Capturing RIA Concepts in a Web Modeling Language

Alessandro Bozzon
bozzon@elet.polimi.it

Piero Fraternali
fraterna@elet.polimi.it

Sara Comai
comai@elet.polimi.it

Giovanni Toffetti Carughi
toffetti@elet.polimi.it

Dipartimento di Elettronica e Informazione
Politecnico di Milano
P.zza L. da Vinci, I-32 20133 Milano, Italy

ABSTRACT

This work addresses conceptual modeling and automatic
code generation for Rich Internet Applications, a variant of
Web-based systems bridging the gap between desktop and
Web interfaces. The approach we propose is a first step
towards a full integration of RIA paradigms into the Web
development process, enabling the specification of complex
Web solutions mixing HTTP+HTML and Rich Internet Ap-
plications, using a single modeling language and tool.

Categories and Subject Descriptors: D.2.2 [Software
Engineering]: Design Tools and Techniques, computer-
aided software engineering (CASE), evolutionary prototyp-
ing, user interfaces; H.4.0 [Information Systems Appli-
cations]: general; H.5.4 [Information Interfaces and
Presentation]: Hypertext / Hypermedia architectures, nav-
igation, theory, user issues.

General Terms: Design.

Keywords: Rich Internet Applications, Web Engineering,
Web Site Design.

1. INTRODUCTION

In the last years the Web has become the reference plat-
form for the development of a wide variety of integrated
business solutions. Due to the increasing complexity of these
applications, current Web technologies are starting to show
usability and interactivity limits. Rich Internet Applications
(RIAs) have been recently proposed as the response to such
drawbacks [2]. They are a variant of Web-based systems
providing sophisticated interfaces for representing complex
processes and data, minimizing client-server data transfers
and moving the interaction and presentation layers from the
server to the client. Typically, a RIA is loaded by the client
along with some initial data; then, it manages data render-
ing and event processing, communicating with the server
when the user requires further information or must sub-
mit data. So far RIAs lack development methodologies and
CASE tools catering for their specificity, notwithstanding
the number of existing methodologies and tools for Web and
Hypermedia development [3], which allow one to specify the

Copyright is held by the author/owner.
WWW 2006May 23-26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

application at an abstract level and derive the implementa-
tion code (semi-) automatically.

In this work we consider a conceptual Web modeling lan-
guage (WebML [1], www.webml.org) and extend it with the
aim of reducing the gap between Web development method-
ologies and the RIA paradigm, leveraging the common fea-
tures of RIAs and traditional Web applications. The ex-
tended conceptual model has been implemented in a CASE
tool capable of automatically producing a running RIA.

2. CONCEPTUAL MODELING FOR RIAS

The typical layers of a Web conceptual model include
data, hypertext in the large, and hypertext in the small
modeling. In the following paragraphs we briefly introduce
and discuss the extensions to the main ingredients of a Web
conceptual model needed to support RIA features.

Data model. While in traditional data-intensive Web
applications content resides solely at the server-side (in the
form of database tuples or as user session-related main mem-
ory objects), in RIAs content can also reside in the client,
as main memory objects with the same visibility and du-
ration of the client application, or, in some technologies,
as persistent client-side objects. Data are therefore charac-
terized by two different dimensions: the architectural tier
of existence, which can be the server or the client, and
the level of persistence, which can be permanent or tem-
porary. In WebML, where the data model is represented
by Entity-Relationship diagrams, we stereotype entities and
relationships with their persistence level. Figure 1 depicts
a well-formed data schema. For example, we stereotype as
database the data permanently stored in a server-side data
management system (e.g., a relational or XML database); as
client the data that are temporarily stored at the client side,
for the duration of the application run. A data schema ex-
tended with these two persistence levels is well-formed if the
following constraint holds: relationships with database per-
sistence connect entities with database persistence only(i.e.
persistent relationships cannot connect temporary entities).

Hypertext model in the large. Hypertext modeling
in the large specifies the general structure of the front-end:
it organizes the hypertext taking into account the differ-
ent classes of users, and structures it into pages, possibly
clustered into areas having a specific purpose, and possibly
organized in a hierarchy composed of nested pages. From
the technological standpoint RIAs have a different physical

structure than traditional data-intensive Web applications:
the former typically consist of a single application ”shell”
(e.g., a Java applet or a FLASH movie), which loads different
data and components based on the user’s interaction. The
latter consist of multiple independent templates, processed
by the server and simply rendered by the client. However,
the hypertext modeling metaphor remains a good descrip-
tion of the dynamics of the interface also for RIAs, especially
in the case of hybrid applications, which comprise a mix of
traditional page templates and RIA components.

To cope with the specificity of RIAs, where pages, or frag-
ments thereof, can be executed either at the server-side or
at the client-side, the notion of page in WebML has been ex-
tended, by stereotyping it as: 1) Server page: it represents
a traditional Web page; content and presentation are calcu-
lated by the server, whereas rendering and event detection
are handled by the client. Events triggering some business
logic (not bound to the presentation layer) are processed at
server-side.2) Client page: it represents a page incorporating
content or logics managed (at least in part) by the client.
Its content can be computed at the server or client side,
whereas presentation, rendering and event handling occur
at the client side. Events can be processed locally at the
client or dispatched to the server.

Hypertext model in the small. Hypertext modeling

in the small refines the coarse model of the application with
details about the content of pages, the links for user’s inter-
action, and the operations triggered by the user.
The content of pages in WebML is represented with a vi-
sual notation as a graph of content units connected by links.
Figure 2 depict an example of a RIA hypertext model. Links
express both parameter passing, needed for computing the
data of parametric units, and user interaction, needed for
triggering page (re)computation. In traditional Web appli-
cations, content unit processing occurs on the server: data
is extracted from a database entity, logical conditions (called
selector conditions in WebML) can be specified to filter the
entity instances, and ordering clauses specify how they have
to be sorted. In RIAs, computation is distributed between the
server and the client, according to the page type: units con-
tained in a server page are computed by the server (server
units), like in traditional Web applications, and units con-
tained in a client page are managed by the client (client
units). The WebML content unit is extended with the pos-
sibility of specifying the source entity, the selector conditions
and ordering clauses either on the server or on the client. A
unit is well-formed if the following constraints hold: a) server
units cannot be specified on a client entity and cannot com-
prise client-side selectors and ordering clauses; b) a client
unit that draws content from a client entity, cannot contain
server-side selector conditions or ordering clauses. These
constraints ensure that all the computations performed by
the server rely only on data and operations computable at
the server-side and thus cope with the asymmetric nature
of the Web, where the client calls the server and not vice
versa.

WebML operations model arbitrary business logic and
predefined content updates (creating, deleting or modifying
entities, connecting or disconnecting pairs of entity instances
belonging to a relation). In the RIA context, operations
can be executed by the client or by the server, as captured
by the following definitions: 1) server operation: a piece of
business logic or data update executed by the server; 2) client

Database Entity Client Entit
ien ntity

CD [€] Wish Item
OID 10:N [} l:l'OID

Artist .
Pri Inter-layer |/CDTitle
rice - _
. Relationship
Title

Figure 1: Example of RIA Data model

Client Page
S h Client Unit defined
earc over_a Database Entity
Search CD From CDList Price Filter
Catalog ot — .
K: string Max: float Niax
L] L1

CD
[Title contains K] Server Selector

[[c]Price <= Max] Client Selector

Figure 2: Example of RIA Hypertext Model

operation: a piece of business logic executed by the client or
an update on a client-side entity or relationship; 3) operation
chain: a sequence of operations, possibly mixing client and
server operations.

In order to fit the RIA paradigm, operation composition
constraints and a new semantic of page computation have
also been defined.

3. IMPLEMENTATION

The RIA modelling primitives discussed above have been
implemented in WebRatio (www.webratio.com), a CASE
tool for the visual specification and the automatic code gen-
eration for Web applications. WebRatio adopts an MVC-
based organization and maps the various concepts of WebML
(pages, content units, and operations) into the components
of the MVC 2 architecture. We adopted a similar design
for generating the client-side code, exploiting Laszlo LZX
(www.openlaszlo.org) as the implementation technology.
A client-side controller coded in LZX is responsible of han-
dling events and managing the computation of client-side
content units and operations. Each content unit is mapped
into: (1) a view component for rendering, (2) a model com-
ponent for data management, business logic, and server com-
munication, (3) possibly a service on the server-side for data
query and result formatting in XML. Operations are imple-
mented like content units, without view components. Pre-
sentation is also generated automatically, by incorporating
into the view component of units the look&feel mockups
manually coded in LZX. A complete example of an ap-
plication developed with the abovementioned approach is
presented on the full-size poster.

4. REFERENCES

[1] S. Ceri and P. Fraternali and M. Brambilla and A. Bongio and
S. Comai and M. Matera , “Designing Data-Intensive Web
Applications”, Morgan Kaufmann, 2002.

[2] Joshua Duhl, “White paper: Rich Internet Applications”, IDC,
2003.

[3] P.Fraternali, “Tools and Approaches for Developing
Data-Intensive Web Applications: A Survey”, ACM Comput.
Surv. Volume 31 Number 3, 1999.

