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ABSTRACT

We introduce and evaluate a middleware clustering technology ca-
pable of allocating resources to web applications through dynamic
application instance placement. We define application instance place-
ment as the problem of placing application instances on a given
set of server machines to adjust the amount of resources available
to applications in response to varying resource demands of appli-
cation clusters. The objective is to maximize the amount of de-
mand that may be satisfied using a configured placement. To limit
the disturbance to the system caused by starting and stopping ap-
plication instances, the placement algorithm attempts to minimize
the number of placement changes. It also strives to keep resource
utilization balanced across all server machines. Two types of re-
sources are managed, one load-dependent and one load-indepen-
dent. When putting the chosen placement in effect our controller
schedules placement changes in a manner that limits the disruption
to the system.

Categories and Subject Descriptors

K.6.4 [Computing Milieux]: Management of Computing and In-
formation Systems—System Management

General Terms

Algorithms, Management, Performance

Keywords
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1. INTRODUCTION

Many organizations rely on web applications to deliver critical
services to their customers and partners. These service providers
require application middleware platforms capable of dynamically
allocating resources to meet the performance goals of these web
applications. Today, middleware platforms for web applications al-
ready provide functions like monitoring, access control, and inter-
operability. Some of the middleware platforms also provide clus-
tering functionality. Middleware clustering technology integrates
multiple instances of the same application running on multiple ser-
ver machines so they appear to be a single virtual application. Mid-
dleware platforms use clustering technology to provide scalability,
high availability and load balancing.
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To change the amount of computing resources allocated to clus-
tered web applications requires a middleware with the ability of dy-
namically changing the size of each application cluster as well as
deciding which server machine each application instance of each
cluster will use. We assume that the middleware hosts multiple
clustered applications. Because of resource limitation, a given ser-
ver machine cannot run instances for all application clusters at the
same time. There may also be hardware or other limitations that
make a machine unsuitable for running some application clusters.

In this paper, we propose the design of and evaluate a middleware
clustering technology capable of dynamically allocating resources
to web applications through dynamic application instance place-
ment. We define application instance placement as the problem of
placing application instances on a given set of server machines to
satisfy the resource demand of each application cluster. Our mid-
dleware uses a placement controller mechanisms that dynamically
configures the size and placement of application instances while
obeying user-supplied constraints.

The controller places applications based on the available server
machine resources and the application demands. Each server ma-
chine has two resources, one load-dependent and one load-inde-
pendent. The usage of the load-dependent resource depends pri-
marily on the intensity of application load. The usage of the load-
independent resource does not strongly depend on the current in-
tensity of the application workload. Correspondingly, an applica-
tion has a load-dependent and a load-independent demand. In the
case of web applications, typical examples for load-dependent and
load-independent resources are CPU and memory, respectively.

The problem of application placement has been studied before [1,
2, 3, 4]. In [5] we have introduced a placement algorithm that im-
proves on the prior art in several aspects. (1) It allows multiple
types of resources to be managed, (2) it aims at maximizing satis-
fied application demand while minimizing placement changes com-
pared to the previous placement, and (3) it is efficient enough to be
applicable in online resource allocation. Although some of prior
techniques also consider these factors, none of these techniques ad-
dresses all factors simultaneously.

In this paper, we extend our prior work in two ways. First, we
modify the algorithm such that it produces application placement
that allows application load to be better balanced across server ma-
chines. To the best of our knowledge this objective has not been
investigated in prior solutions to the placement problem. However,
placements that allow load to be balanced across servers allow ap-
plications to perform better.

Second, we investigate two variants of the algorithm that im-
prove its effectiveness in maximizing the amount of satisfied de-
mand and minimizing the placement churn.

The paper is organized as follows. In Section 2 we introduce



the architecture of a workload management system in which our
controller is implemented. In Section 3 we formulate and present
the algorithm for the application placement problem. In Section 4
we evaluate placement techniques adopted by the controller. In
Section 5 we compare our approach with prior work on this subject.

2. SYSTEM DESCRIPTION

We have implemented the placement controller presented in this
paper as a part of middleware technology for managing the perfor-
mance of web applications [6, 7].

Web applications handle web requests and generate static or dy-
namic web content. In the case of J2EE, runtime components of
web applications include HTTP servers, servlet engines, Enterprise
Java Beans (EJB) containers and databases. Web administrators
deploy these runtime components on several or more server ma-
chines, forming a distributed computing environment. Web ap-
plication middleware presented in this paper manages applications
running on this distributed computing environment and allocates
resources to them in real-time to meet their demand.
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Figure 1: Management system architecture in a sample Web
infrastructure.

Figure 1 illustrates the typical architecture of web infrastructure.
We show three applications A, B and C deployed across two tiers
(Application Tier 1 and Application Tier 2). For example, in the
case of a J2EE application the first tier hosts servlets and EJBs
while the second tier hosts the database. In this example, the first
tier uses three different server machines while the second uses two
server machines. In this paper, we use the term node when referring
to a server machine. In a given tier, a particular application may run
on multiple nodes. We refer to the presence of an application on a
node as an application instance and we use the term application
cluster to indicate the set of all instances of the same application.
By application we mean a set of software entities that form a logical
web application unit. Thus, an application may involve multiple
servlets, multiple EJB modules, etc.

In our experience, a large enterprise web datacenter hosts many
different web applications deployed in clusters with a few tens to

several hundred application instances spread across a few to a hun-
dred nodes. In almost every case datacenter nodes do not have
enough capacity to have all deployed applications be running on
the node at the same time (in the case of J2EE applications memory
is the bottleneck, with each application instance requiring on aver-
age 1 — 2G'B of real memory to handle requests). Therefore web
administrator partitions applications across the available nodes. In
the example of Figure 1 we have the first tier hosting three appli-
cations with each node capable of hosting at most two instances of
each application. We use a placement matrix to show where appli-
cation instances run. Each element I, ,, of this matrix represents
the number of instances of application m running on node n.

Web-application middleware environments typically use layer 7
routers to deliver web requests to applications. The routers map
web requests to web applications and send the web requests to a
specific instance of the target web application. The layer 7 routers
use load balancing techniques and affinity rules to select target
instances. The router may also implement admission and flow
control. A router equipped with this functionality can control the
amount of backend resources used by the different types of web
requests. However, its ability to increase the amount of resources
used by a given type of web requests is limited by the number of
application instances targeted by this type of web requests as well
as by the capacity of the nodes where the application instances run.
For example, the placement presented in Fig. 1 allows the request
router to handle a big amount of web request load for application A
but much smaller load for applications B and C. When application
C experiences a spike of web requests while the workload of ap-
plication A decreases, the web requests destined for application C
cannot use more capacity in Tier 1 than that of the node on which
application C' is running. Depending on the control logic of the re-
quest router, application C' will experience either high service time
in Tier 1, long waiting time in the routing layer, or high request
rejection rate. At the same time, spare capacity in the system will
remain on the remaining nodes in Tier 1.

To adapt to such workload changes, we must modify the appli-
cation placement dynamically in reaction to the changing load. In
the considered scenario, a desired system response to the workload
shift would be to start new instances of application C' on nodes 2-1
and 3-1 and stop instances of application A on these nodes (to make
room for the new instances). When we deal with a large number of
applications with multiple resource requirements and a large num-
ber of nodes with heterogeneous capacities, deciding on the best
application placement for a given workload is non-trivial.

In this paper we formulate the placement problem as an instance
of a two-dimensional packing problem and we study several algo-
rithms for solving it. We also describe a placement controller that
runs on our middleware and dynamically changes the size of appli-
cation clusters to respond to dynamic load variations.

2.1 Application placement architecture

An application instance may run on any node that matches appli-
cation requirements. In J2EE domain, these properties concern fea-
tures that cannot be changed using J2EE runtime environment, such
as network connectivity, bandwidth, the presence of non-J2EE soft-
ware libraries, etc. In our system, an application is deployed to all
nodes that match its properties. Application deployment involves
creating persistent configuration of an application server that hosts
the application, which includes the definition and configuration of
J2EE resources and parameters. We configure application place-
ment by starting and stopping the application servers as needed.
When an application instance is stopped on a node it does not con-
sume any of the node’s runtime resources.



Using server start and stop operations to control the number and
placement of application instances provides a relatively light-weight
resource allocation mechanism because it does not require a po-
tentially time-consuming application deployment, server configu-
ration, distribution of configuration files, etc. A possible disad-
vantage of such an approach is its somewhat limited flexibility as
it does not allow arbitrary combinations of applications to be de-
ployed and executed on application servers.

The controller described in this paper requires the managed sys-
tem to provide certain functionality. When this functionality is
present, the controller is also suitable for the management of other
than Web applications. Similarly, it could use other control mech-
anisms than application instance starts and stops. For example, in
the presence of virtualization technology [8, 9], we could start and
stop virtual partitions as well. The list of the required functions
includes the following items.

e Placement sensor — we require that for each application there
exist a mechanism that allows us to obtain the up-to-date in-
formation about the location of its instances.

e Placement effecter — for each application, we need a mech-
anism that allows us to start or stop its instance on a given
node.

e Request router — the request dispatching mechanism must
transparently adjust to placement changes.

e Application demand estimators — the system must provide
online estimates of the current application demand for all
managed resources.

2.2 Characterizing application requirements

In the management system described in this section, the size and
placement of application clusters is determined automatically based
on application requirements and node capacities. Application re-
quirements are characterized as load-independent and load-depen-
dent ones.

Load-independent requirements describe resources needed to run
an application on an application server, which are used regardless
of the offered load. Examples of such requirements are memory,
communication channels, and storage. In this paper, we focus on
a single resource — memory. Although, J2EE applications also use
other resources in a load-independent manner, we have observed
that it is memory that is the most frequent bottleneck resource in
J2EE applications. We have classified memory as a load-indepen-
dent resource since a significant amount of it is consumed by a
running application instance even if it receives no load. In addi-
tion, memory consumption is frequently related to prior applica-
tion usage rather than to its current load. For example, even in the
presence of low load, memory consumption may be high as a re-
sult of caching. Thus, although the actual memory consumption
also depends on the application load, characterizing memory usage
while taking the load-dependent factor into account is extremely
difficult. It is more reasonable to estimate the upper limit on the
overall memory utilization and treat it as a load-independent mem-
ory requirement. Our system includes a component that dynami-
cally computes this upper limit based on a time-series of memory
usage by an application. This component is not described in this
paper. Consequently, in this paper we assume that an estimate of
memory requirements is available.

Load-dependent requirements correspond to resources whose con-
sumption depends on the offered load. Examples of such require-
ments are current or projected request rate, CPU cycles/sec, disk

activity, and number of execution threads. In this paper, we fo-
cus on CPU as a resource that is consumed in a load-dependent
manner as it is the most frequent bottleneck resource in J2EE ap-
plications. CPU demand is expressed as the number of CPU cycles
per second that must be available to an application. Computing
this estimate is a non-trivial problem, which is not discussed in this
paper. However, our system computes such an estimate online. It
includes a component, an application profiler [6] that helps us in
this process. The application profiler computes the number of CPU
cycles consumed by a request of an application. This per-request
CPU demand of an application is then multiplied by the required re-
quest throughput for the application, whose estimation depends on
admission or flow control mechanism used by the request router.

e If no admission or flow control is implemented by the router,
then throughput prediction may be based on time-series of
prior throughput observed at application servers.

e If either admission or flow control is implemented by the
request router, then the prediction is made based on prior
workload characteristics observed at the request router while
taking into account the control logic of the request router.
In fact, a request router provided by our system implements
SLA driven flow control [10]. We use workload observa-
tions at the router and its optimization algorithm to estimate
application throughput that must be delivered by the system
to maximize the overall system utility score.

Correspondingly, node capacity is characterized using load-inde-
pendent and load-dependent values that describe the amount of re-
sources used to host an application on a node and the available
capacity to process requests of applications. Similar to application
requirements, we focus on the size of memory and the speed of
CPU as load-independent and load-dependent capacity measures.

2.3 System architecture

The dynamic control of the size and placement of dynamic clus-
ters is realized by the system depicted in Figure 2.
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Figure 2: Architecture of the placement management compo-
nent

At the heart of the system there is Placement Controller which
computes a new application placement based on load-independent
and load-dependent resource demand estimates for all applications.
These estimates are obtained online using Application Demand Es-
timators.

In each control cycle, the Placement Controller computes a new
placement matrix with the objective to satisfy the entire load-de-
pendent demand of applications without exceeding load-dependent



and load-independent resource capacities of the managed nodes. In
addition, the Placement Controller works with the following con-
siderations:

e Each start and stop operation is potentially costly in terms of
resource consumption and the impact on the running applica-
tions. Depending on the processor speed it may take between
tens of seconds to several minutes. The starting or stopping
process also consumes a significant fraction of CPU while
it occurs. Therefore, the Placement Controller aims at min-
imizing the number of placement changes compared to the
placement currently in effect.

e Oftentimes, more than one placement exists with the same
amount of satisfied demand and the number of changes com-
pared to the previous placement. Yet, these placements may
differ with respect to how effectively they utilize available
resources. Placements that tend to pack a lot of load on a few
nodes adversely affect performance and high-availability of
applications. Therefore, Placement Controller chooses con-
figurations that allow load to be as evenly distributed across
all nodes as possible.

e A user may want to prevent some applications from being
managed by the Placement Controller by putting them in un-
managed mode. Applications in unmanaged mode cannot be
started or stopped, but their load must be taken into account
when computing placement for all other applications.

e Nodes may differ with respect to their ability to host a partic-
ular application. Placement Controller must observe alloca-
tion restrictions introduced as a result of this heterogeneity.

Once placement is computed by the Placement Controller, it is
effected by the Placement Executor, which implements the place-
ment by performing individual start and stop operations on the ap-
plication servers. As each start and stop operation disrupts the
system, the Placement Executor orders the individual placement
changes in a manner that minimizes the disruption to the running
applications. Placement Executor ensures that:

e No more than one application instance is being started or
stopped on any node at a time.

e [oad-independent capacity constraint is observed during place-

ment changes. If it is necessary to temporarily violate a
node’s load-independent capacity constraint, the utilized node-
independent capacity exceeds the available capacity by no
more than one instance.

e At least one instance of each application is running at all
times.

The Placement Executor delays the start and stop actions that
would violate the above policies given actions that are already in
progress. It monitors the progress of the initiated start and stop
actions and reevaluates the actions that have been delayed. As soon
as it is allowed by the policies, the Placement Executor initiates the
delayed actions.

The Placement Executor implements placement changes using
Placement Effecter. 1t monitors the status of the initiated changes
and keeps track of placement changes effected by other managers
or a user using the Placement Sensor.

The system we describe above is highly dynamic allowing var-
ious types of configuration changes, such as adding or removing

a node, creating and destroying an application cluster, or chang-
ing node or cluster properties to be accommodated at runtime. In
addition, all components are highly available.

This paper does not attempt to present all components of the
system described in this section, although all of them have been
implemented as a part of our project. We focus on the functionality
of Placement Controller and in the following sections we discuss it
in detail.

3. PLACEMENT CONTROLLER

The Placement Controller drives a control loop within which a
new placement is computed and implemented. The execution dia-
gram of the control loop is shown in Figure 3. The rest of this sec-
tion describes the optimization problem solved by the Placement
Controller.
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Figure 3: Placement control loop

3.1 Problem Statement

We formulate the placement problem as follows. We are given a
set of nodes, AV, and write n for a member of that set. We are also
given a set of applications M, and write m for a member of that
set. With each node n we associate its load-independent and load-
dependent capacities, I',, and €2,,, which correspond to the node’s
memory and CPU power, respectively. With each application, we
associate its load-independent and load dependent demand values,
Ym and wm,, which correspond to the application’s memory and
CPU requirements, respectively. We assume that ,,, is the amount
of memory consumed by an instance of application m, which is
independent of offered load. The CPU-speed requirements of the
application, w,,, depend on offered load.

With each application we also associate a boolean flag managed,,,
indicating whether instances of the application can be started or
stopped by the placement controller. Also, with each application
and each node we associate the allocation restriction flag, R, n
indicating whether an instance of the application m may be started
on node n.

The placement problem is to find matrix I, where I, , is 1 if
an instance of application m is running on node n and 0 otherwise,
such that (1) allocation restrictions are observed, (2) load-indepen-
dent capacity limits are observed, and (3) it is possible to allocate
load of all applications to instances without exceeding load-depen-
dent capacity limits. If a previous placement matrix I, ,, exists,
we also want to minimize the number of changes between the old
and the new matrix. If it is not possible to satisfy the entire demand
of applications, we aim at maximizing the amount of satisfied de-
mand. Finally, among all placements that maximize the amount of



satisfied demand, we want to find one that allows the load allocated
to nodes to be balanced.

Since we are dealing with multiple optimization objectives, we
prioritize them in the formal statement of the problem as follows.

Let L be a matrix of real valued load placement and p = L@im”
(i) maxd > Lmn
. Lm,n
(iii) min Zn(iz’"gn o p)?
s.t:
Vo> Imnym < T )
VoD Lo < O (3)
Vim Z Lm,n < wm (4)
vmvnjm,n =0= Lm,n =0 (5)
Vi VnRm,n = false = I, =0 (6)
Vmmanaged,, = false = Volmn = I p @)

The optimization problem solved by the Placement Controller is
a variant of the Class Constrained Multiple-Knapsack Problem [11]
(CCMKP) and differs from prior formulations of this problem mainly
in that it also minimizes placement changes. Since this problem is
NP-hard, the Placement Controller adopts a heuristic, which is pre-
sented in Section 3.2.

The Placement Controller avoids solving the optimization prob-
lem if the current placement can serve the new demand. This is
achieved by first testing whether there exists a load-distribution ma-
trix for placement matrix I that satisfies constraints expressed by
Eqns. (2)-(5) (function canSolve in Figure 3). This test forms a
familiar linear-programming problem, for which a number of effi-
cient solutions may be found in literature [12, 13].

If the current placement can serve the new demand, after wait-
ing &t, the Placement Controller proceeds to the next control cy-
cle. Otherwise, the new placement is computed and implemented.
After placement is changed, the Placement Controller does not re-
sume the new cycle for AT > §t. The increased timeout provides
sufficient time for the system to adjust to the new placement and
reduces the number of placement changes. Both dt and AT are
configurable parameters with 1 minute and 15 minutes as their de-
fault values.

3.2 Placement Algorithm

In this section we present an outline of a heuristic algorithm used
by the Placement Controller to solve the placement problem.

The basic algorithm consists of three parts: the residual place-
ment, incremental placement, and rebalancing placement. The resi-
dual placement is used at the system start-up, when there is no prior
placement, and as a subroutine of the incremental placement. The
rebalancing placement is invoked at the end of incremental place-
ment, once the maximizing placement is found, to modify it in a
way that allows for a better distribution of load-dependent demand.

3.2.1 Residual placement

Residual placement is based on the following intuitive rule. If we
look at allocated memory as the cost of allocating an application’s

CPU demand, it is wise to first place an application with the highest
memory requirement compared to its CPU demand. This way, we
can maximize the chances that this application will be placed on the
fewest possible number of nodes, and thus the cost of satisfying its
CPU demand will be the lowest. When choosing a node on which
to place an application, it is reasonable to first search for a node
with density similar to the density of the application. It is not wise
to load applications with high density on a low density server, since
we would be likely to reach the processing capacity constraint and
leave a lot of memory unused on that server. Similarly, if low den-
sity applications are loaded on high density servers, we would be
likely to reach the server’s memory constraint without using much
of the processing capacity.

In the residual placement, nodes are ordered by the increasing
value of their densities, Q2 /T, and applications are ordered by
increasing densities wy, /vn. The algorithm starts with the lowest
density application m and looks for the lowest density node that
can fit the application, i.e., a node n such that v, < I'y, and Ry, n
is true. If the node satisfies the entire load-dependent capacity of
m,i.e., 0n > wn, then the application is removed from the applica-
tion list and the node is added back to the ordered node list after its
load-dependent capacity is decreased by wy,. Otherwise, the entire
node’s available load-dependent capacity is allocated to the appli-
cation, the node is removed from the node list, and the algorithm
searches for another node on which to place the residual demand of
the application. The algorithm proceeds until the demand of all ap-
plications is assigned to nodes, or no more assignments are possible
given nodes’ capacities. The computational complexity of residual
placement is O(|N||M]).

3.2.2 Incremental placement

The incremental placement combines the residual placement with
the maximum flow computation to solve the placement problem
while minimizing the number of placement changes. It derives the
new placement I from the previous placement /™ incrementally as
follows.

In a given iteration of the algorithm, we first check of the cur-
rent placement, I™ can satisfy the demand. This is done by solv-
ing the maximum bipartite flow problem represented by Eqns. (1-
i) and (3)-(5). If a solution exists, i.e., maxy, > Lmn =
> Wm, the algorithm completes. Otherwise, we are left with
some residual demand for each application that could not be sat-
isfied given the current placement, w,, — Zn Ly,n. For some
applications this residual demand may be zero. We are also left
with some residual load-dependent and load-independent capacity
on each server, Qn, — > Lmnand 'y — 37 Lo nym. We ap-
ply the algorithm from Section 3.2.1 to find an allocation of the
residuals. If the residual placement succeeds in finding a feasible
allocation, we set I to the resulting allocation and exit. Otherwise,
we remove the assignment with the lowest density, Ly, » /m from
I™ and proceed to the next iteration.

Observe, that the number of iterations performed by the incre-
mental algorithms depends on how hard it is to find the satisfying
placement. The problem is hard to solve if the total demand of
applications compared to the total available capacity is high, or the
total memory requirement of applications approaches total memory
available on nodes. The more difficult the problem is to solve, the
longer it takes for the algorithm to complete. The upper bound on
the number of iterations is the number of assignments in the current
placement, ie., > > I} ..

When applications in unmanaged mode are present, in the first
iteration of the algorithm we adopt a slightly modified procedure.
We first find the maximum load allocation for applications in un-



managed mode. Then we subtract the capacity utilized by them
from the total available capacity. If any residual demand of these
applications remains, it is ignored; the unmanaged applications are
removed from further consideration and the algorithm proceeds ac-
cording to the above procedure.

3.2.3 Rebalancing placement

The last phase of the placement algorithm aims at modifying the
solution proposed by the incremental algorithm such that a better
load balancing across nodes is achieved. This phase begins with old
and new placement matrices I™ and I and load distribution matrix
L. We first compute the amount of demand satisfied by L for all
applications: Vmwj;b => " Ly, . Then we try to find another
load distribution matrix L™ that satisfies the same demand for all
dynamic clusters and that perfectly balances the load assigned to
nodes. We find L™ by solving the following optimization problem:

min Y| L o vhere p = 22 (g)
— — m,n nis Zn Qn
S.t:
Vi) L < Q ©)
Vi Y L = wih (10)
Vi Vnlmn =0= L} ,, =0 an

The above problem may be easily transformed into a min-cost
flow problem in a bipartite flow network for which a number of
polynomial time algorithms exist [13]. Note that if there exists
a load-distribution that achieves the perfect balance of node uti-
lization (utilization of all nodes equal to p), then the above op-
timization will find such a load-distribution. When perfect load-
distribution cannot be found, the load-distribution found by the op-
timization problem includes some nodes loaded above p as a uti-
lization threshold and some nodes loaded below p. The point is to
change assignments in such a way so as to allow shifting some load
from overloaded nodes to underloaded nodes. Only assignments in
I — I may be moved. Assignments that overlap with prior place-
ment cannot be moved as this could increase placement churn.

The rebalancing placement proceeds from the most overloaded
node and attempts to move some of its instances to one or more
underloaded nodes. We always choose an instance whose removal
brings the node utilization closest to p. This procedure continues
until all nodes are balanced or no more useful changes can be done.

3.3 Algorithm variants

When the algorithm described in the previous section is applied
to the system in which load-dependent demand of applications is
high compared to the total available load-dependent capacity, its
execution time increases, and the ability to find the optimal place-
ment decreases. We have observed that the same algorithm applied
to a demand that is reduced to a certain percentage of the total avail-
able capacity not only executes faster, but is also more likely to
produce placement that satisfies the entire real demand.

Another factor that impacts the effectiveness of the algorithm is
the content of the previous placement matrix; the same algorithm
applied to different prior placement matrices produces different re-
sults.

Taking these observations into account, we have implemented
three simple variants of the placement algorithm.

e Basic algorithm (BA) - the algorithm as described in the pre-
vious section

Load-reduction algorithm (LRA) - basic algorithm executed
with modified input; whenever total application demand ex-
ceeds 90% of the total capacity we proportionately reduce the
demand of each application so as to bring the total demand
down to 90% of the total available capacity

Multiple-runs algorithm (MRA) - if placement matrix pro-
duced by the basic algorithm does not satisfy the entire de-
mand, we execute the basic algorithm one more time using
the output of the first execution as prior-placement matrix.
We repeat this process until no more improvement in the
amount of satisfied demand is observed but no more that 10
times.

4. SIMULATION RESULTS

In this section we study the proposed placement algorithms via
simulation. We investigate the algorithms in three dimentions: the
effectiveness in satisfying the demand, ability to achieve balanced
load distribution, and computational complexity.

4.1 Effectiveness of the algorithms

In the simulation study, we vary the size of the problem (by vary-
ing the number of nodes and dynamic clusters) and the hardness of
the placement problem that is being solved.

4.1.1 Defining problem hardness

The hardness of the placement problem is affected by three fac-
tors: memory load factor, CPU load factor, and workload variabil-
ity factor. When we ignore minimum/maximum instances poli-
cies, vertical stacking, and allocation restrictions, we can define
the hardness factors as follows.

e Let 7 and I be the average load-independent demand and ca-
pacity values, respectively. The expected maximum number
of applications that may be hosted on a group of N nodes
is %N. The memory load factor is defined as MLF = %
where M is the number of applications.

e The CPU load factor is defined as CLF = Zﬂbﬁ, where
Q=3 Q.

e The placement problem is harder to solve if the current load-
dependent demand distribution differs significantly from the
distribution at the time of last placement computation. Let
w(t) be a random variable of load-dependent demand of an
application at time ¢. Suppose that we know the maximum
value of CLF. The maximum change of load-dependent de-
mand distribution occurs, for example, when in each con-
trol cycle the entire demand in the system, CLF 2, is con-
tributed by just one, each time different application. The
average maximum load-dependent demand change is then
CLIVFI £ Given the actual probability distribution function of
w(t), we measure workload variability by dividing the ex-
pected per-application absolute difference between load-de-
pendent demand values in the current and previous cycles by
the average maximum difference, i.e., using workload vari-
ability factor WVF = E(Jw(t + 1) — w(t)|)/<EL < 1.
When WVF increases, the placement algorithm results in
more placement changes. When WVF = 0, after the initial
placement is found no placement changes are ever needed.




4.1.2 Varying the problem hardness

In the experimental design, we vary the number of nodes and dy-
namic clusters. Load independent capacity and demand values are
uniformly distributed over sets {1, 2, 3,4} and {0.4,0.8,1.2,1.6},
respectively with average values of I' = 2.5 and ¥ = 1, respec-
tively. Load-dependent capacity is the same for all nodes and is
equal to 100.

e To achieve the memory load factor of MLF given the number
of nodes N, for each trial we vary MLF between 40% and
100%, and set M to 2.5 x MLF x N.

e To control the CPU load factor CLF we generate load-de-
pendent demand randomly and normalize it such that its total
amount is equal to CLF2. We vary CLF between 90% and
99%.

e We focus on only one way to generate load-dependent de-
mand. In our experiments, w(t) is uniformly distributed over
the entire range independently of w(¢ — 1). This technique
yields the workload variability factor WVF = % and is harsh
on the algorithm. In reality, w(t) is expected not to differ
very much from w(t — 1) over short time intervals.

4.1.3 Evaluation criteria

We compare the algorithm variants based on the following crite-
ria: (1) the percentage of satisfied demand, (2) the number of place-
ment changes, and (3) execution time. These measurements are
collected using 100 experiments. In each experiment we randomly
generate system configuration (i.e., load-independent demand and
capacity values), and then perform a sequence of 11 placement
computations including one initial placement. In each computa-
tion, a new load-dependent demand vector is generated.

For each computed placement, the percentage of satisfied de-
mand is calculated by first finding the load-distribution matrix L
that maximizes the amount of satisfied demand given the computed

placement, as defined through Eqns. (3)-(5). Then we calculate
YmnLm,n

m ¥m

4.1.4 Results

In Figs. 4, 5, and 6, we present experimental results for the frac-
tion of demand satisfied, number of placement changes, and execu-
tion time, respectively. The results are presented with 95% confi-
dence intervals. When memory load factor is high, e.g., MLF=100%,
the algorithm is memory-constrained and regardless of the CPU
load factor it usually fails to place all applications and consequently
does not meet CPU demand. As shown in Fig. 4, in a very memory-
and CPU constrained scenario of MLF=100% and CPU=99%, the

Multiple-runs Algorithm (MRA) and Load-reduction Algorithm (LA)

appear to perform somewhat better than the Basic Algorithm (BA),
however, all algorithms fail to meet the entire load-dependent de-
mand. Also, they generate roughly the same (huge) number of
placement changes (Fig. 5). From the perspective of execution
time, extremely resource-constrained problems are particularly harsh
on the Multiple-runs Algorithm because they trigger multiple algo-
rithm iterations thereby elevating the placement computation time
(Fig. 6).

However, when the memory constraint is relaxed to MLF=60%,
the placement problem becomes easier to solve and the differences
between algorithms more obvious. As shown in Fig. 4, MRA sat-
isfies more demand than LRA and BA. This result is achieved with
the same number of placement changes as with BA. LRA performs
worse than MRA in terms of satisfying the demand but it proves

better in reducing the placement churn (Figs. 4 and 5). The im-
proved effectiveness of MRA comes at the price of multiplied ex-
ecution time compared to LRA and BA. Our experiments have re-
vealed that it not necessary to reduce MLF to as low as 60%. We
have observed similar results, though not as prominent, at MLF=80%
as well.

When memory and CPU constraints are further reduced (to say
MLF=60% and CLF=90%), the placement problem becomes easy
to solve and all algorithms perform equally well. Figs. 4-6 show
the results obtained with MLF=40% and CLF=90%.
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4.2 Effectiveness of load distribution

In this section we evaluate the effectiveness of rebalancing place-
ment applied to MRA. For this purpose, we compare two versions
of this algorithm: with and without the rebalancing placement phase.
We compare the algorithms while looking at load distribution in the
initial placement, which starts with the empty set of placement as-
signments, and at the average of ten subsequent placements, which
start with a non-empty set of prior placement assignments. Distin-
guishing these two cases is important as in the initial placement we
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typically have greater freedom in replacing instances than in sub-
sequent placements, where only a subset of all instances is eligible
for being moved.

4.2.1 Evaluation criterion

To assess the effectiveness of rebalancing placement we must
consider that load distribution is performed by a router. It is the
effectiveness of the router that ultimately affects the evenness of
the load distribution. In this section, we assume a router that can
perfectly balance load within limits imposed by the placement in
effect. To obtain load distribution that is achieved by such an ideal
router, we need to solve the optimization problem expressed by
Eqns. (1-iii) and (3)-(5). This non-linear problem may be quite
easily solved as a sequence of at most N problems defined by
Eqns. (8)-(11), which are straightforward to linearize.

Once the most balanced distribution is known, we must measure
the amount of inequality in the distribution. As a good candidate
of such a measure, we consider the Gini index [14] (Gini), which
is defined as a ratio of the area between the line of perfect (uni-
form) distribution (45 degree line) and the Lorenz curve of the ac-
tual distribution to the total area below the 45-degree line. This
coefficient is most frequently used as a measure of income inequal-
ity. The Gini index of O indicates perfect equality. The Gini index
approaches one to represent extreme imbalance.

4.2.2 Experiment design

We evaluate the effectiveness of rebalancing placement in a net-
work composed of 10 nodes with load-independent demand uni-
formly distributed over a set {1,2,3,4}.. We compute placement
for a system with 10, 30, and 50 applications with identical mem-
ory requirements of 0.4. This gives us MLF values of 16%, 48%,
and 80%, respectively. We vary CLF from 5% to 95%.

4.2.3 Results

Figs. 7-9 show initial and average Gini indices for MLF values
of 16%, 48%, and 80%, respectively.

Our study reveals that the potential improvement in load bal-
ance depends on the number of degrees of freedom the rebalancing
placement has while moving instances. For low values of MLF, we
deal with only a small number of instances that can be moved with
relatively high fraction of total demand allocated to each of them.
For high values of MLF, we deal with many instances with poten-
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tially small fraction of total load allocated to them but we have little
extra space to move these instances to. In addition, high MLF im-
plies that load allocated to each instance is also high. Oftentimes,
we can only improve balance by creating an additional instance for
an application and distributing the application load across the in-
creased number of instances. However, doing so would result in
increasing the disruption to the system and is not considered by the
rebalancing algorithm even when applied to initial placement.

Our study also shows that initial placement typically has a much
better potential for distributing load than subsequent placements.
This observation concerns both the algorithm with rebalancing and
the one without it. This difference results from the way we priori-
tized the objectives: we effect the fewest number of changes to the
previous placement that are necessary to satisfy the entire demand
even though the resultant load distribution may be unbalanced.

Our study also concerns the analysis of rebalancing cost, which
may be quantified as an increase in placement time. However, our
study shows that this cost is negligible. In a system of 10 nodes
and 30 applications, the rebalancing phase takes less than 10 msec
and is invoked only when placement changes are suggested by the
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algorithm. In configurations where placement changes are frequent
(for example with high CLF), the rebalancing time is only a small
fraction of the overall execution time.

Placement rebalancing affects not only the placement time, but
also the number of placement changes. Even though our rebalanc-
ing algorithm does not directly introduce any additional placement
changes, it modifies the input to the subsequent control cycle. This
modified input may lead to a placement with a higher or lower num-
ber of placement changes than if no rebalancing was performed.
However, in our study we could not find any statistically significant
difference in the average number of placement changes between the
two algorithms.

S. RELATED WORK

The problem of dynamically allocating server resources to ap-
plications has been extensively studied. A popular approach to this
problem relies on dynamic server provisioning in which full server
machines are allocated to applications (and provisioned for them)
as needed [15]. This approach does not allow applications to over-
lap on nodes (unless several applications are grouped and managed
as one). The solution proposed in this paper allows multiple ap-
plications to share the same server thereby achieving finer granu-
larity of allocation and better utilization of resources compared to
dedicated-server approaches. Chandra et al. [16] have argued that
such fine-grained resource allocation at small time-scales can lead
to substantial multiplexing gains.

The problem of application placement in a shared cluster of servers
has been investigated by Urgaonkar at el. [1]. In their formula-
tion, instances of an application that execute on different hardware
servers, which are called capsules, are managed independently of
one another. Capsule resource requirements are estimated indepen-
dently based on prior resource usage by a capsule. Then capsules
are packed on servers in such a way so as not to exceed each ser-
ver’s capacity. Independent packing of capsules is a rather inflex-
ible mechanism of application placement as it does not allow the
number of capsules serving a given application to be changed or
the load to be shifted from one capsule to another. Another issue
with the approach presented in [1] is that capsule requirements are
characterized using a single value that can represent either CPU or
network bandwidth requirements. The approach introduced in this
paper allows applications to be placed based also on their memory

requirements. Finally, the technique in [1] ignores previous capsule
placement while finding the new placement. It is therefore unsuit-
able for frequent online placement modifications, which is a goal
of the technique described in this paper.

In the work of Ardagna et al. [4], the placement problem aims
at minimizing the costs of running the server machines: each ma-
chine has a cost, and it is paid if any tier of any application is placed
there. This objective is different from ours. Unlike Ardagna et al.,
we must be concerned with the possibility that some demands may
not be met and therefore try to maximize the amount of demand that
can be satisfied. On the other hand, our approach does not consider
the cost of running the server machines. There are more differences
between our problem statements: they accept co-residency prohibi-
tions of a certain form; our formulation does not have this feature;
our formulation includes a desire to minimize changes from an ex-
isting placement, while their formulation has no such concern; they
are concerned with a larger resource allocation problem that also in-
cludes routing and scheduling, while we solve placement problem
independently.

Wolf and Yu in [2] propose an algorithm that maps Web sites
to cluster servers allowing an overlap between Web-site clusters.
The algorithm proposed in [2] attempts to minimize the number of
placement changes by exploring new configurations starting from
those that differ no more than one Web-site-to-server assignment
from the current placement and limiting the total number of place-
ment changes to a configured number. Unlike the technique pro-
posed in this paper, Wolf et al. [2] focus on a single-resource ca-
pacity constraints. Moreover, their optimization technique is in-
tended to be used infrequently (about once a week) and it may be
executed on a dedicated server. Hence, there is no concern about
its computational overhead. In the problem discussed in this paper,
the application placement is re-evaluated frequently (in the order
of minutes) and the computation is co-located with applications.
Therefore, its computational overhead must be very small.

Our work can be also compared to the work on Cluster Reserves
by Aron et al. [3], where an application and application instance
considered in our paper correspond to a service class and a cluster
reserve in [3]. The resource allocation problem solved in [3] is to
compute the desired percentage of each node’s capacity to be allo-
cated to each service class based on overall cluster utilization ratios
desired for each service class. This problem differs from the prob-
lem solved in our paper in several aspects. First, we aim at finding
the best placement of application instances on nodes rather than
an optimal allocation of each node’s capacity. Our technique does
compute such an allocation as a side effect. However, this alloca-
tion is not enforced, meaning that we only compute it to determine
if it is feasible to allocate applications’ demand to nodes with a
given placement. The actual resource allocation is determined by
the request router at a much finer time scale, which improves the
system responsiveness to workload changes. Second, we aim at sat-
isfying the most of the offered demand rather than keeping the rel-
ative resource allocation as close to the goal as possible. Third, our
problem takes into account the limited memory capacity of nodes,
which constraints the number of application instances that may be
placed on each of them. Finally, the objectives of our optimization
problem include minimizing changes from the previous allocation,
which is not the case in [3].

The problem of optimally placing replicas of objects on servers,
constrained by object and server sizes as well as capacity to sat-
isfy a fluctuating demand for objects, has appeared in a number
of fields related to distributed computing. In managing video-on-
demand systems, replicas of movies are placed on storage devices
and streamed by video servers to a dynamic set of clients with a



highly skewed movie selection distribution. The goal is to maxi-
mize the number of admitted video stream requests. Several movie
placement and video stream migration policies have been studied.
A disk load balancing criterion which combines a static component
and a dynamic component is described in [17]. The static compo-
nent decides the number of copies needed for each movie by first
solving an apportionment problem and then solving the problem of
heuristically assigning the copies onto storage groups to limit the
number of assignment changes. The dynamic component solves
a discrete class-constrained resource allocation problem for opti-
mal load balancing, and then introduces an algorithm for dynami-
cally shifting the load among servers (i.e. migrating existing video
streams). A placement algorithm for balancing the load and stor-
age in multimedia systems is described in [18]. The algorithm also
minimizes the blocking probability of new requests.

In the area of parallel and grid computing, several object place-
ment strategies (or, meta-scheduling strategies) have been investi-
gated [19, 20]. Communication overhead among objects placed on
various machines in a heterogeneous distributed computing envi-
ronment plays an important role in the object placement strategy. A
related problem is that of replica placement in adaptive content dis-
tribution networks [21, 20]. There the problem is to optimally repli-
cate objects on nodes with finite storage capacities so that clients
fetching objects traverse a minimum average number of nodes in
such a network. The problem is shown to be NP-complete and sev-
eral heuristics have been studied, especially distributed algorithms.

Similar problems have been studied in theoretical optimization
literature. The special case of our problem with uniform memory
requirements was studied in [22, 23] where some approximation
algorithms were suggested. Related optimization problems include
bin packing, multiple knapsack and multi-dimensional knapsack
problems [24].

6. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the design of and evaluate a middleware
clustering technology capable of dynamically allocating resources
to web applications through dynamic application instance place-
ment. We define application instance placement as the problem of
placing application instances on a given set of server machines to
satisfy the resource demand of each application cluster. We intro-
duce a placement controller mechanism that dynamically config-
ures the size and placement of application instances while obeying
to user-defined policies. We introduce a placement algorithm that
can compute placement obeying load-dependent and load-indepen-
dent capacity constraints. The algorithm produces a placement that
limits the number of placement changes and allows load to be bet-
ter balanced across nodes. In the experimental study we evaluate
the proposed algorithm and its variants with respect to their ability
to satisfy the application demand, reduce the number of placement
changes, and evenly distribute load.

Our work can be improved in a number of ways. First, our algo-
rithm does not explicitly model a cost of a placement change. We
only assume that this cost is high and therefore worth minimizing.
A possibly better approach could model the impact of a placement
change on the performance of applications. Instead of minimizing
cost, it would attempt to maximize the overall system utility. This
new approach would be particularly suitable when application start
or stop mechanism is a light-weight one, e.g., with the usage of
OS-level virtualization technology.

Second, we do not prioritize applications. If the entire demand
cannot be satisfied, some applications will be affected either by
their increased execution time, or increased waiting time, or in-
creased rejection rate. We do not attempt to control which applica-

tions are affected this way.

Third, our rebalancing technique aims at equalizing CPU uti-
lization across nodes. However, with heterogeneous nodes, better
application performance may be achieved if response times of an
application on different nodes are equalized instead. Our technique
does not model or manage response times as a function of node
utilization.
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