section, we list our design guidelines, and discuss the

rationale behind our final design. We then present the relevant

architectural details of Apache and Firefox, and describe our

changes to their implementation. Finally, we discuss their

architectural limitations which do not allow the application to

fully benefit from SCTP multistreaming. These limitations are

possibly shared by other web servers and browsers as well.

3.1 Design Guidelines
Two guidelines that governed our HTTP over SCTP design were:

• Make no changes to the existing HTTP specification, to

reduce deployment concerns

• Minimize SCTP-related state information at the server so that

SCTP multistreaming does not become a bottleneck for

performance.

An important design question to address was: which end (the

client or server) should decide on the SCTP stream to be used for

an HTTP response? Making the web server manage some form of

SCTP stream scheduling is not desirable, as it involves

maintaining additional state information at the server. Further, the

client is better positioned to make scheduling decisions that rely

on user perception and the operating environment. We therefore

concluded that the client should decide object scheduling on

streams.

We considered two designs by which the client conveys the

selected SCTP stream to the web server: (1) the client specifies

the stream number in the HTTP GET request and the server sends

the corresponding response on this stream, or (2) the server

transmits the HTTP response on the same stream number on

which the corresponding HTTP request was received. Design (1)

can use just one incoming stream and several outgoing streams at

the server, but requires modifications to the HTTP GET request

specification. Design (2) requires the server to maintain as many

incoming streams as there are outgoing streams, increasing the

memory overhead at the server. The KAME SCTP TCB uses 16

bytes for every inbound or outbound stream. We considered this

memory overhead per stream to be insignificant when compared

to changes to HTTP specification, and chose option (2).

3.2 Apache
We chose the Apache (version 2.0.55) open source web server for

our task. In this section, we give an overview of Apache’s

architecture, and their modifications to use SCTP streams.

3.2.1 Architecture
The Apache HTTP server has a modular architecture. The main

functions related to server initialization, listen/accept connection

setup, HTTP request parsing, memory management are handled

by the core module. The remaining accessory functions such as

request redirection, authentication, dynamic content handling are

performed by separate modules. The core module relies on the

Apache Portable Runtime (APR), a platform independent API, for

network, memory and other system dependent functions.

Apache has a set of multi-processing architectures that can be

enabled during compilation. We considered the following

architectures: (1) prefork ─ non-threaded pre-forking server and

(2) worker ─ hybrid multi-threaded multi-processing server. With

prefork, a configurable number of processes are forked during

server initialization, and are setup to listen for connections from

clients. With worker, a configurable number of server threads and

a listener thread are created per process. The listener thread listens

for incoming connections from clients, and passes the connection

to a server thread for request processing.

In both architectures, a connection structure is maintained

throughout a transport connection’s lifetime. Apache uses filters

─ functions through which different modules process an incoming

HTTP request (input filters) or outgoing HTTP response (output

filters). The core module’s input filter calls the APR read API for

reading HTTP requests. Once the HTTP request syntax is verified,

a request structure is created to maintain state related to the HTTP

request. After processing the request, the core module’s output

filter calls the APR send API for sending the consequent HTTP

response.

3.2.2 Changes
To adapt Apache to use SCTP streams, the APR read and send

API implementations were modified to collect the SCTP input

stream number on which a request is read, and to send the

response on the corresponding output stream. During a request’s

lifetime, a temporary storage place stores the SCTP stream

number for the request. The initial design was to use the socket or

connection structures for the purpose. But, pipelined HTTP

requests from potentially different SCTP streams can be read from

the same socket or connection, overwriting previous information.

Hence these structures were avoided. In our implementation,

stream information related to an HTTP request is stored in the

request structure, and is exchanged between the APR and the core

module through Apache’s storage buffers (bucket brigades).

Apache uses a configuration file that allows users to specify

various parameters. We made changes to the Listen directive

syntax in the configuration file so that a web administrator can

specify the transport protocol – TCP or SCTP, to be used by the

web server.

3.3 Firefox
We chose the Firefox (version 1.6a1) browser since it is a widely

used open-source browser. In this section, we briefly discuss

Firefox’s architecture, and its adaptation to work over SCTP

streams.

3.3.1 Architecture
Firefox belongs to the Mozilla suite of applications which have a

layered architecture. A set of applications, such as Firefox and

Thunderbird (mail/news reader), belong to the top layer. These

applications rely on the services layer for access to network

services. The services layer uses platform independent network

APIs offered by the Netscape Portable Runtime (NSPR) library in

the runtime layer. NSPR maintains a methods structure with

function pointers to various I/O and other management functions

for TCP and UDP sockets.

Firefox has a multi-threaded architecture. To render a web page

inside a Firefox tab, first the HTTP protocol handlers parse the

URL, and use the socket services to open a TCP connection to the

web server. Once the TCP connection is setup, an HTTP GET

request for the web page is sent. After the web page is retrieved

and parsed, further HTTP requests for embedded objects are

pipelined over the same TCP connection if the connection

persists; else over a new TCP connection.

In the version we used, Firefox never opened more than one TCP

connection for a simple transaction to the same web server.

However, when we requested multiple news-feeds from the same

web server in different tabs (“Open all in tabs” feature, where

multiple pages are displayed concurrently), Firefox opened

multiple TCP connections to the same web server, one for each

tab.

3.3.2 Changes
Adapting Firefox to work on SCTP streams involved

modifications in its services layer to open an SCTP socket instead

of a TCP socket, and creating a new methods structure in NSPR

for SCTP related I/O and management functions.

During SCTP association setup with the server, Firefox requests a

specific number of SCTP input and output streams. (In SCTP, this

request can be negotiated down by the server in the INIT-ACK.)

For our purposes, the number of input streams is set to equal the

number of output streams, thus assuring that the Firefox browser

receives a response on the same stream number as the one on

which it sends a request.

Our Firefox changes provide flexibility to do HTTP request

scheduling over SCTP streams. The current implementation picks

SCTP streams in a round-robin fashion. Other scheduling

approaches can be considered in the future. For example, in a

lossy network environment, such as wide area wireless

connectivity through GPRS, a better scheduling policy might be

‘smallest pending object first’ where the next GET request goes

on the SCTP stream that has the smallest sum of object sizes

pending transfer. Such a policy reduces the probability of HOL

blocking among the response for the most recent GET request and

the responses for previous requests transmitted on the same SCTP

stream.

With Firefox’s current design, the choice of the transport protocol

(TCP or SCTP) must be decided at compile time. In the future, it

will be beneficial to have this choice as a configurable parameter.

3.4 SCTP Multistreaming Avoids HOL
We present two simple experiments to visualize the differences

between the current HTTP over TCP design, and our HTTP over

SCTP multistreaming design. Our goal is to demonstrate how

HTTP over SCTP multistreaming avoids HOL blocking.

The experiment topology, shown in Figure 4, uses three nodes: a

custom web client (FreeBSD 5.4) and an Apache server (FreeBSD

5.4) connected by Dummynet (FreeBSD 4.10) [24]. Dummynet’s

traffic shaper configures a 56Kbps duplex link, with a queue size

of 50KB and zero added propagation delay between client and

server. This link has no loss in the direction from client to server,

and 10% loss from server to client.

Figure 4. Experiment Topology

In both experiments, the client requests a web page containing 5

embedded 5.5KB objects (for example, a photo album page

containing 5 embedded JPEG images) from the Apache server. In

the first experiment, the web client and Apache communicate over

a single TCP connection, and, in the second they communicate

over a single SCTP association with one stream for each

embedded object.

Using timestamp information collected from tcpdump [25] traces

at the client, Figures 5 and 6 plot PDU receipt times at the

transport and application layers in the TCP and SCTP runs,

respectively. A point labeled ‘n’ denotes the arrival of one of

object n’s TPDUs at the receiving transport layer. A

corresponding ‘X’ denotes the earliest calculated time when the

data in that TPDU is delivered by the transport layer to the

application.

In both scenarios, TPDU 6 (2nd TPDU of object 2) is lost, and its

retransmission arrives just after time=4 seconds. This loss causes

the remaining TPDUs to arrive ‘out-of-order’ at the client’s

transport layer. In HTTP over TCP (Figure 5), HOL blocking by

object 2, causes TCP to delay delivery of data in objects 3, 4 and

5 until the successful retransmission of TPDU 6. Note that even

after this retransmission, TCP is still blocked from delivering

object 5 to the application due to loss of TPDU 19 (5th TPDU of

4th object). In HTTP over SCTP (Figure 6), the TPDUs for each

object arrive on a different SCTP stream. Hence, the loss1 of

TPDU 6 – object 2’s TPDU, does not block application delivery

of objects 3, 4 or 5. Note that in Figure 6, the initial four PDUs of

object 4 are delivered without HOL blocking. The final TPDU of

object 4 is lost and is delivered only after the retransmission

arrives.

We believe that SCTP multistreaming and the absence of HOL

blocking opens up opportunities for a new range of browser and

server features, which we discuss in detail in the following

sections.

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (sec)

T
C

P
 T

P
D

U
s

Object 1

- PDU of object # received at Transport

X - PDU delivered to Application

Object 2

Object 5

Object 4

Object 3

Figure 5. HOL blocking in HTTP over TCP

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (sec)

S
C

T
P

 T
P

D
U

s

Object 1

- PDU of object # received at Transport

X - PDU delivered to Application

Object 2

Object 3

Object 4

Object 5

Figure 6. No HOL blocking in HTTP over SCTP

3.5 Browser/Server Architectural Discussion
Even if SCTP can deliver requests and responses of independent

web objects without HOL blocking, the current Apache and

Firefox architectures are unable to take full advantage of SCTP’s

multistreaming benefits. We explain a browser side architectural

limitation, and propose a solution. We also explain a server side

1 In our SCTP experiment, each application write generated an SCTP

TPDU, causing a one to one correspondence between a TPDU’s

Transmission Sequence Number (TSN) and the TPDU number.

architectural change that can enhance the server’s performance,

especially in lossy environments.

3.5.1 Browser Limitation
If SCTP has received partial data for n independent web objects

on different streams, SCTP will deliver these n partial responses

to the web browser as long as TPDUs within each stream arrived

in sequence. A web browser now has the opportunity to read and

render these n responses concurrently. This browser capability,

known as parallel rendering, can be optionally used to improve

user perception since multiple web objects start appearing in

parallel on the corresponding web page.

Parallel rendering is difficult to realize with the current Firefox

architecture. Firefox dedicates a single thread to a transport layer

connection. This design reflects Firefox’s assumption regarding

TCP as the underlying transport. With TCP, objects can be

received only sequentially within a single connection; hence a

single thread to read the HTTP responses is sufficient. In the

modified implementation, a single thread gets dedicated to an

SCTP association. Consequently, the thread sends the pipelined

HTTP GET requests, and reads the responses in sequence.

Therefore, multiple streams within an SCTP association are still

handled sequentially by the thread, allowing the thread to render

at most one response at a time.

One possible solution to realize parallel rendering in Firefox (or

any multi-threaded web browser) is to use multiple threads to

request and render web page objects via one SCTP association.

Multiple threads, one for each object, send HTTP GET requests

over different SCTP streams of the association. The number of

SCTP streams to employ for a web page can be either user

configurable, or dynamically decided by the browser. The same

thread that sends the request for an object can be responsible for

rendering the response. However, it is necessary that a single

‘reader’ thread reads all the HTTP responses for a web page, since

TPDUs from a web server containing the different responses can

arrive interleaved at the browser’s transport layer (discussed in

Section 3.6).

Multiple threads enable parallel rendering but require

considerable changes to Firefox’s architecture. We suspect most

common web browsers to suffer from a similar architectural

limitation.

3.5.2 Server Enhancement
The original multi-threaded Apache dedicates one server thread to

each TCP connection. Our adaptation over SCTP multistreaming

dedicates a server thread to an SCTP association. In this design,

the server thread reads HTTP requests sequentially from the

association, even if requests arrive on different streams in the

association.

Apache might achieve better concurrency in serving user requests

if its design enabled multiple threads to read from different SCTP

streams in an association, each capable of delivering independent

requests without HOL blocking. We hypothesize that in lossy

and/or low bandwidth environments, this design can provide

higher request service rates when compared to Apache over TCP,

or our current Apache over SCTP.

3.6 Object Interleaving
In this section, we use “imaginary” scenarios to illustrate object

interleaving. Object interleaving ensues when a browser and a

server, capable of transmitting HTTP requests and responses

concurrently, communicate over different streams of an SCTP

association. For example, object interleaving will be observed

when a multi-threaded browser and server, modified as described

in Section 3.5, communicate over SCTP streams. Since such

browser and server implementations are in progress, we use

imaginary data to illustrate the concept.

We use two scenarios in our demonstration. Each scenario shows

one of the two extreme cases ─ the presence of an ideal object

interleaving, and no interleaving. In both scenarios, a multi-

threaded browser requests 5 objects from a multi-threaded web

server. Every object is the same size and is distributed over 5

TPDUs, resulting in a total of 25 TPDUs for each transfer. The

transfers do not experience any loss or propagation delay. The

transmission time for each TPDU is around 180ms, resulting in a

total transfer time of ~4.4 seconds.

In the first scenario, the multi-threaded browser and server are

adapted as discussed in Section 3.5. The browser uses 5 threads to

send GET requests concurrently on 5 SCTP streams. Due to this

concurrency, the GET requests get bundled into SCTP TPDUs at

the browser’s transport layer. For our illustration, we consider an

ideal bundling where all 5 requests get bundled into one TPDU.

When this TPDU reaches the server’s transport layer, multiple

server threads concurrently read the 5 requests from SCTP and

send responses. The concurrency in sending responses causes

TPDUs containing different objects to get interleaved at the

server’s, and hence the browser’s transport layer, causing object

interleaving. Note that the degree of object interleaving depends

on (1) the browser’s request writing pattern, which dictates how

requests get bundled into SCTP TPDUs at browser’s transport

layer, and (2) the sequence in which the server threads write the

responses for these requests.

For the second scenario, the multi-threaded browser and server

are adapted to use SCTP multistreaming, but do not have the

necessary modifications to concurrently send requests or

responses. The browser uses a single thread to sequentially send

the 5 GET requests over 5 SCTP streams. Each request gets

translated to a separate SCTP PDU at the browser’s transport

layer. These 5 SCTP PDUs, and hence the 5 HTTP requests arrive

in succession at the web server, which uses a single thread to read

and respond to these requests. These responses arrive sequentially

at the browser’s transport layer.

Figure 7 illustrates the ideal object interleaving at the browser’s

transport layer, where the first 5 TPDUs are the first TPDUs of all

the 5 responses. The next 5 TPDUs correspond to the second

TPDUs of the 5 responses and so on. Figure 8 illustrates the

scenario of no object interleaving, and shows how TPDUs

corresponding to the 5 responses are delivered one after the other

to the browser.

A browser can optionally take advantage of object interleaving to

progressively render these 5 objects in parallel, vs. complete

rendering of each object in sequence. For example, a browser can

render a piece of all 5 objects by time=0.75 seconds (Figure 7) vs.

complete rendering of object 1 (Figure 8). By time=2.75 seconds,

more than half of all 5 objects can be rendered in parallel with

object interleaving vs. complete rendering of objects 1 through 3

in case of no interleaving. The dark and the light rectangles in

Figure 7, help visualize the interleaving, and thus the progressive

appearance of objects 2 and 4 on a web page.

Apart from progressive parallel rendering in web browsers,

HTTP-based network applications can take advantage of object

interleaving in other possible ways. For example, if a critical web

client can make better decisions using progressive pieces of all

responses vs. complete responses arriving sequentially, the web

application’s design can gain from object interleaving.

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (sec)

S
C

T
P

 P
D

U
s

First TPDU of all objects

Fourth TPDU of all objects

Fifth TPDU of all objects

- PDU of object # received at Application

Second TPDU of all objects

Third TPDU of all objects

Figure 7. HTTP over SCTP with object interleaving

.

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (sec)

S
C

T
P

 T
P

D
U

s

- PDU of object # received at Application

Figure 8. HTTP over SCTP without object interleaving

We point out that object interleaving between a browser and

server communicating over TCP is infeasible without explicit

application level markers that differentiate TPDUs belonging to

different interleaved objects. We feel that such markers try to

emulate SCTP multistreaming at the application layer. Also, loss

of a single TCP PDU in an interleaved transfer exacerbates the

HOL blocking since the loss blocks application delivery of

multiple objects.

Browser architectures that facilitate object interleaving can be

designed such that the browser is able to control the amount of

interleaving for each web transfer. For example, Section 3.5

modifications to a multi-threaded browser will empower it with

such flexibility as follows. If the browser uses a single thread to

send GET requests sequentially on different SCTP streams, the

responses will arrive without any interleaving, as shown in Figure

8. On the other hand, if the browser uses multiple threads to send

the requests concurrently on different SCTP streams, the TPDUs

will arrive interleaved as shown in Figure 7. With this flexibility,

the web browser can make on-the-fly decisions about how much

object interleaving to beget for each web transfer based on prior

knowledge about the type of objects being transferred. Such

knowledge can be either implicit or explicitly obtained from the

web server.

4. OTHER MULTISTREAMING GAINS
We now consider two other web scenarios where SCTP

multistreaming might provide a better solution than existing TCP-

based solutions.

4.1 Multiplexing User Requests
Several web server farms and providers of Internet service use

TCP connection multiplexers to improve efficiency [16]. The

main goal of these multiplexers is to decrease the number of TCP

connection requests to a server, and thereby reduce server load

due to TCP connection setup/teardown and state maintenance.

The multiplexer, acting as an intermediary, intercepts TCP

connection open requests from different clients, and multiplexes

HTTP requests from different clients onto a set of existing TCP

connections to the server.

In this scenario, a multiplexer is forced to maintain several open

connections to its web server to avoid HOL blocking between

independent users’ requests and responses. Hence, a tradeoff

exists in deciding the number of open connections ─ fewer

connections decrease the server load on connection maintenance,

whereas more connections reduce HOL blocking between

different users’ requests.

SCTP multistreaming can be leveraged to reduce both HOL

blocking and server load in such an environment. A proxy in front

of an SCTP-capable web server can intercept incoming SCTP

association open requests from different users. This proxy can

maintain just one SCTP association to the web server, and can

channel incoming requests from different users on different SCTP

streams within this association. Since SCTP multistreaming

avoids HOL blocking, this solution is equivalent to having a

separate session or connection per user. This setup incurs minimal

resource consumption at the server since all data between proxy

and server go over a single SCTP association. This design also

takes advantage of integrated congestion management and loss

recovery within the SCTP association (Section 2.1).

There could be scenarios where a web server runs on SCTP to

take advantage of its many features, but a web browser does not

have SCTP support. To facilitate seamless service to such

browsers, we can extend the multiplexing proxy to act as an

application level gateway between HTTP-over-TCP and HTTP-

over-SCTP implementations. The proxy can intercept TCP

connection open requests, multiplex user requests on different

streams of a single SCTP association to the server, and forward

server responses to the clients on TCP. This setup ensures the

benefits of SCTP multistreaming at the server side, even when the

web clients are not SCTP-aware.

4.2 Multiplexing Resource Access
Today’s web servers deliver much more to users than just

browsing content. For example, business services such as

financial planning and tax preparation are offered over the web,

and the user accesses these services through a web browser. There

are also web applications such as online games and web-based

mail that are accessible by a browser. In such web applications, a

user first establishes a session with the server, and the bulk of the

user’s data is stored and processed at the server.

Most organizations rely on third-party data centers to host and

maintain their web-based software services. For load sharing and

better performance, a data center might employ various

scheduling policies to logically group and host many web

applications on a server. Consider a policy where multiple web

applications that will be accessed by the business clients or

employees of a single organization are grouped and hosted on the

same web server. For example, the data center might host an

organization’s customer relationship management software and its

mail server on the same web server. In such a case, the employees

of the organization will access the two resources concurrently

from the web server. Instead of opening separate TCP connections

for each resource, the user’s browser and the web server can

multiplex the resource access on different streams of a single

SCTP association, reducing load at the server.

5. OTHER USEFUL SCTP FEATURES
Apart from multistreaming, multihoming and protection from

SYN attacks, we present other features and related work on SCTP

which we believe could be useful to HTTP-based network

applications or web applications.

• Preservation of message boundaries: SCTP offers a

message-oriented data transfer to an application, as opposed

to TCP’s byte stream data transfer. SCTP considers data

from each application write as a separate message. This

message’s boundary is preserved since SCTP guarantees

delivery of a message in its entirety to a receiving

application. Web applications where the client and server

exchange data as messages can benefit from this feature, and

avoid using explicit application level message delimiters.

• Partial Reliability: RFC3758 describes PR-SCTP, a partial

reliability extension to RFC2960. This extension enables

partially reliable data transfer between a PR-SCTP sender

and receiver. In TCP, and plain SCTP, all transmitted data

are guaranteed to be delivered. Alternatively, PR-SCTP gives

an application the flexibility to notify how persistent the

transport protocol should be in trying to deliver a particular

message, by allowing the application to specify a “lifetime”

for the message. A PR-SCTP sender tries to transmit the

message during this lifetime. Upon lifetime expiration, a PR-

SCTP sender discards the message irrespective of whether or

not the message was successfully transmitted. This timed

reliability in data transfer might be useful to web applications

that regularly generate new data obsolescing earlier data, for

example, an online gaming application, where a player

persistently generates new position coordinates. A game

client can use PR-SCTP, and avoid transmitting the player’s

older coordinates when later ones are available, thereby

reducing network traffic and processing at the game server.

• Unordered data delivery: SCTP offers unordered data

delivery service. An application message, marked for

unordered delivery, is handed over to the receiving

application as soon as the message’s TPDUs arrive at the

SCTP receiver. Since TCP preserves strict data ordering,

using a single TCP connection to transmit both ordered and

unordered data results in unwanted delay in delivering the

unordered data to the receiving application. Hence,

applications such as online game clients that need to transmit

both ordered and unordered data open a TCP connection for

the ordered data, and use a separate UDP channel to transmit

the unordered data [23]. These applications can benefit from

SCTP by using a single SCTP association to transmit both

types of data. As opposed to UDP’s best effort transmission,

which burdens the application to implement its own loss

detection and recovery, messages can be transmitted reliably

using SCTP’s unordered service.

• SCTP shim layer: To encourage application developers and

end users to widely adopt SCTP and leverage its benefits, a

TCP-to-SCTP shim layer has been developed [22]. The shim

is a proof of concept and translates application level TCP

system calls into corresponding SCTP calls. By using such a

shim layer, a legacy TCP-based web application can

communicate using SCTP without any modifications to the

application’s source code.

6. CONCLUSION
Though SCTP has TCP-like congestion and flow control

mechanisms targeted for bulk data transfer, we argue that SCTP’s

feature-set makes it a better web transport than TCP.

Performance-wise, SCTP’s multistreaming avoids TCP’s HOL

blocking problem when transferring independent web objects, and

facilitates aggregate congestion control and loss recovery.

Functionality-wise, SCTP’s multihoming provides fault-tolerance

and scope for load balancing, and a built-in cookie mechanism in

SCTP’s association establishment phase provides protection

against SYN attacks.

We shared our experiences in adapting Apache and Firefox for

SCTP multistreaming, and demonstrated the potential benefits of

HTTP over SCTP streams. We also presented current architectural

limitations of Apache and Firefox that inhibit them from

completely realizing the benefits of multistreaming.

We discussed other systems on the web where SCTP

multistreaming may be advantageous, and hypothesized the

potential gains of using SCTP in such areas. We also outlined

other relevant SCTP features that are useful to HTTP based

network applications.

The authors hope that this position paper raises interest within the

web community in using SCTP as the transport protocol for web

technologies, and welcome further research and collaboration

along these lines.

7. ACKNOWLEDGMENTS
The authors thank Armando L. Caro Jr. (BBN Technologies),

Ethan Giordano, Mark J. Hufe, and Jonathan Leighton (University

of Delaware’s Protocol Engineering Lab), and the reviewers of

WWW2006 for their valuable comments and suggestions.

8. REFERENCES
[1] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.

Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, V.

Paxson, “Stream Control Transmission Protocol,” RFC 2960,

10/00

[2] R. Stewart, Q. Xie, Stream Control Transmission Protocol

(SCTP): A Reference Guide, Addison Wesley, 2001, ISBN:

0-201-72186-4

[3] R. Fielding et al., “Hypertext Transfer Protocol – HTTP/1.1,”

RFC 2616, 6/99

[4] R. Braden, “Requirements for Internet hosts –

communication layers,” RFC1122, 10/89

[5] Z. Wang, P. Cao, “Persistent connection behavior of popular

browsers,” Research Note, 12/98,

www.cs.wisc.edu/~cao/papers/persistent-connection.html

[6] H. Balakrishnan, H.S. Rahul, S. Seshan, “An integrated

congestion management architecture for Internet hosts,”

ACM SIGCOMM, Cambridge, 8/99

[7] V. N. Padmanabhan, “Addressing the challenges of web data

transport,” PhD Dissertation, Comp Sci Division, U Cal

Berkeley, 9/98

[8] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm,

R. Katz, “TCP behavior of a busy Internet server: Analysis

and Improvements,” IEEE INFOCOM, San Francisco, 3/98

[9] The Apache Software Foundation, www.apache.org

[10] Netcraft Web Server Survey,

news.netcraft.com/archives/web_server_survey.html

[11] Mozilla Suite of Applications, www.mozilla.org

[12] The KAME Project, www.kame.net/

[13] V. Jacobson, “Congestion avoidance and control,” ACM

SIGCOMM, Stanford, 8/88

[14] Stream Control Transmission Protocol, www.sctp.org/

[15] J. Iyengar, P. Amer, R. Stewart, “Concurrent multipath

transfer using SCTP multihoming over independent end-to-

end paths,” IEEE/ACM Trans on Networking (to appear)

[16] Accelerated Traffic Management, Array Networks,

www.arraynetworks.net/products/TMX1100.asp

[17] R. Braden, “Transaction TCP - Concepts,” RFC 1379, 9/92

[18] D. M. Chiu, R. Jain, “Analysis of the increase and decrease

algorithms for congestion avoidance in computer networks,”

Computer Networks and ISDN Systems, 17(1):1-14, 6/89

[19] M. Allman, V. Paxson, W. Stevens, “TCP Congestion

Control,” RFC 2581, 4/99

[20] Protocol Engineering Lab, U Delaware, URL:

www.pel.cis.udel.edu/

[21] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, P. Conrad,

“Stream Control Transmission Protocol (SCTP) Partial

Reliability Extension,” RFC 3758, 5/04

[22] R. Bickhart, “SCTP shim for legacy TCP applications”, MS

Thesis, Protocol Engineering Lab, U Delaware, 8/05

[23] Blizzard Entertainment, Technical Support Site, URL:

www.blizzard.com/support/

[24] L. Rizzo, “Dummynet: A simple approach to the evaluation

of network protocols,” ACM CCR, 27(1), 1/97

[25] TCPDUMP Public Repository, www.tcpdump.org/

[26] PCWorld.com – Firefox Downloads Top 100 Million, URL:

www.pcworld.com/news/article/0,aid,123140,00.asp

[27] D. Reed, email to end2end-interest mailing list, 10/02. URL:

www.postel.org/pipermail/end2end-interest/2002-

October/002434.html

[28] J. Gettys, email to end2end-interest mailing list, 10/02. URL:

www.postel.org/pipermail/end2end-interest/2002-

October/002436.html

[29] J. Gettys, H. Nielsen, “The WebMUX Protocol,” URL:

www.w3.org/Protocols/MUX/WD-mux-980722.htm

[30] HTTP-NG working group (historic). URL:

www.w3.org/Protocols/HTTP-NG/

