FLUX: Fuzzy Content and Structure Matching of XML
Range Queries

Hua-Gang Li S. Alireza Aghili

Divyakant Agrawal Amr El Abbadi

Department of Computer Science, University of California, Santa Barbara, CA 93106
{huagang, aghili, agrawal, amr}@cs.ucsb.edu

ABSTRACT

An XML range query may impose predicates on the nu-
merical or textual contents of the elements and/or their re-
spective path structures. In order to handle content and
structure range queries efficiently, an XML query process-
ing engine needs to incorporate effective indexing and sum-
marization techniques to efficiently partition the XML doc-
ument and locate the results. In this paper, we propose a
dynamic summarization and indexing method, FLUX, based
on Bloom filters and B¥-trees to tackle these problems. The
results of our extensive experimental evaluations indicated
the efficiency of the proposed system.

Categories and Subject Descriptors: H.2.4 [Database
Management|: Systems — Query Processing

General Terms: Algorithms.
Keywords: XML database, XPath, Range Query.

1. INTRODUCTION

The XML data model, due to its rich presentation (con-
tent and semi-structuredness) poses unique challenges to ef-
fectively support complex queries. Queries on such ordered
trees generally impose predicates on the textual content of
ELEMENT (keyword search) and/or their corresponding struc-
tural relationships (structure pattern search). Numerous re-
search efforts have been conducted [1, 5] to provide pow-
erful and flexible query capabilities to extract structural
patterns from XML documents. Nevertheless, how to ef-
ficiently address the structural pattern queries with range
predicate support over the textual content of ELEMENT is
not addressed yet. In this paper, the class of content-and-
structure (CAS) single path queries are extended to include
(i) range predicates, and (i7) fuzzy content-and-structure
predicates. We call this class of queries Fuzzy-Range (FuR)
since they provide efficient support for exact and approx-
imate (fuzzy) matching of queries with path, content and
range predicates. The fuzzy/approximate matching is sup-
ported as an extra feature without requiring any specific
instructions from the user. For example, the query

Q = /dblp//article[2004 < /year < 2005]
matches the journal articles published in the year range
[2004-2005] from dblp database [3]. Fuzzy structure match-
ing feature additionally reports those instances that match
the range predicate of the query, but whose structure resem-

Copyright is held by the author/owner(s).
WM 2006, May 23-26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

bles the query’s structure, for instance

p1 = /dblp/article/year/2005, and
p2 = /dblp/articles//year//2004.

Due to the heterogeneity of the XML data, it is essen-
tial to provide the support for fuzzy matching in current
XML query engines. This paper introduces the proposi-
tion of an XML query processing system for FuR queries
named FLUX. FLUX employs an efficient BT-tree based
index structure to locate the leaf matches n; to the range
predicate of a query in its initial stage. Each leaf match n;
of the document tree stores a compact path signature of the
root-to-leaf path structure of n;, using the notion of Bloom
Filters [2]. In the next step, the path signatures of each
matched leaf instance n; is compared with the query’s path
signature to eliminate those instances whose path signature
is very different from that of the query. To the best of our
knowledge, this is the first work to specifically address exact
and approximate matching of FuR class of queries in XML
document collections. The following sections will roughly
provide the range and path matching procedures. Details
can be found from our FLUX technical report [4].

2. RANGE MATCHING

The range matching phase of FLUX employs an index-
ing technique based on B*-trees on the indexable attributes
(elements) (e.g., numerical, textual, date, ...) of the XML
document dataset for the effective reduction of the search
space. Figure 1(2) depicts a portion of one such index tree,
constructed on the age attribute of a typical XML employee
database. Each key in a leaf bucket corresponds to the con-
tent of an indexable element and the data associated with it
stores the element ID information (pre-order traversal rank
of the corresponding node in the XML document) and the
bit-vector signature of the actual path leading to the node
(more details provided in the following section). For in-
stance, the node instance with age = 66 has preorder rank
of 72, which is shown in the document tree of Figure 1,
named as the node "?66.

3. PATH MATCHING

The range matching phase provides all the matching in-
stances residing inside the range of the given FuR query. The
path matching phase performs the necessary steps to iden-
tify those instances whose path component (approximately)
matches the path expression of the given FuR query. It is
mainly based on the bit-vector signature for each instance.
Bloom filter [2] is a space-efficient data structure to proba-

Q = //managenent // enpl oyee/[64 <=

age <= 66] b

managenent /enpl oyee/ age/ 64
managenent / enpl oyee/ age/ 64
managenent / enpl oyee/ age/ 64

e—>

P, D
[T

2
3

nane age

4 Helmut Newton® 0050412358

864

=
o
o
E 2
1) enpl oyee

age Bt-tree index ; / ‘ \

< 3 5 D 7
T
g
5

— T

.. 9enpl oyee 66 enpl oyee
10 name 124p° Mtitle 1056 nane 69 | p 1 e
11 Birton Bloom 13 0007414349 15scientist 17 65 68 Richard Avedon 70 1102874008 7266

1
managenent

ELEMID Bl oom Filter
--==--> [_8_Jo[o[[o[1]1[1]0]

EMID __ BloomFilter

1D BloomFilter

EL

=% [[17_JO[0[a0[a[1[g[0] [r=======================-------o------
EEY
(72 Jololo[1iffff] [================mecceccccecccecccccccecceeccceeccme—eeseceee—e———— '

Figure 1: FLUX Search Model.

P = / managenent /'l enpl oyee | salary /[72,000
\ ['lz || 13 | i
R TR
v v
1]o [1]1]o]o]o]o]o 1] [e]1]1]o]1]o]o]0]
56
Bnl BHZ BHS
Bsy S S
[Biee s

&———mbits———>

Figure 2: A Bloom Filter Example.

blistically represent a set and its elements using bit-vector
signature to support highly accurate set membership queries.
Figure 2 depicts the construction of a bloom filter bit-vector
signature using two independent m = 8-bit hash functions
hi and hg, on the path set S = { management, employee,
salary}, where n = |S| = 3, from an employee database.
Given a query’s path component, the bloom filter for it is
constructed. The bloom signatures of all the matching can-
didate instances obtained from the range matching phase
will be checked against the query path’s bloom signature to
test how closely they are matched. If the calculated dis-
tance among the bit-vector signatures is smaller than a the
application’s similarity threshold, then the instance will be
reported as a matching one.

4. EXPERIMENTAL EVALUATION

We implemented the FLUX system using Java 1.4.2 and
ran our experiments on a Pentium M-2GHz processor with
2GB of main memory, using a page size of 1IKB (determine
the number of indexed data items a leaf node can have and
number of key/pointers an internal node can have for the
B+-tree.), cache size of 100KB, and LRU cache replace-
ment policy. We compared our proposed technique with

PathStack [5] which is one of the leading techniques in the
literature for simple XPath queries. The experimental evalu-
ations were performed on a set of both synthetic (XMark [6])
and real (dblp) XML datasets. Random noises were imposed
on the datasets to create path structure variation at the el-
ement names. We studied the effect of query range length,
bloom filter size, and the scalability analysis on the filtra-
tion efficacy, false positive rate (introduced by Bloom filter),
and response time of FLUX. The experimental results are
promising and demonstrate that FLUX consistently outper-
forms PathStack. Also, more details on the experimental re-
sults can be referred to from our FLUX technical report [4].

5. CONCLUSION

This paper proposed an efficient technique, named FLUX,
for answering complex range queries in a database of XML
documents. FLUX incorporated a B*-tree based index struc-
ture on the contents of range attributes. It uses the notion
of Bloom filters to associate a structure signature to each
range attribute instance. The filtration performed by the
bloom signatures of FLUX reduced the search space to a
minor fraction of the intermediate result set.

6. REFERENCES

[1] S. Al-Khalifa, H.V. Jagadish, J.M. Patel, Y. Wu, N. Koudas
and D. Srivastava, Structural Joins: A Primitive for Efficient
XML Query Pattern Matching. ICDE, 141-152 (2002).

[2] B.H. Bloom, Space/Time Trade-offs in Hash Coding with
Allowable Errors. Communications of the ACM 13(7), 422426
(1970).

[3] DBLP Bibliography Server, http://dblp.uni-trier.de/.

[4] H.-G. Li, S. A. Aghili, D. Agrawal and A. El Abbadi, FLUX:
Fuzzy Content and Structure Matching of XML Range Queries.
hitp://www.cs.ucsb.edu/research/tech_reports/reports/2005-
24.pdf/.

[5] N. Bruno, N. Koudas and D. Srivastava, Holistic twig joins:
optimal XML pattern matching. SIGMOD, 310-321 (2002).

[6] A. R. Schmidt et al., The XML Benchmark Project. Technical
Report INS-R0103, CWI (2001).

