
Mining Search Engine Query Logs for Query
Recommendation∗

Zhiyong Zhang
Dept. of Computer Engr & Computer Science
Speed School of Engr, University of Louisville

Louisville,KY 40292, USA

z0zhan13@louisville.edu

Olfa Nasraoui
Dept. of Computer Engr & Computer Science
Speed School of Engr, University of Louisville

Louisville,KY 40292, USA

olfa.nasraoui@louisville.edu

ABSTRACT
This paper presents a simple and intuitive method for min-
ing search engine query logs to get fast query recommenda-
tions on a large scale industrial-strength search engine. In
order to get a more comprehensive solution, we combine two
methods together. On the one hand, we study and model
search engine users’ sequential search behavior, and inter-
pret this consecutive search behavior as client-side query re-
finement, that should form the basis for the search engine’s
own query refinement process. On the other hand, we com-
bine this method with a traditional content based similarity
method to compensate for the high sparsity of real query
log data, and more specifically, the shortness of most query
sessions. To evaluate our method, we use one hundred day
worth query logs from SINA’ search engine to do off-line
mining. Then we analyze three independent editors evalu-
ations on a query test set. Based on their judgement, our
method was found to be effective for finding related queries,
despite its simplicity. In addition to the subjective editors’
rating, we also perform tests based on actual anonymous
user search sessions.

Categories and Subject Descriptors: H.2.8 Information
Systems:Database Applications-Data mining

General Terms:Algorithms, Performance, Design

Keywords:Recommendation, Session, Mining, Query Logs

1. INTRODUCTION AND RELATED WORK
Providing related queries for search engine users can help

them quickly find the desired content. Recently, some search
engines started showing related search keywords in the bot-
tom of the result page. Their main purpose is to give search
engine users a comprehensive recommendation when they
search using a specific query. Recommending the most rel-
evant search keywords set to users not only enhances the
search engine’s hit rate, but also helps the user to find the
desired information more quickly. Also, for some users who
are not very familiar with a certain domain, we can use the
queries that are used by previous similar searchers who may

∗part of this work was done while the first author was at
Search Engine R&D Group, SINA Corporation, Beijing,
China

Copyright is held by the author/owner(s).
WWW 2006, May 22–26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

have gradually refined their query, hence turning into expert

searchers, to help guide these novices in their search. That
is, we can get query recommendations by mining the search
engine query logs, which contain abundant information on
past queries. Search engine query log mining is a special
type of web usage mining. In [2], a “content-ignorant” ap-
proach and a graph-based iterative clustering method was
used to cluster both the URLs and queries. Later in [3], the
authors presented a well-rounded solution for query log clus-
tering by combining content-based clustering techniques and
cross-reference-based clustering techniques. In [1], methods
to get query recommendation by utilizing the click-through
data were presented.

2. ONE DIMENSIONAL GRAPH MODEL
BASED SIMILARITY FOR CONSECU-
TIVE QUERIES

As illustrated in Figure 1, suppose we have three consecu-
tive queries after pruning identical ones in one query session,
the vertices in the graph represent the query and the arcs
between them represent their similarities. We will define
the value of the arcs as a forgetting factor or damping fac-
tor d, in (0, 1). For two consecutive queries (neighbors in
the graph) in the same query session, their similarities are
set to this damping factor d, and for queries that are not
neighbors in the same session, their similarities are calcu-
lated by multiplying the values of the arcs that join them.
For example, in Figure 1, the similarity between query1 and
query3 would be σ(1, 3) = d × d = d2. The longer the dis-
tance, the smaller the similarity. After getting the similarity

Figure 1: Similarity Graph for 1 session (left) and 2 sessions (right)

values of each pair in each session, we add them up to get
the cumulative similarity between two queries. This process
is shown in the right side of Figure 1.



Our model works by accumulating many query sessions
and adding up the similarity values for many same query
pairs, and by keeping a query’s most similar queries in the
final clusters. Our experiments confirm these expectations.
For example, using our method, when we input “River Flows
Like Blood”, a novel written by a Chinese writer “Haiyan”,
we not only obtained the writer himself as its top-ranked
related queries, but also obtained his other popular novels
in the top-ranked clusters.

3. CONTENT BASED SIMILARITY AND
COMBINATION OF TWO METHODS

For content-based similarity calculation, we use the cosine
similarity given by

σ(p, q) =

Pk

i=1
(cwi(p)) × (cwi(q))

p
Pm

i=1
w2

i (p) ×
p

Pn

i=1
w2

i (q)
(1)

where cwi(p) and cwi(q) are the weights of the i-th common
keyword in the query p, and q respectively and wi(p) and
wi(q) are the weights of the i-th keywords in the query p
and q respectively. For weighting the query terms, instead
of using TF ∗IDF , we use SF ∗IDF , which is the search fre-
quency multiplied by the inverse document frequency. The
reason why we use SF instead of TF is, considering the spar-
sity of the query terms in one query, TF in one query makes
almost no difference. While using SF in its position is a
kind of voting mechanism that relies on most people’s inter-
ests and judgements. SF is acquired from all search queries,
while IDF is acquired from the whole document set.

Using the above two methods, we can get two different
types of query clusters. The two methods have their own ad-
vantages and they are complementary to each other. When
using the first consecutive query based method, we can get
clusters that reflect all users’ consecutive search behavior as
in collaborative filtering. While using the second, which
is content based method, we can group together queries
that have similar composition. To quickly combine them
together, for one specific query, we will get two clusters of
related queries, which are sorted according to their cumula-
tive similarity voting factor, when using the two methods.
We then use the following similarity combination method to
merge them together.

similarity = α × simconsec query + β × simcontent (2)

where α and β are the coefficients or weights assigned to
consecutive-query-based similarity measures and content-based
similarity measures respectively. In our experiments, we give
them the same value.

4. EVALUATION AND EXPERIMENTAL
RESULTS

We use two methods for evaluating our methods. First,
we randomly chose 200 testing sessions, each of which con-
taining two queries or more. These sessions were extracted
from one week’s query logs from April 2005, so they have
no overlap with the query logs used in the training set. The
latter contained the query logs for September, October, and
November. We did our test based on a maximum of 10 rec-
ommendations per query. We then counted the number of
recommendations that matched the hidden queries of one
session. Table 1 shows the testing results, where n1 is the

number of remaining queries that fall into our recommen-
dation set for the first query in the same session, while n2
is the number of remaining queries that fall into our recom-
mendation set for the second query in the same session.

Table 1. Session Coverage Result

session length num of sessions n1 n2 average coverage

2-query session 147 35 29 21.8%

3-query session 37 23 19 28.4%

4-query session 14 5 9 16.7%

6-query session 2 2 0 10%

total average coverage(200 sessions/473 queries) 22.3%

Search engine users’ subjective perceptions may be more
likely to indicate the success or failure of a search engine.
For this reason, in our second method, we used editors’ rat-
ings to evaluate our query recommendations. We tested one
hundred queries. These queries were selected by our editors
according to several criteria. These criteria include that they
have high visit frequency and that they cover as many dif-
ferent fields as possible. For each query, we ask our editors
to rank the recommended query results from 5 to 0, where
5 means very good and 0 means bad. For precision, we ask
them to review whether the related queries are really related
to the original query. For coverage, we ask them whether
they would click on the query recommendations in a real
search scenario.

Table 2. Editor Evaluation Result

Ranking coverage(among 100) precision(among 100)

very good(5) 35 29

good(4) 33 42

marginally good(3) 13 11

bad(2) 9 8

very bad(1) 7 7

nothing(0) 3 3

average rating 3.71 3.69

standard deviation 1.37 1.32

In Table 2, the numbers mark how many query recommen-
dations are ranked in the specific rank among the one hun-
dred queries. For example, in the second column (coverage),
35, 33, and 13 queries were rated as very good, good, and
marginally good respectively.

5. CONCLUSIONS AND FUTURE WORK
It is presumable that K-means or a simple K-Nearest

Neighbors method can be used to obtain the related query
clusters. However, one problem in this case would be how
to fix the K value. In comparison with these methods, our
method is adaptive and autonomous since we don’t prede-
fine any fixed number of clusters. Instead, it would fluctu-
ate with the users’ search patterns or some events related to
search trends in general. Also, more work can be done for
mining the users’ sequential search behavior for search en-
gine query refinement, and to take into account the evolving

nature of users’ queries.

6. ACKNOWLEDGMENTS
This work is partially supported by a National Science

Foundation CAREER Award IIS-0133948 to Olfa Nasraoui.

7. REFERENCES
[1] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query

recommendation using query logs in search engines. In
International Workshop on Clustering Information over the
Web (ClustWeb, in conjunction with EDBT), Creete, Greece,
March (to apper in LNCS)., 2004.

[2] D. Beeferman and A. Berger. Agglomerative clustering of a
search engine query log. Proceedings of ACM SIGKDD
International Conference, pages 407–415., 2000.

[3] J. Wen, J. Nie, and H. Zhang. Query clustering using user logs.
ACM Transactions on Information Systems, 20(1), pages 59
– 81., 2002.


