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ABSTRACT
This paper proposes OWL FA, a decidable extension of OWL DL
with the metamodeling architecture of RDFS(FA). It shows that
the knowledge base satisfiability problem of OWL FA can be re-
duced to that of OWL DL, and compares the FA semantics with
the recently proposed contextual semantics and Hilog semantics
for OWL.

Categories and Subject Descriptors:I.2.4 [ARTIFICIAL INTEL-
LIGENCE]: Knowledge Representation Formalisms and Methods

General Terms: Standardization, Languages, Theory

Keywords: Ontology, Reasoning, Metamodeling

1. OWL AND METAMODELING
A common user complain about OWL DL is that it does not sup-

port metamodeling, which allows one to describe additional level(s)
of classes and properties. In order to make use of (decidable) on-
tology reasoning, users has to restrict themselves into OWL DL.
In practice, it is often not realistic to ask users to transfer their on-
tologies with meta-classes and meta-properties into ones without.
Although OWL Full provides some metamodeling; however, it is
not decidable. It has been pointed out that if we just ignore the
need for metamodeling, some users will simply not use OWL, and
the whole effort could become a failure [3].

Motik [1] proposes two alternative metamodeling approaches for
OWL, i.e., the context approach and the HiLog approach. In the
context approach, metamodeling is provided by allowing that the
names for classes, properties and individuals are not distinguished
from each other. The trick is to provide them different interpreta-
tion functions according to the context. Consequently, the interpre-
tations of a class and an object sharing the same name are com-
pletely independent, which leads to non-intuitive result. For ex-
ample, in this approach, if two objectsteacher andlecture are
asserted to be equivalent, the interpretation of the classteacher

can be an empty set, while that of the classlecture can contain
some objects, such asFrank. In the HiLog approach, the seman-
tics is more intuitive; however, existing DL reasoners can not be
reused, and one has to implement new reasoners.

This paper proposes OWL FA, an extension of OWL DL with
the metamodeling architecture of RDFS(FA) [2]. There are two
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nice features of OWL FA. Firstly, it is a decidable extension of
OWL DL. Secondly, the knowledge base satisfiability problem of
OWl FA can be reduced to that of OWL DL, which indicates we
can reuse existing DL reasoners to support OWL FA.

2. OWL FA
Intuitively, OWL FA introduces a stratum number in class con-

structors and axioms to indicate the strata they belong to. Let i≥ 0
be an integer. OWL FA consists of an alphabet of distinct class
namesVCi (for stratum i), datatype namesVD, abstract property
namesVAPi (for stratum i), datatype property namesVDP and in-
dividual (object) names (VI); together with a set of constructors
(with subscriptions) to construct class and property descriptions
(also calledOWL FA-classesandOWL FA-properties, respectively).

OWL FA has a model theoretic semantics, which is regarded as
an extension of that of RDFS(FA) with interpretations for OWL FA
descriptions and axioms. In the rest of the paper, we assume that i
is an integer such that 1≤ i ≤ k. The interpretation function can be
extended to give semantics to OWL FA-properties and OWL FA-
classes. LetRN ∈ VAPi be an abstract property name in stratum
i andR an abstract property in stratum i. Valid OWL FA abstract
properties are defined by the abstract syntax:R ::= RN | R−,
where for somex, y ∈ ∆A

J
i−1, 〈x, y〉 ∈ RJ iff 〈y, x〉 ∈ R−J .

Valid OWL FA datatype properties are datatype property names.
Now we define the OWL FA-class descriptions. LetCN ∈ VCi

be an atomic class name in stratum i,R an OWL FA-property in
stratum i,o ∈ I an individual,T ∈ VDP a datatype property name,
andC, D OWL FA-classes in stratum i. Valid OWL FA-classes are
defined by the abstract syntax:

C ::= >i | ⊥ | CN | ¬iC | C ui D | C ti D | {o} | ∃iR.C
∀iR.C |6i nR |>i nR
(if i = 1) ∃1T.d | ∀1T.d |61 nT |>1 nT

The semantics of OWL FA-classes are presented in Table 1 (page ).
C is satisfiableiff there exist an interpretationJ s.t. CJ 6= ∅; C
subsumesD iff for every interpretationJ we haveCJ ⊆ DJ .

An OWL FA knowledge baseΣ consists ofΣ1, . . . , Σk. Each
Σi consists of a TBoxTi, an RBoxRi and an ABoxAi. Due to the
limitation of space, we only present class and individual axioms
here, and leave out the property axioms in RBoxes. An OWL FA
TBoxTi is a finite set of class inclusion axioms of the formC vi D,
whereC, D are OWL FA-classes in stratum i. An interpretationJ
satisfiesC vi D if CJ ⊆ DJ .

Let a, b ∈ I be individuals,C1 a class in stratum 1,R1 an ab-
stract property in stratum 1,l a literal,T ∈ VD a datatype property,
X, Y classes or abstract properties in stratum i,E a class in stra-
tum i + 1 andS an abstract property in stratum i+1. An OWL FA
ABoxA1 is a finite set of individual axioms of the following forms:



Constructor DL Syntax Semantics
top >i ∆A

J
i−1

bottom ⊥ ∅
concept name CN CNJ ⊆ ∆A

J
i−1

general negation ¬iC ∆A
J
i−1 \ CJ

conjunction C ui D CJ ∩DJ

disjunction C ti D CJ ∪DJ

nominals {o} {o}J = {oJ }
exists restriction ∃iR.C {x ∈ ∆A

J
i−1 | ∃y.〈x, y〉 ∈ RJ ∧ y ∈ CJ }

value restriction ∀iR.C {x ∈ ∆A
J
i−1 | ∀y.〈x, y〉 ∈ RJ → y ∈ CJ }

atleast restriction >i mR {x ∈ ∆A
J
i−1 | ]{y | 〈x, y〉 ∈ RJ } ≥ m}

atmost restriction 6i mR {x ∈ ∆A
J
i−1 | ]{y | 〈x, y〉 ∈ RJ } ≤ m}

datatype exists ∃1T.d {x ∈ ∆A
J
0 | ∃t.〈x, t〉 ∈ TJ ∧ t ∈ dJ }

datatype value ∀1T.d {x ∈ ∆A
J
0 | ∀t.〈x, t〉 ∈ TJ → t ∈ dJ }

datatype atleast >1 mT {x ∈ ∆A
J
0 | ]{t | 〈x, t〉 ∈ TJ } ≥ m}

datatype atmost 61 mT {x ∈ ∆A
J
0 | ]{t | 〈x, t〉 ∈ TJ } ≤ m}

Table 1: OWL FA classes

a :1 C1, calledclass assertions, 〈a, b〉 :1 R1, calledabstract prop-
erty assertions, 〈a, l〉 :1 T , calleddatatype property assertions,
a = b, calledindividual equality axiomsand ,a 6= b, calledindi-
vidual inequality axioms. An interpretationJ satisfiesa :1 C1 if
aJ ∈ CJ1 ; it satisfies〈a, b〉 :1 R1 if 〈aJ , bJ 〉 ∈ RJ1 ; it satisfies
〈a, l〉 :1 T if 〈aJ , lJ 〉 ∈ TJ ; it satisfiesa = b if aJ = bJ ;
it satisfiesa 6= b if aJ 6= bJ . An OWL FA ABoxAi is a fi-
nite set of axioms of the following forms:X : E, calledmeta-
class assertions, 〈X, Y 〉 : R, calledmeta-property assertions, or
X =i−1 Y , calledmeta individual equality axioms. An interpre-
tationJ satisfiesX : E if XJ ∈ EJ ; it satisfies〈X, Y 〉 : R if
〈XJ , Y J 〉 ∈ RJ ; it satisfiesX =i−1 Y if XJ = Y J .

An interpretationJ satisfies a knowledge baseΣ if it satisfies
all the axioms inΣ. Σ is satisfiable(unsatisfiable) iff there exists
(does not exist) such an interpretationJ that satisfiesΣ. Let C, D
be OWL FA-classes in stratum i,C is satisfiablew.r.t. Σ iff there
exist an interpretationJ of Σ s.t. CJ 6= ∅i; C subsumesD w.r.t.
Σ iff for every interpretationJ of Σ we haveCJ ⊆ DJ .

Example 1 Here we represent a meta part of WordNet ontology in
the following OWL FA axioms.

∃2(wns: hyponymOf) v2 wns:LexicalConcept
∃2(wns: hyponymOf)− v2 wns:LexicalConcept

〈wnc:100002086 , wnc:100001740 〉 :2 (wns: hyponymOf)
wns:Adverb v2 wns:LexicalConcept

wns:Adverb v2 ¬2(wns:Noun and Verb)
Trans2(wns: hyponymOf)

Now we briefly discuss some reasoning tasks of OWL FA. In an
OWL FA knowledge baseΣ, it is obvious thatΣ1 is aSHOIN (D)
knowledge base, andΣ2, . . . , Σk areSHIQ knowledge bases.
Note that classes and property names inΣi are treated as individual
names inΣi+1; therefore, class and property equality axioms inΣi

can act as individual equality axioms inΣi+1. On the other hand,
individual equalities explicitly asserted and implicitly entailed by
number restrictions inΣi+1 can act as class and property equality
axioms inΣi.

Definition 2 Let Σ = 〈Σ1, . . . , Σk〉 be an OWL FA knowledge
base, where each ofΣ1, . . . , Σk is consistent.Σ∗ =〈Σ∗1, . . . , Σ∗k〉,
called theexplicit knowledge base, is constructed by making all the
implicit atomic class axioms, atomic property axioms and individ-
ual equality axioms explicit. ¦

As we have a finite set of vocabulary, we have the following Lemma.

Lemma 3 Given an OWL FA knowledge baseΣ =〈Σ1, . . . , Σk〉.
Σ∗ can be constructed fromΣ in finite steps.

It can be argued that, in many realistic ontologies,Σ∗ would
not be much bigger thanΣ. This is based on the observation that
the number of entailed but not explicit stated equal class (property,
individual) pairs would not be huge (as usually it is not extremely
helpful to have multiple class names for the same class description).
On the other hand, the entailed equalities often come as a surprise
for ontology builders.

Note that if a class description is not defined inΣ i (i.e., if it is not
equivalent to any atomic class), it is not represented by any meta-
individual in Σ i+1. This suggests the connections betweenΣ i

andΣ i+1 are atomic classes and properties inΣ i, which are meta-
individuals inΣ i+1. Accordingly, once we calculate the explicit
knowledge bases, we can decide the knowledge base satisfiability
problems locally.

Theorem 4 Given an OWL FA knowledge baseΣ =〈Σ1, . . . , Σk〉.
Σ is satisfiable iff eachΣ∗i (1≤ i ≤ k) is satisfiable.

Theorem 4 indicates we can reduce the OWL FA-knowledge
base satisfiability problem to the OWL DL-knowledge base satisfi-
ability problem.

3. CONCLUSION AND OUTLOOK
In this paper, we propose the OWL FA ontology language as

a decidable metamodeling extension of OWL DL. The syntax of
OWL FA is very similar to that of OWL DL; it introduces a stratum
number to attach to OWL FA class constructors and axioms. These
numbers can be hidden by tools from the users. The semantics of
OWL FA is a natural extension of that of OWL DL, dividing the
abstract domain into k sub-domains for k strata.

We have shown that it is possible to make use of existing OWL
DL reasoners to reason with OWL FA knowledge bases. Most im-
portantly, we believe that reasoning in OWL FA is not much harder
than OWL DL. Firstly, as argued in the previous section, the ex-
plicit knowledge baseΣ∗ usually would not be much bigger than
the original knowledge baseΣ. Furthermore, we can often assume
that the meta knowledge basesΣ2, . . . , Σk are more stable and
much smaller thanΣ1. Indeed, whenΣ2, . . . ,Σk are much simpler
and smaller thanΣ1, the reasoning time for much smaller thanΣ1,
the reasoning time spent onΣ2, . . . , Σk can be ignored to some
extent. This suggest a clear advantage of the FA semantics over
the HiLog semantics [1], which requires implementations of new
reasoners to provide research services.

In the future, we plan to implement the construction of explicit
knowledge bases so that we can use OWL DL reasoners to reason
with OWL FA knowledge bases, and to evaluate it with, for exam-
ple, the WordNet ontology.
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