
Efficient Query Subscription Processing for Prospective
Search Engines

Utku Irmak ∗ Svilen Mihaylov † Torsten Suel ∗

Samrat Ganguly ‡ Rauf Izmailov ‡

ABSTRACT
Current web search engines are retrospective in that they
limit users to searches against already existing pages. Prospec-
tive search engines, on the other hand, allow users to upload
queries that will be applied to newly discovered pages in
the future. We study and compare algorithms for efficiently
matching large numbers of simple keyword queries against
a stream of newly discovered pages.

Categories and Subject Descriptors:

H.3.3 Information Storage and Retrieval: Information Search
and Retrieval: Information filtering

General Terms:

Algorithms, Performance, Experimentation

Keywords:

Inverted index, prospective search, query processing

1. INTRODUCTION
The emergence of large web search engines has fundamen-

tally changed the way we locate and access information.
Such search engines work by downloading pages from the
web and then building a full-text index on the pages. Thus,
they are retrospective in nature, as they allow us to only
search for currently already existing pages – including many
outdated pages. An alternative approach, often called prospec-
tive search, allows a user to upload a query that will then
be evaluated by the search engine against documents en-
countered in the future. The user can be notified of new
matches in one of several ways, e.g., via email, or through a
desktop-based or web-based RSS reader. Popular currently
available implementations of prospective search include the
News Alert feature in Google News and the PubSub sub-
scription service (http://pubsub.com).
Prospective search can be performed with the help of RSS

feeds. RSS (RSS 2.0: Really Simple Syndication) is an XML-

∗CIS Department, Polytechnic University, Brooklyn, NY
11201. {uirmak@cis.poly.edu, suel@poly.edu}. The
third author was also partially supported by NSF Awards
IDM-0205647 and CCR-0093400, and the New York State
Center for Advanced Technology in Telecommunications
(CATT) at Polytechnic University.
†CIS Department, University of Pennsylvania, Philadelphia,
PA 19104. svilen@seas.upenn.edu.
‡NEC Laboratories America, Inc., Princeton, NJ 08540.
{samrat@nec-labs.com, rauf@nec-labs.com}.

Copyright is held by the author/owner.
WWW 2006, May 22–26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

based data format that allows web sites and weblogs to syn-
dicate their content by making all new content, or at least
meta data about new content, available at a specified loca-
tion. Thus, a prospective search engine can find new content
by periodically downloading the appropriate RSS feed.
In this paper, we study techniques for optimizing the per-

formance of prospective search engines. We focus on key-
word queries with particular emphasis on AND queries. How-
ever, Boolean keyword queries can also be supported easily:
We convert them to DNF, insert each conjunction as a sep-
arate AND query, and remove duplicate matches from the
output. For more details about this work, see [4].

2. THE QUERY PROCESSOR
In a naive implementation one might simply execute all the

queries periodically against any newly arrived documents.
However, if the number of queries is very large, this would
result either in a significant delay in identifying new matches
or a significant query processing load for the engine.
Each query in our system has a unique integer query ID

(QID) and each term has an integer term ID (TID). Each
incoming document has a unique document ID (DID) and
consists of a set of TIDs, and the output of the matching
algorithm consists of a stream of (QID, DID) pairs, one for
each time a document satisfies a particular query. The terms
in each query are ordered by TID; thus we can refer to the
first, second, etc. term in a query. Any incoming documents
have already been preprocessed by parsing out all terms,
translating them into TIDs, and discarding any duplicate
terms or terms that do not occur in any query.
The main data structure used in all our algorithms is an

inverted index, which is also used by retrospective search
engines. In our case we index the queries rather than the
documents, as proposed in [5]. The inverted index consists
of inverted lists, one for each unique term that occurs in
the queries. Each list contains one posting for each query
in which the corresponding word occurs, where a posting
consists of the QID and the position of the term in the query
(recall that terms are ordered within each query by TID).
Since (QID, position) can be stored in a single 32-bit integer,
each inverted list is a simple integer array.

2.1 A Primitive Matching Algorithm
The primitive matching algorithm (with some variations)

has been studied in a number of works including [3, 5, 2].
The basic idea is as follows. We initially build the inverted
index from the queries, and reserve space for a hash table
indexed by QIDs. Given an incoming document, we clear
the hash table, and then process the terms in the document
in some sequential order. To process a term, we traverse the
corresponding inverted list in the index. For each posting
of the form (QID, position) in this list, we check if there is
already an entry in the hash table for this QID. If not, we in-
sert an entry into the table, with an associated accumulator



(counter) set to 1. If an entry already exists, we increase its
accumulator by 1. This phase is called the matching phase.
In the testing phase, we iterate over the hash table entries:
For every entry, we test if the final value of the accumulator
is equal to the number of query terms; if so we output the
match between this query and the document.

2.2 Optimizations over Primitive Algorithm
Exploiting Position Information and Term Frequen-

cies: We note that the primitive algorithm creates an entry
in the hash table for any query that contains at least one
of the terms. This results in a larger hash table that in
turn slows down the algorithm, due to additional work that
is performed but also due to resulting cache misses during
hash lookups. To decrease the size of the hash table, we first
exploit the fact that we are focusing on AND queries. Re-
call that each index posting contains (QID, position) pairs.
Suppose we process the terms in the incoming document in
sorted order, from lowest to highest TID. This means that
for a posting with non-zero position, either there already
exists a hash entry for the query, or the document does not
contain any of the query terms with lower TID, and thus the
query does not match. So we create a hash entry whenever
the position in the posting is zero, and only update existing
hash entries otherwise. A further reduction is achieved by
simply assigning TIDs to terms in order of frequency (we as-
sign TID 0 to the least frequent term). So an accumulator is
only created for those queries where the incoming document
contains the least frequent term in the query.
Bloom Filters: As a result of previous optimizations, hash
entries are only created initially, and most of the time is
spent afterwards on lookups to check for existing entries.
Moreover, most of these checks are negative. To speed them
up, we propose to use a Bloom filter [1], which is a proba-
bilistic space-efficient method for testing set membership.
We use a Bloom filter in addition to the hash table. In the

matching phase, when hash entries are created, we also set
the corresponding bits in the Bloom filter; the overhead for
this is fairly low. In the testing phase, we first perform a
lookup into the Bloom filter to see if there might be a hash
entry for the current QID. If the answer is negative, we im-
mediately continue with the next posting; otherwise, we per-
form a hash table lookup. Since the Bloom filter structure
is small, this results in fewer processor cache misses.
Partitioning the Queries: We note that the hash table
and Bloom filter sizes increase linearly with the number of
query subscriptions, and thus eventually grow beyond the
L1 or L2 cache sizes. Instead of creating a single index, we
propose to partition the queries into p subsets and build an
index on each subset. An incoming document is then pro-
cessed by performing the matching sequentially with each of
the index partitions. While this does not decrease the num-
ber of postings traversed, or the locality for index accesses,
it means that hash table and Bloom filter sizes are decreased
by a factor of p, assuming we clear them after each partition.
Clustering: Our next idea is to exploit similarities between
different subscriptions. In a preprocessing step, we cluster
all queries into artificial superqueries of up to a certain size,
such that every query shares the same least frequent term
with a superquery. We employ greedy algorithms to con-
struct superqueries. In the algorithms we consider queries
in arbitrary order (random), in sorted order (alphabetical),
or check all the candidates to maximize an overlap ratio

(overlap). In related work, Fabret et al. [3] study how to
cluster subscriptions for improved throughput; however the
focus is on more structured queries rather than keywords.

3. EXPERIMENTAL EVALUATION
Since we were unable to find any large publicly available

query subscription logs, we decided to use Excite search en-
gine query logs, collected in 1999. We preprocessed the trace
by removing stop words, and any duplicate queries, and also
converting all the terms to lower case. The Excite trace
contained 1077958 queries with 271167 unique terms; the
resulting inverted index had 3633970 postings. To be used
as incoming documents, we selected 10000 web pages at ran-
dom from a large crawl of over 120 million pages from Fall
2001. To experiment with numbers of queries beyond the
size of the query log, we replicated the queries according
to a multiplier between 1 and 14 – for experiments without
clustering only. We note that the first three optimizitions do
not exploit similarities between different queries, and thus
we believe this scaling approach is justified. The experi-
ments are performed on a machine with a 3.0 Ghz Pentium4
processor with 16 KB L1 and 2 MB L2 cache, under a Linux
2.6.12-Gentoo-r10 environment. We used the gcc compiler
with Pentium4 optimizations. Figure 3.1 shows the total
running times of the optimizations without clustering (top),
and with clustering (bottom) for matching different numbers
of queries against 10000 incoming documents. Our results
show that millions of subscriptions can be matched against
hundreds or thousands of incoming documents per second.

Figure 3.1: Running times of the various algorithm

optimizations for different numbers of queries.

4. REFERENCES
[1] B. Bloom. Space/time trade-offs in hash coding with

allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[2] A. Carzaniga and A. L. Wolf. Forwarding in a content-based
network. In Proc. of ACM SIGCOMM Conf., 2003.

[3] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha. Filtering algorithms and implementation for
very fast publish/subscribe systems. In Proc. of ACM
SIGMOD Conf., 2001.

[4] U. Irmak, S. Mihaylov, T. Suel, S. Ganguly, and R. Izmailov.
Efficient Query Subscription Processing for Prospective
Search Engines. In Proc. of USENIX Annual Technical
Conf., 2006.

[5] T. W. Yan and H. Garcia-Molina. The SIFT information
dissemination system. ACM Transactions on Database
Systems, 24(4):529–565, 1999.


