
FeedEx: Collaborative Exchange of News Feeds∗

Seung Jun
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280, U.S.A.

jun@cc.gatech.edu

Mustaque Ahamad
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280, U.S.A.

mustaq@cc.gatech.edu

ABSTRACT
As most blogs and traditional media support RSS or Atom
feeds, the news feed technology becomes increasingly preva-
lent. Taking advantage of ubiquitous news feeds, we de-
sign FeedEx, a news feed exchange system. Forming a dis-
tribution overlay network, nodes in FeedEx not only fetch
feed documents from the servers but also exchange them
with neighbors. Among many benefits of collaborative feed
exchange, we focus on the low-overhead, scalable delivery
mechanism that increases the availability of news feeds. Our
design of FeedEx is incentive-compatible so that nodes are
encouraged into cooperating rather than free riding. In ad-
dition, for a better design of FeedEx, we analyze the data
collected from 245 feeds for 10 days and present relevant
statistics about news feed publishing, including the distri-
butions of feed size, entry lifetime, and publishing rate.

Our experimental evaluation using 189 PlanetLab ma-
chines, which fetch from real-world feed servers, shows that
FeedEx is an efficient system in many respects. Even when
a node fetches feed documents as infrequently as every 16
hours, it captures more than 90% of the total entries pub-
lished, and those captured entries are available within 22
minutes on average after published at the servers. By con-
trast, stand-alone applications in the same condition show
36% of entry coverage and 5.7 hours of time lag. The effi-
cient delivery of FeedEx is achieved with low communication
overhead as each node receives only 0.9 document exchange
calls and 6.3 document checking calls per minute on aver-
age.

Categories and Subject Descriptors
C.2.4 [Computer-communication networks]: Distributed
systems—Distributed applications

General Terms
Design, Performance

Keywords
FeedEx, RSS, Atom, news feeds, collaborative exchange

∗This paper was supported in part by NSF grant ITR-
0121643.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

1. INTRODUCTION
The advent of the web and more recently blogs intro-

duce an unprecedented opportunity for information sharing
in that anyone can write their knowledge and opinion for ev-
eryone to read. According to the BBC, one blog is created
every second these days, reaching more than 14.2 million
blogs [11]. Although the increased level of information flow
possibly evolves our society forward, such advancement ne-
cessitates an efficient way of exchanging information.

As a response to the need of efficient information ex-
change, the standards such as RSS (really simple syndication
or rich site summary) and later Atom have been introduced.
They specify document formats that are used to contain a
list of entries summarizing recent changes in a web site or
a blog. These RSS or Atom feeds, referred to as news feeds

throughout the paper, are used by end users as well as other
web sites. Currently, most traditional mass media and per-
sonal blogs publish their articles in news feeds. However,
the standards around this technology have paid little atten-
tion to an efficient delivery of news feeds. In fact, there
is currently no distinction between news feeds and regular
web pages from a web server’s perspective. Thus, if users
are to check whether new entries are published, they only
have to fetch the feed documents as frequently as they want.
The lack of effective notification of updates can lead to the
aggressive probing, which not only wastes clients’ network
bandwidth but more importantly overloads the servers.

In this paper, we design and evaluate FeedEx, a news
feed exchange system. Its nodes form a distribution overlay
network over which news feeds are exchanged. Since this
exchange allows nodes to reduce the frequency of fetching
documents from servers, it can decrease the server load. In
a sense, FeedEx builds an effective notification system that
the current news feed technology lacks. Due to the effec-
tive notification, nodes benefit from timely delivery and high
availability of feeds. We design an incentive mechanism for
FeedEx so that nodes are encouraged into being collabora-
tors rather than free riders. Since FeedEx does not require
any modification of current feed servers or document for-
mats, it can be readily deployed. Our Internet experimental
results show that it achieves high availability and quick de-
livery time with low communication overhead, thus helping
the feed servers scale well.

The rest of this paper is organized as follows. The re-
mainder of this section gives the background on the news
feed technology and points out the benefits of FeedEx. In
Section 2, we present relevant statistics about news feed
publishing by analyzing the data collected from 245 feeds



<feed>
<title>NYT Technology</title>
<!-- other elements -->
<entry>

<title>Google Wants to Dominate ...</title>
<link>http://www.nytimes.com/2005/...</link>
<summary>This year Google will ...</summary>
<!-- other elements -->

</entry>
<entry>

...
</entry>
<!-- more entries -->

</feed>

Figure 1: A simplified sample of news feed

for 10 days. Section 3 describes the design and the protocol
of FeedEx. We evaluate the system and show the experi-
mental results in Section 4. Related work is presented in
Section 5, and the conclusions in Section 6.

1.1 Background
We briefly introduce the standards and terminology about

news feeds. Although several versions of news feeds specify
formats that are compatible to a varying degree [33], they
convey more or less the same content at a high level. A
simplified sample of news feed is shown in Figure 1. A feed

in Atom terminology (or channel in RSS terminology) is a
place at which related entries are published and is identi-
fied by a URL from which feed documents are fetched. A
feed document contains a list of entries (or items) as well
as metadata about the feed itself such as the feed title and
the published date. Each entry in turn contains a list of el-
ements including the title of the entry, the link from which
detailed information can be obtained, and the summary (or
description) of the entry.

The news feed standards are concerned only with the doc-
ument format. From a web server’s perspective, fetching a
feed document is the same as fetching a regular web doc-
ument, using the unmodified HTTP. Thus, subscribing to
a news feed does not mean that feed documents are deliv-
ered automatically upon a change. It merely means that
subscribers fetch the corresponding URL repeatedly, either
manually or through a client-side setup. Likewise, publish-

ing a feed does not mean that publishers actually “push”
documents to subscribers. It is subscribers and their appli-
cations that should ensure the timely update of news feeds.
Nevertheless, these terms are used conventionally, and in
this paper as well, to emphasize the dynamics of contents
and the persistent behavior of readers regarding news feeds.

Starting as a means of syndicating web sites, the news
feed technology has evolved so much as to be used in vari-
ous ways. For example, Mozilla web browsers provide Live
Bookmarks [1], which treat a feed as a folder and the con-
tained entries as bookmarks in it, while Microsoft’s new
operating system, code-named “Longhorn,” supports this
technology from a broader perspective [7]. In this paper, we
focus on its primary functionality, that is, delivering news
summaries. In particular, we explore the potential of shar-
ing news feeds among peers to expedite the dissemination
and reduce the server loads.

1.2 Benefits of FeedEx
Currently, there are two ways of consuming news feeds.

One way is using stand-alone applications, which look and
work like traditional news readers or email clients except
that posting is not possible. In fact, some email clients such
as Mozilla Thunderbird support this functionality. Such
applications, thus far, interact with nothing but the feed
servers. Another way is using web-based services such as
My Yahoo. If users register news feeds of their interests,
they read them in one place provided by the web service.
Allowing nodes to exchange news feeds with other nodes,
FeedEx has several advantages over stand-alone and web-
based aggregators:1

Server scalability. Since checking whether a feed is up to
date costs no more than fetching a web document,
nodes may well tend to do so frequently. However,
fetching at a high rate from many subscribers can eas-
ily overload highly popular servers. In FeedEx, as
nodes can receive new feed entries from their neigh-
bors as well as directly from the servers, they can de-
crease the rate of checking, which relieves server load.
FeedEx liberates the resource-constrained servers from
being a victim of its own popularity. Although feeds
forwarded through nodes may incur more traffic on the
client side, our experiments show that the increased
cost is minimal due to several techniques we use to
reduce the flooded traffic.

Archivability. Since a feed document can contain only a
limited, and often fixed, number of entries with new
ones constantly published, the lifetime of an individ-
ual entry is also limited. Thus, subscribers that only
have sporadic connections to the network for various
reasons may wish to fetch the lost entries that cannot
be obtained from the original server. FeedEx essen-
tially forms a network of feed archives in that par-
ticipating nodes store relevant entries locally for later
reference, which allows users to retrieve the archived
entries even when they are no longer available at the
original servers.

Controllability. Web-based services do not provide enough
control or flexibility to users, often for the sake of their
own scalability. For example, they usually forbid users
to adjust the fetching intervals, restrict the number of
entries to display or the length of each entry, and rarely
provide the archive of past entries.

Filtering and recommendation. Users in FeedEx can tag
their opinions on the entries they relay for filtering
and recommendation. Recommendation can be done
explicitly (e.g., rating or voting) or implicitly (e.g.,
user’s reading can be interpreted as endorsement). In
either way, they can help each other sift through the
information flood in a grassroots way. In addition to
entry recommendation, peers can recommend feeds to
neighbors by comparing its subscription set with that
of its neighbor. That is, if a peer finds that its neigh-
bor has similar interests based on their subscription

1In principle, both stand-alone applications and feed service
providers can participate in the FeedEx network. In other words,
FeedEx complements, rather than competes with, both ways.



l

l l

l l l

l l l l

l

l

l
l

l lll

lll
lll

ll
llllllllllllllll

ll
lll

llll
l
l
ll

l
ll
lllllllllllll

ll
lllllllllllllllllllllllllllllllllllll

llllll
llllllllllllllllllllllllllllllllllllllllllllll

ll
lll
lll
llll
llll
lll
lllll
llllll
lll
llllll
llllllllllll

l
l
lllll
llllll
lll

lll

l

ll

l

l

ll

l

Rank (log scale)

En
tri

es
 p

ub
lis

he
d 

pe
r d

ay
 (l

og
 s

ca
le

)

1 2 5 10 20 50 100 200

0.
1

0.
5

5.
0

50
.0

Reuters
CNN

Yahoo(T)

Yahoo(E)

BBC(U)

Fark.com

Yahoo(M)

ABC
BBC(W)

(a) Distribution of publishing rate. The line is
fitted between ranks 30 and 200.

Mean of entry count

Fr
eq

ue
nc

y

79

0 40 80 120

0
10

20
30

40
Nu

m
be

r o
f f

ee
ds

Rotten Tomatoes

MSDN
EurekAlert

Techbargains.com

Slate

Range of entry count

Fr
eq

ue
nc

y

159

0 20 40 60 80 100

Techbargains.com

EurekAlert
Washington Post
MSNBC

MacInTouch

(b) Histograms about entry count. Two long
bars go up to 79 and 159, respectively.

X[[22]]

Fr
eq

ue
nc

y
0

10
25 Reuters

X[[63]]

Fr
eq

ue
nc

y
0

5
10

Yahoo(M)

X[[7]]

Fr
eq

ue
nc

y
0

4
8

Motley Fool

X[[64]]

Fr
eq

ue
nc

y
0

4
8

12 NPR

0 1 2 3 4 5 6 7Sat Sun

Time (day)

En
tri

es
 p

ub
lis

he
d 

pe
r h

ou
r

(c) Change of publishing rate. Each bar is one
hour wide. Notice different y-axis scales.

Lifetime (hours)

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CNN

FOX News

Techbargains.com

Beta News

(d) Cumulative distribution of entry lifetime.
Vertical guidelines indicate days.

Figure 2: Statistics of news feed publishing

sets, it can try neighbor’s other feeds that are not in
its subscription set.

Privacy. Some users may not want to make public their
subscriptions to certain feeds. While stand-alone ap-
plications cannot avoid exposing users to the servers,
web-based services are even more vulnerable because
all subscription and activity information is stored on
the service providers. FeedEx can provide a frame-
work for enhancing privacy through plausible denia-
bility, somewhat analogous to onion routing or mixer-
based request delivery [34, 16]. Plausible deniability
is achieved by allowing users to fetch documents for
others even if they may not need them. Enough indi-

rection can anonymize actual consumers and obfuscate
usage patterns, protecting from powerful adversaries
that may breach user privacy.

As a first step towards exploring this new application, we
focus this paper on the server scalability and the news entry
availability.

2. ANALYSIS OF FEED PUBLISHING
We analyze various aspects of the current practice of news

feed publishing. Understanding the current practice is not
only interesting by itself but also helpful for a better design
of FeedEx. Based on the popularity in Gmail’s “web clips”
and Bloglines’ “most popular feeds,” a total of 245 news



feeds are chosen for monitoring. We fetch a document from
each feed every two minutes in order to continually observe
the activity. Entries in a document are identified by their
identifiers (e.g., the id element for Atom or guid for RSS
2.0). If no identifier is provided by the feed, we use a pair of
the title and the link elements as an identifier. We find
6 different versions2 from 245 news feeds. With the data
collected for 10 days, we analyze the following aspects of
news feed publishing.

First, we characterize the distribution of publishing rates.
The characterization into a certain distribution is useful,
for example, to generate a synthetic model. As some feeds
publish at a high rate while many others at a low rate, we
hypothesize that the distribution follows Zipf’s law, which
states that the size or frequency q of an event of rank r is
inversely proportional to rb, where b is a positive constant,
and r is an index (starting from one) into the list sorted in
the non-increasing order [8]. Many quantities on the web
seem to follow the Zipf distribution: the number of visits to
a site, the number of visits to a page [14], and the number of
links to a page [9], to name a few. Note that since q = ar−b,
for some constants a and b, if q is drawn against r on a log-
log plot, a straight line should be observed. Thus, putting
on a log-log plot is an easy, graphical way to see whether a
distribution follows Zipf’s law.

Figure 2(a) shows the distribution of publishing rates.
Feeds are ranked in the descending order of publishing rate
and then put on the log-log plot. While the middle range
(from rank 30 to rank 200) is well fitted on the line, both
ends deviate from the line. The upper left corner (head) is
crowded by such sites as Reuters, CNN, BBC, and Yahoo’s
Top Stories, which tend to publish news articles similar in
both amount and contents. It is also due to multiple ac-
tive feeds from a single site. For example, Yahoo publishes
Top Stories, Entertainment, and Most Emailed Stories, all
at high rates. Given that we only plot popular feeds, which
are highly likely to publish at high rates, the deviation in
the lower right corner (tail) will be compensated for by a
huge amount of less popular feeds.

Next, we show the distributions of entry counts for the
news feeds. An entry count is referred to as the number of
entries in a document. Instead of showing 245 histograms,
we use two summarizing histograms shown in Figure 2(b).
The histogram on the left shows the distribution of the arith-
metic means of entry counts, indicating that many feeds con-
tain 10 (in 30 feeds) or 15 (in 79 feeds) entries in a document
on average. One feed, in contrast, contains as many as 126
entries on average. The histogram on the right shows the
distribution of the ranges of entry counts. A range is defined
as the difference between the maximum and the minimum
entry counts for a feed. The histogram indicates that 65% of
feeds have a fixed entry count, as their ranges are 0. Other
feeds use variable length presumably to cope with the bursts
of entries generated. Although not shown by a figure, there
exists little correlation between the publishing rate and the
entry count as the coefficient of determination R2 from the
linear regression is only 0.06.3 The lack of correlation be-
tween the two variables implies that the entries from the
feeds with high publishing rates should live shorter.

Third, Figure 2(c) shows the change of publishing rate

2RSS 0.91 (two variants), 0.92, 1.0, and 2.0; and Atom 0.3
3A value, 0 ≤ R

2 ≤ 1, close to 1 indicates a better fit. In our
case, R

2 is the same as the square of correlation coefficient [36].

To News Feed Servers

To Neighbors

Neighbor
Server
RPC

From Neighbors

To List ServerConnector

Feed Fetch Scheduler

Figure 3: Architecture of FeedEx

over the first week of monitoring. For a better presentation,
we select four feeds that represent distinct patterns. The
vertical guidelines indicate midnights in EDT (4 hours be-
hind UTC/GMT). In most feeds publishing at high rates,
represented by the Reuters graph, the publishing rate is af-
fected by the time of day. That is, publishing is more ac-
tive during day than in night. By contrast, Yahoo’s Most
Emailed Stories does not show such periodicity because, we
suspect, the feeds are generated by the feedback of users,
who live in different time zones and whose activity is more
dispersed. We also find that many feeds, like Motley Fool,
do not show any activity during the weekends, which fall on
days [4, 6) in the graph. Another observation is that feeds
such as NPR update feeds only at certain times of day. Al-
though the predictability may be a good hint for subscribers,
it is likely to cause “flash crowd” on such servers.

Last, Figure 2(d) shows cumulative distributions of en-
try lifetime from four selected feeds. The vertical guidelines
mark the lengths of days. Most feeds publishing at a high
rate show a similar distribution to that of CNN. Fox News
and some other feeds exhibit linear progression up to a cer-
tain time. Note that this means a uniform distribution (flat
range in a probability density function). We believe that it
occurs as a result of the publisher’s policy that controls entry
lifetime. For example, the publisher may assign importance
to each entry so that it lives as long as its importance. With
variable-size documents as in FoxNews and TechBargains, it
is easier to implement such a policy about the lifetime of en-
tries. Beta News shows an interesting distribution in which
entries’ lifetimes are discrete with three levels (one day, two
days, and four days long), which also seems to result from
some policy.

3. DESIGN AND PROTOCOL
We describe the design and the operation of FeedEx, a

news feed exchange system. As Figure 3 shows, a node is
connected to a small number of neighbors. It occasionally,
depending on the scheduler policy, fetches a document from
a feed server to which it subscribes. If it finds new en-
tries from the fetched document, it propagates them to the
neighbors that are interested in them. At the same time,
new entries may become available from a neighbor. In this
case, it forwards new entries to other relevant neighbors.



Function Arguments Return Value Sec.

get neighbors nid (ip,port) list 3.1

connect nid,subset subset 3.1

update subset nid,subset ok or error 3.1

check did nid,did seen or unseen 3.4

put entries nid,bundle ok or error 3.4

query feed nid,query answer 3.6

Table 1: XML-RPC function set. The argument
nid stands for node identifier, subset for subscription
set, and did for document identifier.

A node is identified by a pair of IP address and port num-
ber. The IP address of a node is taken implicitly by the
neighbor from the connection, HTTP and hence TCP, in-
formation while the port number is stated explicitly by the
requester. The port number indicates the listening port of
the XML-RPC server. The implicitly taken address (us-
ing, for example, a getpeername system call on UNIX sys-
tems) helps prevent the Sybil attack [21] as it is difficult
for an adversary to establish a connection through the 3-
way handshaking of TCP with its identity (i.e., IP address)
spoofed. Secure binding of identity is required for reliable
accountability, which in turn helps build a robust system.
We do not address issues caused by network address trans-
lation or other mechanisms that hamper the network trans-
parency [15].

A feed is identified by the URL with which it is associated.
Occasionally, more than one URL maps to the same feed.
Such aliases are resolved externally as it is difficult to distin-
guish without human intervention. An entry, as discussed
in Section 2, is identified by the id or guid element along
with the URL of the feed. In the absence of such an iden-
tifier, a pair of the title and the link elements determines
an entry.

A node advertises a subscription set to the neighbors. The
subscription set contains a list of feeds in which the node is
interested. Thus, the neighbors forward only the entries
whose feed is in the advertised subscription set. Since the
subscription set can contain feeds that are not in its interest
but in its neighbors’ (explained later), each feed in the set
is tagged by an integer called hop count of interest. For ex-
ample, hop count 0 means that the feed is in the advertising
node’s direct interest, hop count 1 means that the feed is
not in its interest but in at least one of its neighbors’, and
so forth. A subset of a subscription set that contains only
the feeds of hop count 0 is referred to as direct subscription

set.
In the rest of this section, we describe the detailed pro-

tocol and operation of FeedEx. The protocol uses XML-
RPC [37], and we refer to the relevant functions in Table 1
as we proceed.

3.1 Bootstrapping
Bootstrapping is a procedure through which a node be-

comes part of the system. It proceeds in two steps. The first
step of bootstrapping is to acquire a list of nodes that are
currently running in the system. The list can be obtained
from three sources. First, a node can contact a well-known
server that provides the list (using the get neighbors call
in Table 1). This list server is similar to the host cache ser-

vice in Gnutella [17] and the tracker in BitTorrent [18]. The
contacting node includes its information so that it can be
included later in the lists for other nodes. Second, the feed
servers may append to a feed document a list of clients that
have recently retrieved the same feed. This idea, similar to
Pseudoserving [28] and CoopNet [31], appeals to the servers
because they are able to reduce the workloads in the long
run by redirecting clients. Third, if a node has participated
in the system before, it may reuse some of its earlier neigh-
bors that are available at the moment. Reconnecting to old
neighbors is advantageous in that they can trust each other
from the past experience (see Section 3.5 for the incentive
issue).

The second step of bootstrapping is to connect to the
nodes whose locations are obtained in the first step. The
connect call, shown in Table 1, carries the subscription set
as an argument. Each element of the subscription set is a
pair of the URL of a feed and the hop count of interest,
as explained earlier. If the connected node Q decides to
accept the connecting node P , Q returns its subscription set
to P . Then, Q updates its subscription set including hop
counts. Q’s returning set must be computed excluding P ’s
advertisement. Otherwise, Q would falsely advertise back
the feeds in which only P , and none of Q’s other neighbors,
is interested. If Q decides not to accept P (for example,
because Q’s neighbor capacity is full), it returns an empty
set, which is interpreted accordingly by P . Other reasons
for rejection are discussed in Section 3.2.

As a node has its neighbors come and go, the subscrip-
tion set changes over time. Thus, to update neighbors, the
node advertises (using update subset) its subscription set
periodically and not immediately upon change. The imme-
diate response to set changes may cause considerable traffic
due to feedback loops. Since the direct subscription sets are
always exchanged from the start and never change through-
out the connection, the advertisement period can be set to
a large value to reduce the overhead. Although feeds associ-
ated with large hop counts are more subject to change, they
affect the overall performance to a less degree. To further re-
duce the overhead, the advertisement is incremental. That
is, only the difference from the previous advertisement is
transmitted. For the same reason as computing the return-
ing subscription set, the advertised set must be computed
for each neighbor excluding the neighbor in question. In
the prototype implementation, this computation is done by
a SQL query as we store the advertisements into a table of
relational database. With proper indexing, the computation
is efficient.

3.2 Neighbor Selection
Although having more neighbors may bring more infor-

mation or bring it faster, it also causes higher overhead in
communication and processing. Thus, a node should restrict
the number of neighbors within a sustainable level. Since a
node may have more neighbor candidates than it can sus-
tain, it needs to select “good” neighbors. As a primary se-
lection metric, we use the degree of overlap in subscription
sets.4

Initially, a node P assigns a weight wi of preference to
each feed i in its direct subscription set. Periodically, P

4It can be supplemented with secondary metrics such as topolog-
ical proximity and neighboring duration.



assigns each neighbor Q the degree of usefulness u(Q):

u(Q) =
X

i∈(SP ∩S′

Q
)

wid
−hi

where SP ∩ S′

Q denotes the intersection of P ’s direct sub-
scription set and Q’s entire subscription set; d is a positive
constant; and hi is a hop count, with respect to Q, for feed
i. The purpose of a factor d−hi is to depreciate the value
of overlap in inverse proportion to the hop count because a
feed with a large hop count is more prone to disappear.

The assigned usefulness values are used to decide which
neighbors to keep or drop. A node may need to drop some of
current neighbors, for example, when it encounters shortage
of network bandwidth or processing power or when a newly
connecting node has a higher degree of usefulness.

3.3 Adaptive Fetching
If nodes do not fetch feeds frequently enough, they may

obtain entries too late or even miss them. On the other
hand, if fetching is too frequent, it may well waste the net-
work bandwidth and overload the servers. Thus, it is impor-
tant to balance the frequency of fetching that is appropriate
for both subscribers and publishers. However, the coordi-
nation among nodes is difficult because it involves a large
number of nodes that join and leave the system at a possibly
high rate. Another challenge is that publishers give little ex-
plicit hint about the publishing rate or entry lifetime. Some
hints may even be misleading. In our analysis, for example,
some feeds fill the pubDate element with the fetching time.
That is, although the actual contents remain unchanged, the
element keeps changing each time a document is fetched.

We develop an adaptive algorithm that adjusts the fetch-
ing intervals without explicit coordination nor any hints
from the servers. The intuition behind the algorithm is that
if fetching is too frequent, a fetched document contains few
new entries. On the other hand, if fetching is too infrequent,
most of the entries are likely to be new. Thus, we keep track
of the fraction of new entries in a fetched document and use
this feedback to adapt the fetching interval.

We define a freshness rate of a fetched document as the
fraction of new entries contained in it. Each feed needs a
separate fetching interval because the publishing rate and
pattern vary greatly as shown in Figure 2. For each feed, a
node assigns a value to the target parameter ft for freshness
rate (0 ≤ ft ≤ 1). A value ft that is close to 1 means that
a node wishes new entries as early as possible. Two param-
eters, Tmin and Tmax, denote the minimum and maximum
possible intervals, respectively. We use a simple algorithm
to adjust the fetching interval t of a feed. Each time a doc-
ument is fetched, the freshness rate f is computed as the
ratio of the new entries to the total entries in the document.
If f < ft, then t becomes halved or set to Tmin, whichever
is the greater. Or if f > ft, then t becomes doubled or set
to Tmax, whichever is the less.

3.4 Entry Dissemination
After a node fetches a document from a feed server, it

filters and stores new entries from the document. These
new entries are bundled and forwarded to the neighbors that
subscribe to the corresponding feed. The entry bundle is as-
signed a globally unique identifier did. To assign did, we use
the 20-byte SHA-1 digest [30] of a bundle. Although there
is a very slight chance of collision, the cost of the collision

is missing an entry bundle whose entries can be available
later from other bundles. For the small cost, we can avoid
coordination for a unique identifier. The entry bundle also
attaches a path attribute, which keeps records of a growing
list of forwarders. It is a receiver, rather than a sender, that
puts the forwarder on the path list in order to reduce the
chance of undesirable modification of the path. Thus, the
sender, although it may alter the past path, cannot avoid
appearing on the list in the absence of collusion. Even with
collusion, at least one of such a forwarder must appear on
the list.

Forwarding is triggered either from inside (the feed fetch
scheduler in Figure 3) or from outside (the RPC server). If a
node detects a loop (that is, its identifier is already included
in the path attribute), the entry bundle is discarded. The
bundle is forwarded to a neighbor only if the neighbor is in-
terested in the bundle, which means that the neighbor’s sub-
scription set includes the bundle’s originating URL and that
the hop count for the matching feed is not greater than a
system parameter max subset hops. Forwarded bundle may
contain entries that have already been stored locally. Those
old entries are removed from the bundle before it is fur-
ther forwarded. Forwarding involves two remote calls that
helps reduce the wasted traffic. First, using a check did call,
small enough to fit in one packet as shown in Section 4.4, the
forwarding node checks whether a neighbor has already seen
this entry bundle. For this purpose, nodes store the bundle
identifiers did that have been seen recently (e.g., 1,000 latest
dids in our prototype). While simple hashing is sufficient
for searching a small amount of did cache, Bloom filter [13]
may be used for a large cache [23]. Second, if the neigh-
bor returns “unseen,” the entry bundle is forwarded via a
put entries call.

3.5 Incentive Mechanism
Due to resource constraints and the lack of centralized

administration, nodes may manifest selfish behavior. For
example, they may want to save the network bandwidth by
only receiving the entry bundles without forwarding them.
As another example, they may lie about the subscription set
to become a preferred neighbor. Without proper incentive
mechanisms and the detection of misbehavior, the system
may become full of free riders and suffer from the “tragedy
of the commons” [26] in the long run.

To ensure the mutual contribution, we measure the degree
of contribution from a neighbor. When a node i receives a
new entry from a neighbor j, i updates the contribution
metric cj,i (contribution from j to i):

cj,i ← cj,i + wfα
−hf

where α is a system-wide constant, f is the feed to which
the entry belongs, wf is a weight of preference for feed f ,
and hf is a hop count for feed f . That is, a node gives the
most credit when it receives an entry from a feed belonging
to the direct subscription set, the second most credit for an
entry from a feed of hop count 1, and so forth. Then, we
define the deficit of contribution di,j of node i against node
j as follows:

di,j = ci,j − cj,i

Note that i can maintain both ci,j and cj,i without relying
on j. To prevent free riding, node i ensures that di,j does
not exceed a constant parameter D. The effectiveness of



this deficit bounding is shown in our previous work [27].
Although it is discussed in the context of bulk transfer, the
same principles apply to this case as well.

3.6 Entry Pulling
Since nodes store entries into their database, FeedEx forms

a distributed archive system. If a node is to retrieve past
entries that are no longer available from the feed servers, it
can rely on other nodes that have those entries stored. The
query feed call serves the purpose of finding such nodes.
It works similarly to the Gnutella’s query and query hit

pair [17]. The requester specifies in the query what feed
entries it is looking for in terms of feed titles, entry titles,
published dates, and others. The query is propagated re-
cursively rather than iteratively. That is, analogous to the
recursive DNS query, once a neighbor receives a query, it
propagates the query to its neighbors on behalf of the origi-
nal requester. A possible drawback of recursive mode is ex-
cessive traffic caused by query flooding, which can be sim-
ilarly controlled using the unique query identifier and the
maximum number of hops. On the other hand, recursive
queries have three advantages over iterative queries. First,
the results can be aggregated along back to the original re-
quester. Second, results can be cached, which may be useful
for popular queries. Third, and most important, we can put
this query relaying under the incentive mechanism discussed
earlier. If iterative queries are used, nodes do not have in-
centive to answer the requests from non-neighbors because
answering is unlikely to be rewarded.

The original requester C selects a node S from the query
results for downloading the entries. Unlike the query feed

call, because of potentially large traffic, C and S make a
direct connection to retrieve entries rather than communi-
cating through a chain of neighbors. However, S has no
incentive to upload entries to C as it only costs S its re-
sources (i.e., network bandwidth). Thus, C needs to find
either an altruistic S that unconditionally uploads to C or
a circular dependency of requests. For example, if S also
wants to download some other entries from C, S and C

form a circular dependency of length 2. Or if there exists a
node P such that P wants to download from C, and S from
P , they form a circular dependency of length 3. If a circular
dependency is found, they are likely to agree to serving one
in exchange of being served by another. Anagnostakis and
Greenwald [10] discuss how to detect circular dependencies
and perform n-way exchanges.

4. EVALUATION
We evaluate FeedEx using various metrics in comparison

with stand-alone applications. We also measure the over-
head of FeedEx that is caused mainly by forwarding entry
bundles.

4.1 Prototype Implementation
For the proof of concept and the evaluation, we have im-

plemented a prototype in Python [4]. As mentioned ear-
lier, the protocol is implemented using XML-RPC for inter-
operability in the future as well as fast prototyping. The
communication and the concurrency are due to Twisted,
an event-driven networking framework [6]. The feed entries
and the subscription sets are stored into tables of relational
database. For this purpose, we use SQLite [5], a lightweight
embedded relational database engine, which is accessed via

Parameter Value

Subscription set size 20

Maximum subset hops 3

Advertisement interval 300 seconds

Maximum neighbors 10

Minimum neighbors 8

Table 2: Experimental parameters

Python’s DB-API 2.0 [3]. Feed documents are parsed by
Universal Feed Parser [32].

4.2 Metrics
To measure the performance of news feed delivery sys-

tems, we define the following performance metrics:

Time lag. We define the time lag for an entry as the time
difference between when the entry is published at a
feed server and when it becomes available to a node
(either directly from the server or from a forwarding
neighbor).

Missing entries. We refer to a missing entry as the one
that has been published at a feed server but that has
never been available at a node. Only entries from the
subscribed feeds are considered.

Communication cost. Communication cost for a node in-
cludes the cost of fetching feed documents from servers
and, in exchange mode, the cost of the XML-RPC calls
between neighbors.

In a sense, a missing entry is an entry with an infinite
time lag. However, we treat two metrics separately for easy
summarization because mean and variance are computable
only without infinite numbers.

Measuring both time lag and missing entries requires the
publishing logs from servers. Since such data are difficult
to obtain, we instead run a reference node that monitors
the servers’ activity during the experiment. The reference
node runs in stand-alone mode, fetching all monitored feeds
every two minutes. Thus, in a failure-free environment, the
maximum possible error in time lag is two minutes while
entries that live shorter than two minutes long may even
miss at the reference node. The effect of failures in the
reference node is discussed in Section 4.4.

In stand-alone mode and, to a lesser degree, exchange
mode, a node can reduce both time lag and missing entries
by fetching documents more frequently. On the other hand,
fetching document too often increases the communication
cost as well as the server load. In exchange mode, the feed
exchange involves controlled flooding of entry bundles, it is
essential to keep the communication cost to a sustainable
level. Thus, a good system should “score high” on these
metrics in a balanced manner.

4.3 Experimental Setup
We used PlanetLab [2] for evaluation as it provides a plat-

form for experimenting with machines distributed world-
wide. Specifically, we ran our prototype on 189 PlanetLab
machines for about 22 hours on a weekday. PlanetLab ma-
chines tended to shut down or reboot frequently not least



Fetching interval (hours)

Ti
m

e 
la

g 
(h

ou
rs

)

0 5 10 15

0
2

4
6

8

l

l

l

l

l

l

l l l l
l

l

SLN

XCH

Figure 4: Time lag

because they were shared and overloaded by many users. As
a result, during those 22 hours, 28 machines were shut down
or rebooted, and we report the results from the remaining
161 machines that ran during the whole experiments. Nodes
from the rebooted machines did not re-join the network. As
a FeedEx node is able to detect neighbor failures and act
accordingly (e.g., remove unreachable nodes and replenish
new neighbors if there remain less than min peers neigh-
bors), we believe that the failed machines did not affect the
results in any significant way.

The primary experimental factor is the fetching interval,
which most affects all three performance metrics. We choose
6 intervals from 30 minutes up to 16 hours with each subse-
quent interval doubled. To factor out the effect of fetching
interval, one FeedEx network consists of the nodes having
the same interval. For the same reason, we do not apply
adaptive fetching interval algorithm discussed in Section 3.3.
We run 6 networks, each with a different interval, in paral-
lel. That is, each machine runs 6 nodes of different inter-
vals during the experiment. We strictly distinguish the two
terms, machine and node, in this section. While different
networks have no direct interaction with each other, we be-
lieve that they should not interfere much because they do
not consume much processing power or network bandwidth.
As the experiment runs about 22 hours long, we select 70
feeds, out of the same 245 feeds as shown in Section 2, that
publish at least 5 entries per day. Out of these 70 feeds,
each node puts 20 feeds independently and randomly into
its direct subscription set. The direct subscription set does
not change during the experiment.

For each fetching interval, two delivery modes, sln (for
stand-alone) and xch (for exchange, representing FeedEx),
are compared. The results of sln are simulated from those
of xch. That is, no sln nodes are actually run, but the
results such as time lag and missing entries are computed
from those of xch by excluding the effects from neighbors.
Note that since the feed exchange does not interfere with
the document fetch, the simulated results are exactly the
same as if they were run in stand-alone mode. Since the sln

and the corresponding xch nodes have the same subscription
sets (i.e., the factor, subscription set, is blocked), the results
from the two modes are directly (i.e., pairwise) comparable.

Fetching interval (hours)

M
iss

in
g 

en
tri

es
 (%

)

.5 1 2 4 8 16

0
20

40
60

80
10

0

l l
l

l

l

l

l l l l l l

l

l

l

l

l

l

l l l l l l

XCH miss
XCH gain
SLN miss
SLN gain

Figure 5: Missing entries

4.4 Results
Figure 4 shows how time lags change for different modes

and fetching intervals. Classified by mode and interval, each
group consists of 161 nodes. Each node collects some num-
ber of entries during the experiment. For each entry col-
lected, we compute its time lag as defined in Section 4.2.
Then, the average time lag of entries is computed for each
node. The distributions of the node averages are shown in
the figure. That is, each point in the figure is the average of
the node averages while error bars indicate the 90% range
of the node averages with the lower bars corresponding to
the 5th percentile of node averages, and the upper bars to
the 95th percentile.

The gap between sln and xch grows as the interval in-
creases. The time lag of sln is 7.0 times that of xch for the
30-minute interval while the ratio jumps to 15.2 times for
the 16-hour interval. Wide error bars in sln indicate that it
has much more variation in time lag than xch and that the
time lag variation of sln increases as the fetching interval
increases. As such an increase does not occur to xch, it can
be said that its performance is more stable.

For stand-alone mode, the expected time lag is half the
fetching interval if entries are published uniformly. The ex-
pectations are close to the actual results for smaller intervals
whereas they are greater for larger intervals. For example,
the expected time lag of 8 hours for the 16-hour fetching
interval is greater than the node average 5.7 hours. This
discrepancy occurs because as the experiment period (22
hours) is not a multiple of the fetching interval (16 hours),
some feeds fetched twice during the experiment lead to the
time lag shorter than expected.

Figure 5 shows the percentage of entries that each group
misses on average. To compute the missing entry rate,
we compare, for each node, the set of entries stored in its
database with that of entries stored in the reference node
for the same subscription set. A group average is computed
as an average of the node missing rates in the same group.
As in the previous figure, each point indicates the average of
the node averages for the group. As all the sln miss groups
include outliers with high missing rates (the reason is dis-
cussed shortly), for them, medians are indicated by the “x”
marks. Error bars are drawn from the 5th percentile to the



Fetching interval (hours)

Re
ce

ive
d 

ca
lls

 p
er

 m
in

iu
te

.5 1 2 4 8 16

0
4

8
12

16
l

l

l

l

l

l

l
l

l
l

l
l

check_did
put_entries

Figure 6: Frequency of remote call invocations

95th percentile of the node missing rates. For each fetching
interval, two “miss” bars grow above while two “gain” bars
grow below, both starting from 0%. An entry that appears
in the reference node but not in a xch node accounts for
xch miss while an entry that appears in a xch node but not
in the reference node accounts for xch gain (and similarly
for sln miss and sln gain).

While miss rates increase along the increased fetching in-
terval for both modes, xch remains much lower rate than
sln. For the interval of 30 minutes, xch nodes even manage
to obtain entries that the reference node has missed (about
2% of the total number of entries collected by the reference
node). Some of these entries may have lived less than two
minutes, the fetching interval of the reference node, while
other entries are missed because of the temporary failures
in the reference node. As the failures were mostly timeouts
and not temporally clustered, we believe that they were due
to the servers, most likely overloaded servers, rather than
the reference node. In any case, the failures in the reference
node were so few and far between that they do not affect
time lags and missing rates in any significant way.

There are 27 machines (hence all 162 nodes running on
those machines) showing more than 80% sln missing rate
because most fetching attempts failed during the experi-
ment. All those troubling nodes belong to the next-generation
Internet. Specifically, 15 machines belong to the internet2.
planet-lab.org domain (Internet2), 9 machines to canet4.

nodes.planet-lab.org (canarie), and 3 machines to hpl.

hp.com (HP Labs’ Internet2 machines). At the same time,
no machines that fetch documents properly belong to these
domains except for some hpl.hp.com machines that are not
part of Internet2. Thus, we deduce that the particular net-
work as a whole had a problem in name resolution or rout-
ing during the experiment.5 Still, since such machines were
able to communicate with neighbors, the xch miss rates on
those machines were not affected as much. This event, al-
though anecdotal, illustrates that FeedEx is more resilient
to certain types of failures than stand-alone clients as it can

5In the log files, all fetching failures were logged as timeout. Since
they did not have a problem in communicating other machines,
which did not require the name resolution, we suspect that name
resolution was a more likely cause.

Fetching interval .5 1 2 4 8 16

Bundle size 2.67 2.63 2.83 2.87 3.29 3.65

Table 3: Average entries in a bundle

obtain information not only from the feed servers but also
from neighbors.

Figure 6 shows the rate of XML-RPC calls as a measure
of communication cost of FeedEx. Out of 6 functions in
Table 1, only check did and put entries are shown. The
invocations of the other functions are so infrequent (less than
a total of 50 times per node for 22 hours) that we do not
include them in the figure. The check did call, which is
an HTTP request, is 344 bytes long, including the HTTP
header, and the call return, which is an HTTP response,
is about the same size. Since IPv4 specifies the maximum
transfer unit to be at least 576 bytes (and 1,280 bytes for
IPv6) except for few special cases, both the request and the
response should fit in one IP packet. Thus, the overhead
from the check did is small. The rate of put entries calls
is as low as two calls per minute even when nodes fetch
documents every 30 minutes. Since each call contains only
2.67 entries on average, shown in Table 3, we conclude that
the communication cost is low.

Table 3 shows average bundle size by fetching interval.
The bundle size is measured as the number of entries in
an entry bundle. From the table, we see the average bundle
size increase as fetching interval increases because it is likely
to have more new entries available for the increased inter-
val. Compared with the entry count distributions shown
in Figure 2(b), entry bundles are smaller than actual feed
documents because only new entries are included before for-
warded.

Putting together the experimental results, we see that
FeedEx has low communication overhead while achieving
short time lag and low missing rates.

5. RELATED WORK
Web caching and content distribution network address

the similar goals of relieving the server load and reducing
the latency for clients to retrieve web pages. Various ap-
proaches have been researched, including recent peer-to-peer
flavors [24, 35]. FeedEx is different from web caching or
content distribution networks in that there is no distinction
between clients and proxies or content networks. That is,
a peer in FeedEx plays dual roles as a consumer and as a
cache. Such duality creates bidirectional service and gives
an advantage to making it incentive-compatible.

FeedEx can be considered a gossip-based protocol in that
a peer delivers the information it has learned to the neigh-
bors. Gossip-based or epidemic protocols generally achieve
robustness and scalability due to their distributed nature of
dissemination [12, 25, 22]. Unlike some epidemic protocols,
a FeedEx peer adheres to its neighbors, rather than changes
them for each retransmission, because repeated transactions
increase the chance to establish trust with the neighbors.
With each pair of neighbors trying to be “fair” to each other,
the system becomes robust to free riders.

The lockss system [29] preserves digital contents by peri-
odic voting. That is, nodes ensure the integrity of contents
they own by comparing their fingerprints with those from



neighbors, with possible human intervention in case of no
definite voting result. Developed in the context of digital
library, lockss addresses copyright issue by requiring that
a peer must own the contents before participating in voting.
Thus, while it is not concerned with the propagation of new
contents, it proposes a way of protecting integrity, which
can apply to FeedEx.

Since peer-to-peer systems are prone to free riding, it is
important to ensure the contribution of peers. The tech-
niques to ensure the fairness and provide the incentives are
developed in such various contexts as storage [20], bulk trans-
fer [18, 27], and data archiving [19]. As FeedEx also requires
the cooperation of peers in propagating news feeds, it pro-
vides an incentive mechanism as shown in Section 3.5.

6. CONCLUSIONS
We make a case for collaborative exchange of news feeds

by presenting FeedEx. By enabling nodes to exchange news
feeds, it reduces the time lag and increases the entry cov-
erage, helping the server scalability. We also emphasize
that FeedEx is incentive-compatible so that cooperation is
elicited. Without proper incentive mechanisms, the system
becomes unsustainable due to the unwantedly induced free
riders.

While we demonstrate the scalability and efficiency of
FeedEx, it also has potential for other benefits such as anony-
mous subscription and collaborative filtering and recommen-
dation. We plan to investigate further so as to augment
FeedEx, which will help exchange information that grows
increasingly unwieldy.

7. REFERENCES
[1] Live bookmarks. http:

//www.mozilla.org/products/firefox/live-bookmarks.
[2] PlanetLab. http://planet-lab.org.
[3] Pysqlite. http://pysqlite.org.

[4] Python. http://python.org.
[5] SQLite. http://sqlite.org.
[6] Twisted. http://twistedmatrix.com.

[7] Microsoft to deliver RSS support to end users and
developers in windows “Longhorn”.
http://www.microsoft.com/presspass/press/2005/jun05/
06-24RSSIntegration%PR.mspx, June 2005.

[8] L. A. Adamic. Zipf, power-law, Pareto—a ranking tutorial.
http://www.hpl.hp.com/research/idl/papers/ranking/
ranking.html, Oct. 2000.

[9] R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of the
world-wide web. Nature, 401, 1999.

[10] K. G. Anagnostakis and M. B. Greenwald. Exchange-based
incentive mechanisms for peer-to-peer file sharing. In
Proceedings of the 24th IEEE International Conference on
Distributed Computing Systems (ICDCS), pages 524–533,
2004.

[11] BBC News. One blog created ‘every second’.
http://news.bbc.co.uk/1/hi/technology/4737671.stm,
Aug. 2005.

[12] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal multicast. ACM Transactions on
Computer Science, 17(2), May 1999.

[13] B. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM,
13(7):422–426, July 1970.

[14] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web caching and Zipf-like distributions: Evedence and
implications. In Proceedings of the IEEE Conference on
Computer Communications (INFOCOM), Mar. 1999.

[15] B. Carpenter. RFC 2775. internet transparency, Feb. 2000.

[16] D. L. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications of the
ACM, 24(2):84–90, Feb. 1981.

[17] Clip2 Distributed Search Services. The Gnutella protocol
specification v0.4.

[18] B. Cohen. Incentives build robustness in BitTorrent. In
Proceedings of the 1st Workshop on Economics of
Peer-to-Peer Systems (P2PECON), June 2003.

[19] B. F. Cooper and H. Garcia-Molina. Peer-to-peer data
trading to preserve information. ACM Trans. Inf. Syst.,
20(2):133–170, 2002.

[20] L. P. Cox and B. D. Noble. Samsara: Honor among thieves
in peer-to-peer storage. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), Oct.
2003.

[21] J. R. Douceur. The Sybil attack. In Proceedings of the 1st
International Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

[22] P. T. Eugster, R. Guerraoui, S. B. Handurukande,
P. Kouznetsov, and A.-M. Kermacrrec. Lightweight
probabilistic broadcast. ACM Transactions on Computer
Science, 21(4):341–374, Nov. 2003.

[23] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary
cache: a scalable wide-area web cache sharing protocol.
IEEE/ACM Transactions on Networking, 8(3):281–293,
2000.

[24] M. J. Freedman, E. Freudenthal, and D. Mazieres.
Decomcratizing content publication with Coral. In
Proceedings of the 1st USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI),
Mar. 2004.

[25] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié.
Peer-to-peer membership management for gossip-based
protocols. IEEE Transactions on Computers,
52(2):139–149, Feb. 2003.

[26] G. Hardin. The tragedy of the commons. Science,
162:1243–1248, 1968.

[27] S. Jun and M. Ahamad. Incentives in BitTorrent induce
free riding. In Proceedings of the ACM SIGCOMM
Workshop on Economics of Peer-to-Peer Systems
(P2PECON), pages 116–121. ACM Press, Aug. 2005.

[28] K. Kong and D. Ghosal. Mitigating server-side congestion
in the Internet through pseudoserving. IEEE/ACM
Transactions on Networking, 7(4):530–544, 1999.

[29] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H.
Rosenthal, and M. Baker. The LOCKSS peer-to-peer
digital preservation system. ACM Transactions on
Computer Science, 23(1):2–50, 2005.

[30] National Institute of Standards and Technology. Secure
hash standard. FIPS PUB 180-1, May 1993.

[31] V. N. Padmanabhan and K. Sripanidkulchai. The case for
cooperative networking. In Proceedings of the International
Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[32] M. Pilgrim. Universal feed parser. http://feedparser.org.
[33] M. Pilgrim. The myth of RSS compatibility.

http://diveintomark.org/archives/2004/02/04/
incompatible-rss, Feb. 2004.

[34] M. G. Reed, P. F. Syverson, and D. M. Goldschlag.
Anonymous connections and onion routing. IEEE Journal
on Selected Areas in Communications, 16(4):482–494, May
1998.

[35] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson.
Reliability and security in the CoDeeN content distribution
network. In Proceedings of the USENIX Annual Technical
Conference, pages 171–184, 2004.

[36] E. W. Weisstein. Correlation coefficient. From MathWorld
at http:
//mathworld.wolfram.com/CorrelationCoefficient.html.

[37] D. Winer. XML-RPC specification.
http://xmlrpc.com/spec.


