
A Decentralized CF Approach Based on Cooperative
Agents

Byeong Man Kim
Kumoh National Institute of

Technology
Gumi, Gyeongbuk, Korea

bmkim@kumoh.ac.kr

Qing Li
 Information & Communications

University
Daejeon, Korea

liqing@icu.ac.kr

Adele E. Howe
Colorado State University

Fort Collins, Colorado, USA

howe@cs.colostate.edu

ABSTRACT
In this paper, we propose a decentralized collaborative filtering
(CF) approach based on P2P overlay network for the autonomous
agents’ environment. Experiments show that our approach is more
scalable than traditional centralized CF filtering systems and
alleviates the sparsity problem in distributed CF.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval –information filtering.

General Terms
Algorithms, Experimentation, Performance.

Keywords
Distributed collaborative filtering, P2P system, Friend network.

1. INTRODUCTION
To date, most of the research for CF algorithms was focused on
how to efficiently make good recommendations. Even though
touched on by some papers [1, 3, 6], the issue of solving the
scalability problem by applying a distributed CF algorithm is not
well studied.
We propose a novel distributed approach in which agents
collaborate by sharing their rating information on items with their
friends. Each agent saves its user’s ratings and broadcasts them to
the user’s friends so that only friends’ ratings and its own ratings
are kept in the local database. Based on this local information, an
agent makes recommendations.
We adopt a P2P approach [2] to make our system scalable. Peers
are represented as the agents and a Gnutella-like P2P protocol is
used to find friends at the beginning. After construction of the
friend list, an agent operates by our protocol, which is almost the
same as the Gnutella protocol [2], except that it is defined on a
friend network instead of a P2P network.

2. OUR DISTRIBUTED CF APPROACH
Instead of monolithic repositories situated on central servers to
provide the recommendation service, we use a decentralized
collaborative filtering algorithm based on a P2P overlay network
for the autonomous agents’ environment. Each peer keeps his own
user profile for each category of items (e.g., movies, music, Web
pages, etc.). A user profile has user preferences which are

collected implicitly via user visiting history or explicitly declared
by the user. User preferences can be denoted by multiple
preference vectors. For simplicity, we assume that user
preferences are modeled by one preference vector. A subset of
global ratings is also saved in user profiles. Each peer does not
only keep its own ratings on items but also keeps a friend list
which records the peers who share similar interests on items with
the local peer. The friend list contains friend IDs and their rating
information.

2.1 Maintenance of Friend List
In order to find the friends for each peer in the network at the
beginning, the system initiates a flooding mechanism similar to
Gnutella as follows. A request is broadcast to neighbors of the
sending peer. The request contains the user preference vector of
the sender on items. TTL (time to live) is set in the original
request package to limit the nodes to pass on. If the Cosine
similarity of the preference vectors between neighbors and sender
is larger than a threshold, it sends the neighbor ID and ratings
back. Otherwise, it continues to forward the request to the
neighbors, and TTL is decreased by 1. If the TTL count reaches 0,
the request is not sent further. When a large set of friends is
returned to the sender, all the returned peers are ranked based on
the similarity of friendship. Top n peers are kept as friends; the
rest are discarded.
Once a friend list is constructed for each peer, a shortcut layer can
be built based on the friendship between peers. We call it the
“friend network”. One peer can continuously update his rating
information and broadcast to his closest friends instead of his
neighbors. At the same time, each peer can receive the ratings
from his friends and thus is able to update his predictions.
Things change; people change. As time passes by, a friend of one
peer may no longer be similar. It is necessary to update each
peer’s friend list periodically to get the up-to-date
recommendations. Instead of flooding the whole network as at the
beginning, we trace the friend relationship to identify new friends.
By requesting friends to recommend new friends, we can shorten
the friend searching range instead of flooding the request in the
Gnutella network. However if we send request messages only to
friends of the target peer, we might miss some useful friends. To
alleviate this situation, we introduce FDTL (Friendship Depth To
Live) which is the same as TTL except that it operates on the
friend network.
A request message contains rating information of the sender for
calculation of friendship. Note that the preference vector is used
for this purpose at the beginning because no rating information is
available. If still no rating is given by the user at that time, the
preference vector is included into the message instead of rating
information. Once a peer receives a request message from its
friend, the peer calculates friendships between its friends and the
target peer contained in the message. To add more credit to the

Copyright is held by the author/owner(s).
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

friends who share common ratings with the target peer, we use an
adjusted Pearson correlation method as a friendship measure. If
the friendship measure is larger than the threshold, the friend ID
with its rating information is sent back to the target peer. We call
the users (or peers) suggested by friends, “potential friends”. After
the target peer receives reply messages from its friends, its
friends’ friends and so on, it selects the top n peers among its
current friends and the potential friends and then registers them as
its new friends by updating its local database. This allows for
peers to adapt to dynamic changes and incrementally refine friend
selection.

2.2 Scalability and Sparsity Problem
There are two kinds of CF algorithms: memory-based and model-
based [4]. We took a memory-based approach in this paper
because each peer keeps rating information of only its friends and
itself and thus the data are not enough to generate an accurate
model. Generally, memory-based approaches suffer from the
scalability problem. However, for our approach, the problem is
not severe because we keep only rating information for a moderate
number of users.
The sparsity problem occurs when available data are insufficient
for identifying similar users (neighbors). It is a major issue that
limits the quality of recommendations and the applicability of CF
in general. To date, several approaches [4] have been proposed to
alleviate the sparsity problem under the environment that all rating
information are kept in central hosts.
In our approach, the sparsity problem is not as severe as in the
centralized approaches because the local database keeps only its
friends’ rating information. Our novel approach utilizes other
agents’ opinions (or predictions) instead of real ratings. Namely,
an agent asks for friends’ opinions when rating information in the
local database is not sufficient. Some friends can give their
opinion (not real rating just prediction) on an item based on their
friends’ ratings.

3. PERFORMANCE EVALUATION
We carried out experiments based on the Each-Movie data, which
has been collected by Digital Equipment Research Center. To
speed up our experiments, we only use a subset of the EachMovie
data set. We use the MAE (Mean Absolute Error) as the accuracy
metric. Prediction for an item is calculated by performing a
weighted average of deviations from the neighbor's mean. We use
the top n rule to select the nearest N neighbors based on the
similarities of users.
Recommendation performance also depends on the number of
friends. Fewer friends mean less information to use for
recommendation. If the number of friends is over the optimum, it
will add noise to reduce the recommendation performance. Based
on our previous work [5], we set the friend number to 30 in our
testing system.
The value of FDTL has a direct impact on recommendation
performance. If there is no limitation of FDTL, the system will
flood almost all of the nodes in the first run. In this case, FDTL
functions as the TTL and causes a rush hour in the traffic. If the
FDTL is too small, it cannot find sufficient resources to update the
information. From our earlier experiments, we found that the
system shows a favorable performance when FDTL is set to 4.
To simulate the initial environment, we randomly select 1000
users who have at least 20 ratings for items from Each-Movie data;
we calculate the similarity among them and save 30 nearest
friends for everyone. Then we randomly select 0 to 10 friends for
each user.

We first randomly select 100 users and let them send out request
packages to their friends if they have any. Those nodes are treated
as the active nodes which spread the activity over the 1000 users
and push them to find their top 30 friends. As shown in Figure 1,
the recommendation performance increased quickly at the
beginning runs, and then gradually increased until it tends to be
flat after 25 runs. If most of users in the friend network cannot
update their friend list any more based on current situation, we
call this status “saturated”. It is the optimum stage of the network.
At the tail of runs, it reaches the saturated point for those 1000
users.
We also found the top 30 friends for those 1000 users by the
central CF algorithm. The precision of distributed CF at saturated
point is quite close to the centralized CF; their MAE values are
1.01 and 0.992, respectively. The coverage of distributed CF
(97.4%) is greater than the central CF (73.2%) due to the ability of
the distributed CF algorithm to address the sparsity problem.

runs

0 10 20 30 40 50 60

M
A
E

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Figure 1. Recommendation Performance over Runs

4. CONCLUSIONS
We proposed a distributed CF algorithm based on a friend
network, where users’ rating information spreads out to their
friends by a self-organizing protocol. From our experiments, we
found that the accuracy of our approach is almost the same as a
centralized CF approach while dealing well with the scalability
problem and the sparsity problem. In the future, intensive
experiments are needed to analyze the characteristics of our
approach.

5. ACKNOWLEDGMENTS
This work was supported by the Korea Research Foundation Grant
(KRF-2005-013-D00048).

6. REFERENCES
[1] K. Ali and V.-S. Wijnand, TiVo: Making Show

Recommendations Using a Distributed Collaborative
Filtering Architecture, In Proc. of KDD’04, 2004.

[2] Y. Chawathe, S. Ratnasamy and L. Breslau, Making
Gnutella-like P2P Systems Scalable, In Proc. of ACM
SIGCOMM’03, 2003.

[3] P. Han, B. Xie, F. Yang and R. Shen, A Novel Distributed
Collaborative Filtering Algorithm and Its Implementation on
P2P Overlay Network, In Proc. of PAKDD 2004, 2004.

[4] H. Hofmann, Latent Semantic Models for Collaborative
Filtering, ACM Transactions on Information Systems, Vol.22,
No.1, 2004.

[5] B. M. Kim, Q. Li, C. S. Park and S. Kim, A New Approach
for Combining Content-based and Collaborative Filters,
Journal of Intelligent Information Systems, 2006 (In Press).

[6] C. Pitsilis and L. Marshall, A Proposal for Trust-enabled P2P
Recommendation Systems, Technical Report Series (CS-TR-
910), University of Newcastle upon Tyne, 2005.

