
Strong Authentication in Web Proxies
Domenico Rotiroti

ASPNET S.c.p.a.
via anagnina, 124

00046 Grottaferrata (Roma)
+39 06954514229

d.rotiroti@aspnet.roma.it

ABSTRACT
In this paper we present a way to integrate web proxies with smart
card based authentication systems.

Categories and Subject Descriptors

K.6.5 [Security and Protection]: Authentication

General Terms
Security.

Keywords
Smart card, HTTP, Proxy.

1. INTRODUCTION
The HTTP protocol [1] provides two standard methods to
authenticate client requests: “Basic” and “Digest” authentication
[2]. While they are adequate in many practical cases, there are
circumstances where they show some limitation, the most
important one is that both of them are password based so the
security level is not extremely high. Most internet applications
use several strategies to enhance security that are not feasible for
proxies: ssl to submit forms containing passwords, randomically
generated session ids stored in cookies, etc. A natural evolution
would be the introduction of strong cryptography in proxy
authentication: smart cards and crypto tokens are rapidly diffusing
in companies and governative agencies as an helpful tool for
access control and user profiling.

2. GOALS AND MOTIVATIONS FOR THIS
PROJECT
ASPNET is a government agency operating in the province of
Rome (IT), having in charge the development of an eGovernment
project for the cities in its area. The offices in the towns of this
district are connected to a central data center through a set of
dedicated high speed link, they use this private network to access
all of our services. Each operator has been given a smart card to
authenticate through our single sign on system and a set of
“application roles” describing the actions that he is allowed to
perform on ASPNET services and applications.

2.1 Why strong authentication in web
proxies?
Dealing with government agencies, authenticating and logging
web traffic is a must. Moreover, having developed a smart card
based single sign on system, it seems reasonable to use it with all
of our services, even with web browsing.

3. IMPLEMENTATION
3.1 Prerequisites
Our main goal was to setup an authentication system plugging
painlessly in ASPNET network: without the need for additional
software on the client workstations, browser plugins or particular
network modifications in the local offices. We wanted the
operators to browse the web as they did before, only having to
type the smart card’s pin on the first page accessed. Building such
a system and in the same time adhering to the standards (e.g.
HTTP protocol) has been technically challenging, in the following
subsection we will examine these challenges and how they have
been solved.

3.2 Identifying users
As a starting point for our implementation we choose the well
known squid proxy server, because it’s feature-rich, stable and
modular. Squid allows the developers to define new
authentication methods [4] implementing a set of callbacks to be
invoked by the proxy when various relevant events occur. So we
began working on a new authentication schema, trying to limit the
modifications in squid’s code to a few places where assumptions
done for the other methods were no more valid. The main
difference between canonical authentication schemas and smart
card authentication is browser’s “complicity": when an
unauthorized user requests a page, a proxy server configured for
basic or digest authentication reply with a “407/Proxy
Authentication Required” status code [1], the browser understands
this request and asks the user to type username and password,
which are then sent back to the proxy via an “Authorization”
header. [fig1]

In a smart card based proxy authorization system, there’s a new
actor: a web server accepting https connections. The server must
be reachable from the clients and must accept client certificates
(in particular must accept certificates signed by the authority
issuing our smart cards). We will refer to this site as securesite
from now on. When the user begins browsing the web, this time
the proxy will reply with a “307/Temporarily Redirect” status,
and a “Location” response header pointing to securesite. The
browser will send a new request and the user will be asked to type
his smart card’s pin. At this point certificate’s data may be read

Copyright is held by the author/owner(s).
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

from a server side script running on securesite, and the user is
finally identified. [fig2]

Figure 1. Request-Response flow in authenticated proxies

Figure 2. Smart-card authenticated proxy

3.3 Distinguishing authenticated requests
Since there is no “Authorization” header coming from the
browser, we must find another way to block unauthenticated
requests and satisfy the others. The approach we used is to try to
keep proxy connections alive as long as possible after that they
have been authenticated. This is similar to the work done for the
NTLM support in squid [3], and is achieved linking the user data
structure to the connection state data [4]. This solves our problem
for all the requests going through the first connection, but leaves
us with the problem of authenticating the other connections
opened by the same client(e.g. to fetch images and subdocuments
in parallel). Luckily, this is not an issue: the request will go
through securesite but having not to type the pin again and with a
small roundtrip the user will not notice the redirection and
continue browsing as usual. Examining our logs, anyway, only a
small subset of the page requests will be redirected.

Having a system capable to distinguish authenticated connections
and to redirect the others to a trusted site opens the door to a new
class of authentication types: many situations where the browser
popup seems not to be enough could be easily handled with a
custom server side script on a trusted site.

3.4 Dealing with https requests
When the client connects to a https site, all the traffic will go
through a secure socket layer connection. In this case, the proxy
only plays a marginal role: it will only send encrypted data back
and forward, without knowing anything about headers and content
travelling through it. The authentication routines are never called,
so the connection is blocked.

To solve this problem we recurred to (semi-)transparent https
proxying: the browsers are configured to connect to https sites
directly and on our routers we use network address translation to
forward these requests to the proxy. In this way our users always
see a single server certificate and use their smart card for client
authentication whatever site are they visiting, while it’s up to the
proxy to verify the real server validity. The request flow here is
different from the non-https case: [fig3].

Figure 3. Transparent proxying of an https url

Never seeing the real server directly, clients cannot use any other
certificate for client authentication purposes. While this situation
does not arise so often, it is probably biggest limitation in our new
authentication schema. At the moment, external sites requiring
client authentication are handled by ad-hoc changes to the
configuration.

4. RESULTS
In our first tests, the system shows good responsiveness and the
feedback from the users is positive. To ease browser’s
configuration we deployed a proxy auto-configuration script [5],
but still some setting must be changed by hand.

Further work could be done to improve compatibility with all
sites/user-agents and to reduce network authentication traffic.

5. REFERENCES
[1] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext
Transfer Protocol, HTTP/1.1", RFC 2616, June 1999.

[2] RFC 2617 HTTP Authentication: Basic and Digest
Access Authentication.

[3] Chemolli F., Doran A., “Client-Squid NTLM
authentication protocol description”,
http://squid.sourceforge.net/ntlm/client_proxy_protoco
l.html, 2003.

[4] Squid Programmers Guide, http://www.squid-
cache.org/Doc/Prog-Guide/, 2004.

[5] “Navigator Proxy Auto-Config File Format”,
http://wp.netscape.com/eng/mozilla/2.0/relnotes/demo/
proxy-live.html, 1996

