
Do not Crawl in the DUST: Different URLs with Similar Text
Extended Abstract

Uri Schonfeld
Dept. of Electrical Engineering
Technion, Haifa 32000, Israel

shuri@tx.technion.ac.il

Ziv Bar-Yossef
∗

Dept. of Electrical Engineering
Technion, Haifa 32000, Israel

zivby@ee.technion.ac.il

Idit Keidar
Dept. of Electrical Engineering
Technion, Haifa 32000, Israel

idish@ee.technion.ac.il

ABSTRACT
We consider the problem of dust: Different URLs with Sim-
ilar Text. Such duplicate URLs are prevalent in web sites, as
web server software often uses aliases and redirections, trans-
lates URLs to some canonical form, and dynamically gener-
ates the same page from various different URL requests. We
present a novel algorithm, DustBuster, for uncovering dust;
that is, for discovering rules for transforming a given URL
to others that are likely to have similar content. DustBuster
is able to detect dust effectively from previous crawl logs or
web server logs, without examining page contents. Verify-
ing these rules via sampling requires fetching few actual web
pages. Search engines can benefit from this information to
increase the effectiveness of crawling, reduce indexing over-
head as well as improve the quality of popularity statistics
such as PageRank.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications—Data mining

General Terms:Algorithms, Performance.

Keywords: mining, rules, duplicates, similarity.

1. INTRODUCTION
The web is abundant with dust, Different URLs with Sim-

ilar Text. For example, the URLs http://news.google.com
and http://google.com/news return similar content. Many
web sites define links, redirections, or aliases, such as allow-
ing the tilde symbol (~) to replace a string like /people,
or /users. Some sites allow different conventions for file
extensions– .htm and .html; others allow for multiple de-
fault index file names – index.html and default.html. A
single web server often has multiple DNS names, and any can
be typed in the URL. As the above examples illustrate, dust

is typically not random, but rather stems from some general
rules, which we call dust rules, such as “~” → “/people”,
or “/default.html” at the end of the URL can be omitted.

Moreover, dust rules are typically not universal. Many
are artifacts of a particular web server implementation. For
example, URLs of dynamically generated pages often in-
clude parameters; which parameters impact the page’s con-
tent is up to the software that generates the pages. Some
sites use their own conventions; for example, a forum site

∗Supported by the European Commission Marie Curie In-
ternational Re-integration Grant.

Copyright is held by the author/owner(s).
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

we studied allows accessing story number num on its site
both via the URL http://domain/story?id=num and via
http://doamin/story_num. In this paper, we focus on de-
tecting dust rules within a given web site. We are not aware
of any previous work tackling this problem.

Knowledge about dust can be very valuable for search
engines: It can increase the effectiveness of web crawling by
eliminating redundant accesses to the same page via mul-
tiple URLs. For example, in one crawl we examined the
number of URLs fetched would have been reduced by 18%.
It can also reduce indexing overhead. More generally, it al-
lows for a canonical URL representation, where each page
has a single canonical name. Such a representation is essen-
tial for any statistical study of web pages, e.g., computing
their popularity. Canonization can also reduce caching over-
head. We focus on URLs with similar contents rather than
identical ones, since duplicate pages and different versions
of the same document are not always identical; they tend to
differ in insignificant ways, e.g., counters, dates, and adver-
tisements. Likewise, some URL parameters impact only the
way pages are displayed (fonts, image sizes, etc.) without
altering their contents.

Although search engines normally employ different tech-
niques to avoid and detect dust, they do not discover site-
specific dust rules. Universal rules, such as adding http://

or removing a trailing slash are used, in order to obtain
some level of canonization. They find additional dust by
comparing page shingles, which are hash-based summaries
of page content. However, this is conducted on a page by
page basis and all the pages must be fetched to employ this
technique. By knowing the dust rules, one can dramati-
cally reduce the overhead of this process. Additionally, our
findings show that these rules remain valid for a long period
of time and are valid for new pages as well as old ones. But
how can search engines learn about site-specific dust rules?

Contrary to initial intuition, we show that it is possible
to discover likely dust rules without fetching a single web
page. We present an algorithm, DustBuster, which discovers
such likely rules from a list of URLs with observed web page
size. Such a URL list can be obtained from many sources
including a previous crawl and the web server’s logs. The
rules are then verified (or refuted) by sampling a small num-
ber of actual web pages. At first glance, it is not clear that
a URL list can provide reliable information regarding dust,
as it does not include actual page contents.

How can one deduce information about likely dust rules
from a URL list? We show two ways for doing so. The
first detects substring substitution rules, whereby every oc-

currence of some string α in a URL can be replaced by an-
other string β. Our first observation is that if such a rule is
common, we can expect to find in the URL list multiple ex-
amples of pages accessed both ways (although not all pages
accessed one way will be accessed both ways). For example,
in the site where story?id= can be replaced by story_, we
are likely to see in the URL list many different pairs of URLs
that differ only in this substring; we say that such a pair of
URLs is an instance of story?id= and story_. The set of
all instances of a rule is called the rule’s support. Our first
attempt to uncover dust is therefore to seek rules that have
large support.

Unfortunately, one also finds rules that have large support
albeit they are not dust rules. For example, when exam-
ining URL lists, we find numerous instances of the digits 1

and 2, as in pic-1.jpg and pic-2.jpg, and story_76541

and story_76542, none of which are dust. We address the
challenge of eliminating such false rules using two heuristics.
The first employs the size field included in web URL lists.
The difficulty with size-based filtering is that the size of a
dynamic page can vary dramatically, e.g., when many users
comment on an interesting story. To account for such vari-
ability, we compare the ranges of sizes seen in all accesses
to each page. When the size ranges of two URLs do not
overlap, they are unlikely to be dust. Our second heuris-
tic is based on the observation that false rules tend to flock
together, e.g., in most instances of 1 and 2, one could also
replace the 1 by other digits. We therefore assign lower cred-
ibility to a URL that pertains to instances of many different
rules. Together, these two heuristics are very effective at dis-
tinguishing likely dust rules from false ones. Fig. 1 shows
results from 4 logs of an academic site. We observe that,
quite surprisingly, DustBuster’s detection phase achieves a
very high precision rate even though it does not fetch even
a single page.

Having detected likely dust rules, another challenge that
needs to be addressed is eliminating redundant ones. For
example, the rule “http://site/story?id=” → “http://
site/story_” will be detected, along with many consisting
of substrings thereof, e.g., “?id=” → “_”. However, before
performing validations, it is not obvious which rule should
be kept in such situations– the latter could be either valid
in all cases, or invalid outside the context of the former.
Nevertheless, we are able to use support information from
the URL list in order to remove many redundant likely dust

rules. We remove additional redundancies after performing
some validations, and thus compile a succinct list of rules.

In addition to substring substitutions, a second type of
dust that is prevalent in web sites stems from parameters
that do not influence the page content. Fortunately, param-
eters have a predictable syntactical structure, which makes
them easy to discover. Each parameter helps define two
rules, substituting a default value for this parameter and re-
moving it completely. We use size comparisons in order to
filter out parameters that do impact the page content, and
leave only likely dust parameter substitution rule.

Both types of dust rules are validated using a limited
sample of URLs. For each rule we find sample URLs to
which the rule can be applied. The rule is then applied
to each URL resulting in URL pairs. A rule is valid with
respect to such a URL pair if both associated pages exist
and their content is similar. A rule is deemed valid if the
fraction of valid URL pairs is greater than some threshold.

We experiment with DustBuster on two web sites with
very different characteristics. We find that DustBuster can
discover rules very effectively from moderate sized URL lists,
with as little as 20,000 entries. The detection of likely rules
entails sorting and a linear traversal of the URL list, hence,
on a URL list of length L, its running time is O(L log(L)).
On a typical URL list with roughly 50,000 entries, producing
likely rules takes around ten minutes on a low-end desktop
PC. Limited sampling is then used in order to validate or
refute each rule. Figure Fig. 2 shows that 20 validations
per rule are enough to achieve 1.0 precision. This process is
substantially cheaper than crawling and producing shingles
for the entire site in order to detect dust.

Finally, once the correct dust rules are discovered, we
exploit them for URL canonization. In the general case,
the canonization problem is NP-complete. Nevertheless, we
have devised an efficient canonization algorithm that typi-

cally succeeds in transforming URLs to a site-specific canon-
ical form. Using the canonization algorithm, we can discover
up to 68% of the redundant URLs in a URL list. A log of
a complete crawl was canonized and an 18% reduction was
observed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

pr
ec

is
io

n

top k rules

log#4
log#3
log#2
log#1

Figure 1: Precision achieved by likely rule detection

(DustBuster’s first phase) without fetching actual con-

tent, results from 4 different logs (Academic site).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ec

is
io

n

number of validations

log#4
log#3
log#2
log#1

Figure 2: Precision among rules that DustBuster at-

tempted to validate vs. number of validations used

(N).(Forum site)

Acknowledgments
We thank Tal Cohen and the forum site team, and Greg
Pendler and the ee.technion.ac.il admins for providing
us with access to web URL lists and for technical assistance.

