
Safeguard against Unicode Attacks: Generation and
Applications of UC-SimList

Anthony Y. Fu Wan Zhang Xiaotie Deng Liu Wenyin
Department of Computer Science, City University of Hong Kong, Hong Kong

anthony@cs.cityu.edu.hk, {wanzhang, csdeng, csliuwy}@cityu.edu.hk

ABSTRACT
A severe potential security problem in utilization of Unicode in
the Web is identified, which is resulted from the fact that there are
many similar characters in the Unicode Character Set (UCS). The
foundation of our solution relies on evaluating the similarity of
characters in UCS. We develop a solution bsed on the renowned
Kernel Density Estimation (KDE) method to establish such a
Unicode Similarity List (UC-SimList).

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General –
Security and protection.

General Terms
Security, Legal Aspects, and Verification.

Keywords
Unicode, Phishing, and Secure Web Identity.

1. UNICODE ATTACKS
With the popularity of the Internet, people from various
countries/regions/cultures contribute to the information pool on
the Web, and we can find most of the natural languages in the
world appearing on the Web. The biggest cornerstone of making
these characters from different languages possible relies on the
utilization of Unicode. The Universal Character Set (UCS) is a
repertoire using Unicode for all characters we may use. The most
popular version of UCS uses a 16 bit number to represent a
character code. There are a lot of visually similar characters
coexisting in the UCS.

The possibility of using similar characters to generate fake domain
name using national alphabets is firstly reported in [4] and named
Homograph Attack. This is a general concept. Our efforts focus on
the survey of UCS which is the most populated character set for
the internationalization of Web information, thus we would like to
give it a more specific name, Unicode Attack. The Unicode Attack
is more than just faking domain name. We classify possible
attacks into three categories: (1) Spamming Attack: malicious
people (spammers) may create numerous spams while keeping the
appearance of the original email. (2) Phishing Attack: malicious
people (phishers) could use visually similar characters to mimic a
real Internationalized Resource Identifier (IRI) [3] [5]. Another
possibility is that an original Webpage could be mimicked by
similar characters such that certain existing Anti-Phishing systems
(e.g., [6]) would fail to catch this kind of attack because they must

find sensitive word(s) in emails or webpages before actual
comparison. (3) Web Identity Faking/Attack: malicious people
(pretenders) may use similar user names to pretend another user’s
identity. Many Web based systems (Website, Email, Instant
Message, Blog, Wiki, etc.) utilize text string to represent the user
names. There will be no problem if only ASCII characters are
permitted to use as a user name. However, if Unicode strings are
allowed to represent user names, the system is vulnerable to such
attack, especially when the user name is the only way for users to
identify each other, and malicious people may successfully gain
the victims’ trust.

e b a y
Original String 0065 0062 0061 0079

ｅ b ａ у
Fake String1 FF45 0062 FF41 0443

ｅ ｂ a y
Fake String2 FF45 FF42 0061 0079

Figure 1. Samples of Unicode attack. The first string “ebay” is the
original part of a real weblink and the rest two strings are
mutated/faked ones. Code under each character is the character
code in the hexadecimal form.

2. RELATED WORKS
The basic idea of carrying out Unicode attack is to generate the
mutations of the original (Unicode) string (such as spam content,
domain name, and user name, etc.) by replacing similar characters,
as shown in Figure 1, and the basic idea of safeguarding the (Web)
systems from Unicode attack is to evaluate the similarity of the
suspected string(s) to the original one(s). A generic methodology
for the counter measure against Unicode attack has been reported
in [5], in which the construction of the UC-SimList is considered
as a critical part of the Unicode string similarity evaluation.

2.1 About UC-SimList
The first UC-SimList construction method is proposed in [5],
however, no details are given in that paper and we would like to
re-address it to make the paper content concrete. UC-SimList is a
matrix, which stores the similarities of pairs of characters. To
construct UC-SimList, we first need to find the similar characters
in UC-SimList_s for a given character, e.g., we find two
characters, “a” and “A”, are semantically similar to “a”
(including “a” itself). We use the semantically similar characters
as a source and find all of the visually similar characters of the
source from UC-SimList_v, e.g. we find “ а ” (U+0430),
“ａ”(U+FF41), “A”(U+0491), “A”(U+FF21), “A”(U+0410) are
100% similar to either “а ” (U+0061) or “A”(U+0041) in UC-
SimList_v. We calculate the similarity of a given pair of
characters by multiplying their visual similarity and their semantic
similarity.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

We have ever used the pixel overlapping evaluation method to
construct UC-SimList [1]. However, the method does not perform
well when certain amount of shift of the glyph contour exists.
Hence, we use the method of kernel density estimation (KDE) to
construct UC-SimList in this paper.

2.2 About KDE
In this approach, a character is represented and measured in 2D
kernel densities around the sample points on its contour. Therefore,
characters’ similarity can be intuitively measured by the similarity
of their 2D densities. Kullback-Leibler (KL) divergence [2] is a
useful dissimilarity measure of two densities. Let the density of
one character be U(x), that of the other be V(x), the dissimilarity
between the two characters, Dis(U,V), can be defined as
Dis(U,V)=½ (KL(U(x),V(x))+ KL(V(x),U(x)), where U and V can
be estimated by Gaussian functions.

3. UC-SIMLIST GENERATION AND
APPLICATIONS
The UC-SimList generation includes the UC-SimList_s
construction, UC-SimList_v construction, and a process of
generating UC-SimList using the two constructed lists.

The construction of UC-SimList_s needs a complete survey on all
languages used UCS. In many cases, we can find corresponding
replacement to one character, such as “а ” to “A” (English in
lower-case and upper case), “银” to “銀” (Chinese in simplified-
form and traditional-form), “あ” to “ア” (Japanese in hirakana and
katakana). The investigation on constructing UC-SimList_s is
heavily depending on the language usage and character
representation at the semantic level of each language character set
in UCS, such as “一” and “壹” (Chinese, stands for “one”), and
there is no automatic way to construct it. Hence, UC-SimList_s
has to be constructed manually. We constructed the basic version
of UC-SimList_s which includes English, Chinese, and Japanese.

The construction of UC-SimList_v needs the character similarity
assessment metrics. KDE is an excellent character similarity
evaluation as discussed in Section 2.2. Therefore, we use KDE to
calculate similarity. Arial Unicode MS font 1.01 is the most
complete font we can find, and it covers the largest number of
characters among all available fonts in the world. Hence, we
choose it for our experiments and the UC-SimList_v construction.
Arial Unicode MS 1.01 is a true type font (TTF). Each character is
represented with one or several contour(s); each contour
comprises quadratic spline(s) (QS) and/or straight line(s) (SL);
and each QS/SL is represented with critical points. We retrieve the
font information (the critical points of each character) from Arial
Unicode MS 1.01 and convert them with sets of points.

We denote N to be the number of points in the converted point
sets. The larger the N is, the better the quality of the
representation is. Experiment shows that, when N=100, it is
sufficiently good to represent the visible characters in the range of
U+0000 to U+00FF (ie., equal to the ASCII mapping).
Experiment also shows that the process of calculating the KDEs
for one character to the rest (2^16-1=65535 characters) takes
about 1 hour when N=100, such that we need 2

216 16
12

1 C
−

hours

(about 3.74 years) to finish the calculation (using a P4 2.4G PC
with 1G memory). Hence, it is unrealistic to calculate the
complete UC-SimList_v in a short time. As a matter of fact, it will
take much longer to calculate if we concern about information
lose and use N=200. Experiments shows that N=200 will be good

enough to represent all characters in the UCS. We only calculate
the characters in the range of U+0000 to U+00FF (ASCII). In fact,
these characters are the most frequently used characters and the
most probably targeted at to carry out Unicode attacks.

The utilization of KDE brings us the accuracy improvement
comparing with the pixel-overlapping based assessment [1], where
U+9512:锒 is ranked the eleventh similar to U+94F6:银 because
the two characters’ glyphs have some offset to each other, such
that the common area of the two characters are reduced. In
comparison with the former method, the KDE based assessment
method performs much better and rank U+9512:锒 to be the
second similar character to U+94F6:银.

We also developed an API package for determining whether two
Unicode strings/documents are similar based on the constructed
UC-SimList. It is available at [1] for free download and usage.

4. CONCLUSION AND FUTURE WORKS
In this paper, we discuss the Unicode attacks, which could be
generally classified into three categories: (1) Spamming Attack; (2)
Phishing Attack; (3) Web Identity Faking/Attack. These attacks
are essentially based on the coexistence of visual similar
characters in UCS. In addition, semantically similar characters in
UCS should also be considered seriously. We need to assess the
similarity of Unicode strings to evaluate the genuineness of a
given one. Hence, one of the most basic cornerstones to
detect/discover Unicode attack is to construct the UC-SimList. We
constructed the prototype UC-SimList_s of English, Chinese, and
Japanese. We also proposed an effective symbol similarity
assessment measure, KDE, to construct UC-SimList_v. Finally,
we put all of the lists and APIs available on the Web [1].

The UC-SimList_s is still under development because (1) there are
character sets of many other languages in UCS than English,
Chinese, and Japanese, (2) more semantic similarity relationships
should be considered as well, for instance, we should consider
“ 一 ” and “ 壹 ” as semantically similar. The UC-SimList_v
construction can be done in an automatic way, however, the
algorithm proposed in this paper is quite time consuming.
Although we have calculated the visible characters in the ASCII,
which are most frequently used, the UC-SimList_v should be
consummated gradually with further efforts. We can redesign the
algorithm to reduce the calculation time in the future.

5. REFERENCES
[1]. Anti-Phishing Group of City University of Hong Kong,

http://antiphishing.cs.cityu.edu.hk
[2]. Cover T. and Thomas J., “Elements of Information Theory”.

John Wiley, 1991
[3]. Duerst M., Suignard M., RFC 3987: Internationalized

Resource Identifiers (IRIs), The Internet Society, 2005.
[4]. Gabrilovich E. and Gontmakher A., The Homograph Attack,

Communications of the ACM 45(2), pp.128, 2002
[5]. Fu A. Y., Deng X., Liu W., A Potential IRI based Phishing

Strategy, WISE2005, LNCS Vol. 3806, pp. 618 - 619, 2005
[6]. Liu W., Deng X., Huang G, Fu Y., An Anti-Phishing

Strategy based on Visual Similarity Assessment, IEEE
Internet Computing 10(2), pp. 58-65, Mar/Apr. 2006.

