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ABSTRACT 
In this paper, we propose a decentralized collaborative filtering 
(CF) approach based on P2P overlay network for the autonomous 
agents’ environment. Experiments show that our approach is more 
scalable than traditional centralized CF filtering systems and 
alleviates the sparsity problem in distributed CF.  

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval –information filtering.  

General Terms 
Algorithms, Experimentation, Performance. 

Keywords 
Distributed collaborative filtering, P2P system, Friend network. 

1. INTRODUCTION 
To date, most of the research for CF algorithms was focused on 
how to efficiently make good recommendations. Even though 
touched on by some papers [1, 3, 6], the issue of solving the 
scalability problem by applying a distributed CF algorithm is not 
well studied.  
We propose a novel distributed approach in which agents 
collaborate by sharing their rating information on items with their 
friends. Each agent saves its user’s ratings and broadcasts them to 
the user’s friends so that only friends’ ratings and its own ratings 
are kept in the local database. Based on this local information, an 
agent makes recommendations. 
We adopt a P2P approach [2] to make our system scalable. Peers 
are represented as the agents and a Gnutella-like P2P protocol is 
used to find friends at the beginning. After construction of the 
friend list, an agent operates by our protocol, which is almost the 
same as the Gnutella protocol [2], except that it is defined on a 
friend network instead of a P2P network. 

2. OUR DISTRIBUTED CF APPROACH 
Instead of monolithic repositories situated on central servers to 
provide the recommendation service, we use a decentralized 
collaborative filtering algorithm based on a P2P overlay network 
for the autonomous agents’ environment. Each peer keeps his own 
user profile for each category of items (e.g., movies, music, Web 
pages, etc.). A user profile has user preferences which are 

collected implicitly via user visiting history or explicitly declared 
by the user. User preferences can be denoted by multiple 
preference vectors. For simplicity, we assume that user 
preferences are modeled by one preference vector. A subset of 
global ratings is also saved in user profiles. Each peer does not 
only keep its own ratings on items but also keeps a friend list 
which records the peers who share similar interests on items with 
the local peer. The friend list contains friend IDs and their rating 
information.  

2.1 Maintenance of Friend List  
In order to find the friends for each peer in the network at the 
beginning, the system initiates a flooding mechanism similar to 
Gnutella as follows. A request is broadcast to neighbors of the 
sending peer. The request contains the user preference vector of 
the sender on items. TTL (time to live) is set in the original 
request package to limit the nodes to pass on.  If the Cosine 
similarity of the preference vectors between neighbors and sender 
is larger than a threshold, it sends the neighbor ID and ratings 
back. Otherwise, it continues to forward the request to the 
neighbors, and TTL is decreased by 1. If the TTL count reaches 0, 
the request is not sent further.   When a large set of friends is 
returned to the sender, all the returned peers are ranked based on 
the similarity of friendship. Top n peers are kept as friends; the 
rest are discarded. 
Once a friend list is constructed for each peer, a shortcut layer can 
be built based on the friendship between peers. We call it the 
“friend network”. One peer can continuously update his rating 
information and broadcast to his closest friends instead of his 
neighbors. At the same time, each peer can receive the ratings 
from his friends and thus is able to update his predictions.  
Things change; people change. As time passes by, a friend of one 
peer may no longer be similar. It is necessary to update each 
peer’s friend list periodically to get the up-to-date 
recommendations. Instead of flooding the whole network as at the 
beginning, we trace the friend relationship to identify new friends. 
By requesting friends to recommend new friends, we can shorten 
the friend searching range instead of flooding the request in the 
Gnutella network. However if we send request messages only to 
friends of the target peer, we might miss some useful friends. To 
alleviate this situation, we introduce FDTL (Friendship Depth To 
Live) which is the same as TTL except that it operates on the 
friend network.  
A request message contains rating information of the sender for 
calculation of friendship. Note that the preference vector is used 
for this purpose at the beginning because no rating information is 
available. If still no rating is given by the user at that time, the 
preference vector is included into the message instead of rating 
information. Once a peer receives a request message from its 
friend, the peer calculates friendships between its friends and the 
target peer contained in the message. To add more credit to the 
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friends who share common ratings with the target peer, we use an 
adjusted Pearson correlation method as a friendship measure. If 
the friendship measure  is larger than the threshold, the friend ID 
with its rating information is sent back to the target peer. We call 
the users (or peers) suggested by friends, “potential friends”. After 
the target peer receives reply messages from its friends, its 
friends’ friends and so on, it selects the top n peers among its 
current friends and the potential friends and then registers them as 
its new friends by updating its local database. This allows for 
peers to adapt to dynamic changes and incrementally refine friend 
selection.  

2.2 Scalability and Sparsity Problem 
There are two kinds of CF algorithms: memory-based and model-
based [4]. We took a memory-based approach in this paper 
because each peer keeps rating information of only its friends and 
itself and thus the data are not enough to generate an accurate 
model. Generally, memory-based approaches suffer from the 
scalability problem. However, for our approach, the problem is 
not severe because we keep only rating information for a moderate 
number of users.  
The sparsity problem occurs when available data are insufficient 
for identifying similar users (neighbors). It is a major issue that 
limits the quality of recommendations and the applicability of CF 
in general. To date, several approaches [4] have been proposed to 
alleviate the sparsity problem under the environment that all rating 
information are kept in central hosts. 
In our approach, the sparsity problem is not as severe as in the 
centralized approaches because the local database keeps only its 
friends’ rating information. Our novel approach utilizes other 
agents’ opinions (or predictions) instead of real ratings. Namely, 
an agent asks for friends’ opinions when rating information in the 
local database is not sufficient. Some friends can give their 
opinion (not real rating just prediction) on an item based on their 
friends’ ratings.  

3. PERFORMANCE EVALUATION 
We carried out experiments based on the Each-Movie data, which 
has been collected by Digital Equipment Research Center. To 
speed up our experiments, we only use a subset of the EachMovie 
data set. We use the MAE (Mean Absolute Error) as the accuracy 
metric. Prediction for an item is calculated by performing a 
weighted average of deviations from the neighbor's mean. We use 
the top n rule to select the nearest N neighbors based on the 
similarities of users. 
Recommendation performance also depends on the number of 
friends. Fewer friends mean less information to use for 
recommendation. If the number of friends is over the optimum, it 
will add noise to reduce the recommendation performance. Based 
on our previous work [5], we set the friend number to 30 in our 
testing system.   
The value of FDTL has a direct impact on recommendation 
performance. If there is no limitation of FDTL, the system will 
flood almost all of the nodes in the first run. In this case, FDTL 
functions as the TTL and causes a rush hour in the traffic. If the 
FDTL is too small, it cannot find sufficient resources to update the 
information. From our earlier experiments, we found that the 
system shows a favorable performance when FDTL is set to 4.  
To simulate the initial environment, we randomly select 1000 
users who have at least 20 ratings for items from Each-Movie data; 
we calculate the similarity among them and save 30 nearest 
friends for everyone. Then we randomly select 0 to 10 friends for 
each user.  

We first randomly select 100 users and let them send out request 
packages to their friends if they have any. Those nodes are treated 
as the active nodes which spread the activity over the 1000 users 
and push them to find their top 30 friends.  As shown in Figure 1, 
the recommendation performance increased quickly at the 
beginning runs, and then gradually increased until it tends to be 
flat after 25 runs. If most of users in the friend network cannot 
update their friend list any more based on current situation, we 
call this status “saturated”. It is the optimum stage of the network. 
At the tail of runs, it reaches the saturated point for those 1000 
users.   
We also found the top 30 friends for those 1000 users by the 
central CF algorithm. The precision of distributed CF at saturated 
point is quite close to the centralized CF; their MAE values are 
1.01 and 0.992, respectively.  The coverage of distributed CF 
(97.4%) is greater than the central CF (73.2%) due to the ability of 
the distributed CF algorithm to address the sparsity problem.  
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Figure 1. Recommendation Performance over Runs 

4. CONCLUSIONS 
We proposed a distributed CF algorithm based on a friend 
network, where users’ rating information spreads out to their 
friends by a self-organizing protocol. From our experiments, we 
found that the accuracy of our approach is almost the same as a 
centralized CF approach while dealing well with the scalability 
problem and the sparsity problem. In the future, intensive 
experiments are needed to analyze the characteristics of our 
approach. 
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