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ABSTRACT
XML is fast becoming the standard format to store, ex-
change and publish over the web, and is getting embed-
ded in applications. Two challenges in handling XML are
its size (the XML representation of a document is signifi-
cantly larger than its native state) and the complexity of its
search (XML search involves path and content searches on
labeled tree structures). We address the basic problems of
compression, navigation and searching of XML documents.
In particular, we adopt recently proposed theoretical algo-
rithms [11] for succinct tree representations to design and
implement a compressed index for XML, called XBzipIn-
dex, in which the XML document is maintained in a highly
compressed format, and both navigation and searching can
be done uncompressing only a tiny fraction of the data.
This solution relies on compressing and indexing two arrays
derived from the XML data. With detailed experiments
we compare this with other compressed XML indexing and
searching engines to show that XBzipIndex has compres-
sion ratio up to 35% better than the ones achievable by
those other tools, and its time performance on some path
and content search operations is order of magnitudes faster:
few milliseconds over hundreds of MBs of XML files versus
tens of seconds, on standard XML data sources.

Categories and Subject Descriptors
E.1 [Data Structures]: Arrays, Tables, Trees; E.4 [Coding
and Information Theory]: Data compaction and com-
pression; H.3 [Information Storage and Retrieval]: Con-
tent Analysis and Indexing, Information Storage, Informa-
tion Search and Retrieval.

General Terms
Algorithms, Experimentation.
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Labeled trees, XML compression and indexing.
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1. INTRODUCTION
In 1996 the W3C started to work on XML as a way to en-

able data interoperability over the internet; today, XML is
the standard for information representation, exchange and
publishing over the Web. In 2003 about 3% of global net-
work traffic was encoded in XML; this is expected to rise to
24% by 2006, and to at least 40% by 2008 [15]. XML is also
seeping into many applications [1].

XML is popular because it encodes a considerable amount
of metadata in its plain-text format; as a result, applica-
tions can be more savvy about the semantics of the items
in the data source. This comes at a cost. At the core,
the challenge in XML processing is three-fold. First, XML
documents have a natural tree-structure, and many of the
basic tasks that are quite easy on arrays and lists—such as
indexing, searching and navigation—become more involved.
Second, by design, XML documents are wordy since they
nearly repeat the entire schema description for each data
item. Therefore, data collections become more massive in
their XML representations, and present problems of scale.
As a result, XML can be “inefficient and can burden a com-
pany’s network, processor, and storage infrastructures” [15].
Finally, XML documents have mixed elements with both
text and numerical or categorical attributes. As a result,
XML queries are richer than commonly used SQL queries;
they, for example, include path queries on the tree structure
and substring queries on contents.

In this paper we address these basic challenges. In par-
ticular, we address the problems of how to compress XML
data, how to provide access to its contents, how to navigate
up and down the XML tree structure (cfr. DOM tree), and
how to search for simple path expressions and substrings.
The crux is, we focus on doing all of these tasks while keep-
ing the data still in its compressed form and uncompressing
only a tiny fraction of the data for each operation.

Problems and the Background. As the relationships be-
tween elements in an XML document are defined by nested
structures, XML documents are often modeled as trees whose
nodes are labeled with strings of arbitrary length drawn
from a usually large alphabet Σ. These strings are called
tag or attribute names for the internal nodes, and content

data for the leaves (shortly Pcdata). See Fig. 1 for an ex-
ample. Managing XML documents (cfr. their DOM tree)
therefore needs efficient support of navigation and path ex-

pression search operations over their tree structure. With
navigation operations we mean:
• find the parent of a given node u, find the ith child of

u, or find the ith child of u with some label.



With path expressions, we mean two basic search operations
that involve structure and content of the XML document
tree:
• Given a labeled subpath Π and a string γ, find ei-

ther the set of nodes N descending from Π (Π may be
anchored to any internal node, not necessarily tree’s
root), or the occurrences of string γ as a substring of
the Pcdata contents of N ’s nodes.

The first search operation, called SubPathSearch, corresponds
to an XPath query having the form //Π, where Π is a fully-
specified path consisting of tag/attribute names. The sec-
ond search operation, called ContentSearch, corresponds to
an XPath query of the form //Π[contains(.,γ)], where
Π is a fully-specified path and γ is an arbitrary string of
characters.

The text book solution to represent the XML document
tree for navigation—finding parents and children of nodes in
the tree—uses a mixture of pointers and hash arrays. Unfor-
tunately, this representation is space consuming and prac-
tical only for small XML documents. Furthermore, while
tree navigation takes constant time per operation, SubPath-
Search and ContentSearch need the whole scan of the doc-
ument tree which is expensive. In theory, there are certain
sophisticated solutions (see [5, 14] and references therein)
for tree navigation in succinct space but they do not sup-
port the search operations above. If SubPathSearch is a key
concern, we may use any summary index data structure [6]
that represents all paths of the tree document in an index
(two famous examples are Dataguide [16] and 1- or 2-indexes
[22]). This significantly increases the space needed by the
index, and yet, it does not support ContentSearch queries ef-
ficiently. If ContentSearch queries are the prime concern, we
need to resort more sophisticated approaches— like XML-
native search engines, e.g. XQueC [4], F&B-index [29],
etc.; all of these engines need space several times the size of
the XML representation.

At the other extreme, XML-conscious compressors such
as [21, 3, 8]—do compress XML data into small space, but
any navigation or search operation needs the decompression
of the entire file. Even XML-queryable compressors like [27,
23, 10], that support more efficient path search operations,
incur into the scan of the whole compressed XML file and
need the decompression of large parts of it in the worst case.
This is expensive at query time.

Recently, there has been some progress in resolving the
dichotomy of time-efficient vs space-efficient solutions [11].
The contribution in [11] is the XBW transform that repre-
sents a labeled tree using two arrays: the first contains the
tree labels arranged in an appropriate order, while the sec-
ond is a binary array encoding the structure of the tree. The
XBW transform can be computed and inverted in (optimal)
linear time with respect to the number of tree nodes, and is
as succinct as the information contained in the tree would
allow. Also, [11] shows that navigation and search oper-
ations over the labeled tree can be implemented over the
XBW transform by means of two standard query operations
on arrays: rankα(A, k) computes the number of occurrences
of a symbol α in the array prefix A[1, k]; selectα(A,h) com-
putes the position in A of the hth occurrence of α. Since
the algorithmic literature offers several efficient solutions for
rank and select queries (see [5, 17] and references therein),
the XBW transform is a powerful tool for compressing and
searching labeled trees.

Our Contribution. The result in [11] is theoretical and
relies on a number of sophisticated data structures for sup-
porting rank and select queries. In this paper, we show how
to adapt XBW transform to derive a compressed searching
tool for XML, and present a detailed experimental study
comparing our tools with existing ones. More precisely, our
contribution is as follows.

(1) We present an implementation of the XBW transform
as a compressor (hereafter called XBzip). This is an attrac-
tively simple compressor, that relies on standard compres-
sion methods to handle the two arrays in the XBW trans-
form. Our experimental studies show that this is compa-
rable in its compression ratio to the state-of-the-art XML-
conscious compressors (which tend to be significantly more
sophisticated in employing a number of heuristics to mine
some structure from the document in order to compress
“similar contexts”). In contrast, the XBW transform auto-
matically groups contexts together by a simple sorting step
involved in constructing the two arrays. In addition, XBzip
is a principled method with provably near-optimal compres-
sion [11].

(2) We present an implementation of the XBW transform
as a compressed index (hereafter called XBzipIndex). This
supports navigation and search queries very fast uncom-
pressing only a tiny fraction of the document. Compared to
similar tools like XGrind [27], XPress [23] and Xqzip [10],
the compression ratio of XBzipIndex is up to 35% bet-
ter, and its time performance on SubPathSearch and Con-
tentSearch search operations is order of magnitudes faster:
few milliseconds over hundreds of MBs of XML files ver-
sus tens of seconds (because of the scan of the compressed
data inherent in these comparable tools). The implemen-
tation of XBzipIndex is more challenging since in addition
to the XBW transform, like in [11], we need data structures
to support rank and select operations over the two arrays
forming XBW. Departing from [11] which uses sophisticated
methods for supporting these operations on compressed ar-
rays, we introduce the new approach of treating the arrays
as strings and employing a state-of-the-art string index-
ing tool (the FM-index [13]) to support structure+content

search operations over the document tree. This new ap-
proach of XBzipIndex has many benefits since string in-
dexing is a well-understood area; in addition, we retain the
benefits of [11] in being principled, with concrete perfor-
mance bounds on the compression ratio as well as time to
support navigation and search operations.

Both the set of results above are obtained by suitably
modifying the original definition of XBW given in [11] that
works for labeled trees to better exploit the features of XML
documents. The final result is a library of XML compression
and indexing functions, consisting of about 4000 lines of C
code and running under Linux and Windows. The library
can be either included in another software, or it can be di-
rectly used at the command-line with a full set of options
for compressing, indexing and searching XML documents.

XBzipIndex has additional features and may find other
applications besides compressed searching. For example, it
supports tree navigation (forward and backward) in con-
stant time, allows the random access of the tree structure
in constant time, and can explore or traverse any subtree in
time proportional to their size. This could be used within an



XML visualizer or within native-XML search engines such
as XQueC [4] and F&B-index [29]. There are more general
XML queries like twig or XPath or XQuery; XBzipIndex
can be used as a core to improve the performance of known
solutions. Another such example is that of structural joins
which are key in optimizing XML queries. Previous work in-
volving summary indexes [7, 19], or node-numbering such as
Vist [28] or Prüfer [25] might be improved using XBzipIn-
dex.

2. COMPACT REPRESENTATION OF DOM
TREES

Given an arbitrary XML document d, we now show how
to build an ordered labeled tree T which is equivalent to the
DOM representation of d. Tree T consists of four types of
nodes defined as follows:

1. Each occurrence of an opening tag <t> originates a tag
node labeled with the string <t.

2. Each occurrence of an attribute name a originates an
attribute node labeled with the string @a.

3. Each occurrence of an attribute value or textual con-
tent of a tag, say ρ, originates two nodes: a text-skip
node labeled with the character =, and a content
node labeled with the string ∅ρ, where ∅ is a special
character not occurring elsewhere in d.

The structure of the tree T is defined as follows (see
Figure 1). An XML well-formed substring of d, say σ =
<t a1="ρ1" . . . ak="ρ1"> τ </t>, generates a subtree of T
rooted at a node labeled <t. This node has k children (sub-
trees) originating from t’s attribute names and values (i.e.
@ai → = → ρi), plus other children (subtrees) originating
by the recursive parsing of the string τ . Note that attribute
nodes and text-skip nodes have only one child. Tag nodes
may have an arbitrary number of children. Content nodes
have no children and thus form the leaves of T .1

2.1 TheXBW Transform
We show how to compactly represent the tree T by adapt-

ing the XBW transform introduced in [11]. The XBW trans-
form uses path-sorting and grouping to linearize the labeled
tree T into two arrays. As shown in [11], this “linearized”
representation is usually highly compressible and efficiently
supports navigation and search operations over T . Note
that we can easily distinguish between internal-node labels
vs leaf labels because the former are prefixed by either <,
or @, or =, whereas the latter are prefixed by the special
symbol ∅.

Let n denote the number of internal nodes of T and let
ℓ denote the number of its leaves, so that the total size of
T is t = n + ℓ nodes. For each node u ∈ T , let α[u] denote
the label of u, last[u] be a binary flag set to 1 if and only if
u is the last (rightmost) child of its parent in T , and π[u]
denote the string obtained by concatenating the labels on
the upward path from u’s parent to the root of T .

To compute the XBW transform we build a sorted multi-

set S consisting of t triplets, one for each tree node (see
Fig. 2). Hereafter we will use Slast[i] (resp. Sα[i], Sπ[i]) to

1Document d may contain tags not including anything, the
so called empty tags (i.e. <t/> or <t></t>). These tags are
managed by transforming them to <t>λ</t>, where λ is a
special symbol not occurring elsewhere in d.

refer to the last (resp. α, π) component of the i-th triplet of
S . To build S and compute the XBW transform we proceed
as follows:

1. Visit T in pre-order; for each visited node u insert the
triplet s[u] = 〈last[u], α[u], π[u]〉 in S ;

2. Stably sort S according to the π-component of its
triplets;

3. Form XBW(d) = 〈 bSlast, bSα, bSpcdata〉, where bSlast = Slast[1, n],
bSα = Sα[1, n], and bSpcdata = Sα[n + 1, t].

Since sibling nodes may be labeled with the same symbol,
several nodes in T may have the same π-component (see
Fig. 1). The stability of sorting at Step 2 is thus needed to
preserve the identity of triplets after the sorting. The sorted
set S [1, t] has the following properties: (i) Slast has n bits
set to 1 (one for each internal node), the other t − n bits
are set to 0; (ii) Sα contains all the labels of the nodes of
T ; (iii) Sπ contains all the upward labeled paths of T (and
it will not be stored). Each path is repeated a number of
times equal to the number of its offsprings. Thus, Sα is a
lossless linearization of the labels of T , whereas Slast provides
information on the grouping of the children of T ’s nodes.

We notice that the XBW transform defined in Step 3 is
slightly different from the one introduced in [11] where XBW
is defined as the pair 〈Slast,Sα〉. The reason is that here
the tree T is not arbitrary but derives from an XML docu-
ment d. Indeed we have that Sα[1, n] contains the labels of
the internal nodes, whereas Sα[n + 1, t] contains the labels
of the leaves, that is, the Pcdata. This is because if u is
a leaf the first character of its upward path π[u] is = which
we assume is lexicographically larger than the characters <

and @ that prefix the upward path of internal nodes (see
again Fig. 2). Since leaves have no children, we have that
Slast[i] = 1 for i = n + 1, . . . , t. Avoiding the wasteful rep-
resentation of Slast[n + 1, t] is the reason for which in Step 3

we split Sα and Slast into 〈 bSlast, bSα, bSpcdata〉.
In [11] the authors describe a linear time algorithm for

retrieving T given 〈Slast,Sα〉. Since it is trivial to get the
document d from XBW(d) we have that XBW(d) is a loss-
less encoding of the document d. It is easy to prove that
XBW(d) takes at most (17/8)n + ℓ bytes in excess to the
document length (details in the full version). However, this
is an unlikely worst-case scenario since many characters of d
are implicitly encoded in the tree structure (i.e., spaces be-
tween the attribute names and values, closing tags, etc). In
our experiments XBW(d) was usually about 90% the origi-

nal document size. Moreover, the arrays bSlast, bSα, and bSpcdata

are only an intermediate representation since we will work
with a compressed image of these three arrays (see below).

Finally, we point out that it is possible to build the tree T
without the text-skip nodes (the nodes with label =). How-
ever, if we omit these nodes Pcdata will appear in Sα in-
termixed with the labels of internal nodes. Separating the

tree structure (i.e. 〈 bSlast, bSα〉) from the textual content of

the document (i.e. bSpcdata) has a twofold advantage: (i) the

two strings bSα and bSpcdata are strongly homogeneous hence
highly compressible (see Sect. 2.2), (ii) search and naviga-
tion operations over T are greatly simplified (see Sect. 2.3).

2.2 Why XBW(d) compresses well
Suppose the XML fragment of Fig. 1 is a part of a large

bibliographic database for which we have computed the XBW



<biblio>
<book id=1>
<author>J. Austin</author>
<title>Emma</title>

</book>
<book id=2>
<author>C. Bronte</author>
<title>Jane Eyre</title>

</article>
</biblio>

Figure 1: An XML document d (left) and its corresponding ordered labeled tree T (right).

Slast Sα Sπ

1 <biblio empty string

0 <book <biblio

0 @id <book<biblio

1 = @id<book<biblio

1 ∅1 =@id<book<biblio

0 <author <book<biblio

1 = <author<book<biblio

1 ∅J. Austin =<author<book<biblio

1 <title <book<biblio

1 = <title<book<biblio

1 ∅Emma =<title<book<biblio

1 <book <biblio

0 @id <book<biblio

1 = @id<book<biblio

1 ∅2 =@id<book<biblio

0 <author <book<biblio

1 = <author<book<biblio

1 ∅C. Bronte =<author<book<biblio

1 <title <book<biblio

1 = <title<book<biblio

1 ∅Jane Eyre =<title<book<biblio

Stable sort
-

Rk Slast Sα Sπ

1 1 <biblio empty string

2 1 = <author<book<biblio

3 1 = <author<book<biblio

4 0 <book <biblio

5 1 <book <biblio

6 0 @id <book<biblio

7 0 <author <book<biblio

8 1 <title <book<biblio

9 0 @id <book<biblio

10 0 <author <book<biblio

11 1 <title <book<biblio

12 1 = <title<book<biblio

13 1 = <title<book<biblio

14 1 = @id<book<biblio

15 1 = @id<book<biblio

16 1 ∅J. Austin =<author<book<biblio

17 1 ∅C. Bronte =<author<book<biblio

18 1 ∅Emma =<title<book<biblio

19 1 ∅Jane Eyre =<title<book<biblio

20 1 ∅1 =@id<book<biblio

21 1 ∅2 =@id<book<biblio

bSlast = 111010010011111
bSα = <biblio==<book<book@id<author<title@id<author<title====

bSpcdata = ∅J. Austin∅C. Bronte∅Emma∅Jane Eyre∅1∅2

Figure 2: The set S after the pre-order visit of T (left). The set S after the stable sort (right). The three

arrays bSlast, bSα, bSpcdata, output of the XBW transform (bottom).

transform. Consider the string =<author. The properties of
the XBW transform ensure that the labels of the nodes whose
upward path is prefixed by =<author are consecutive in Sα.
In other words, there is a substring of Sα consisting of all
the data (immediately) enclosed in an <author> tag. Simi-
larly, another section of Sα contains the labels of all nodes
whose upward path is prefixed by, say, =@id<book and will
therefore likely consists of id numbers. This means that Sα,

and therefore bSα and bSpcdata, will likely have a strong local

homogeneity property.2

We point out that most XML-conscious compressors are
designed to “compress together” the data enclosed in the
same tag since such data usually have similar statistics. The
above discussion shows that the XBW transform provides a
simple mechanism to take advantage of this kind of regular-
ity. In addition, XML compressors (e.g. Xmill, Scmppm,
XmlPpm) usually look at only the immediately enclosing
tag since it would be too space consuming to maintain sep-

2Readers familiar with the Burrows-Wheeler transform will
recognize the analogy: the BWT groups together the char-
acters which are prefixed by the same substring whereas the
XBW groups together data enclosed in the same set of tags.

arate statistics for each possible group of enclosing tags.
Using the XBW transform we can overcome this difficulty
since the different groups of enclosing tags are considered
sequentially rather than simultaneously. For example, for
a bibliographic database, Sα would contain first the labels
of nodes with upward path =<author<article, then the la-
bels with upward path =<author<book, and finally the labels
with upward path =<author<manuscript, and so on. Hence,
we can either compress all the author names together, or we
can decide to compress the three groups of author names
separately, or adopt any other optimization scheme.

2.3 Navigation and search usingXBW(d)

Recall that every node of T corresponds to an entry in
the sorted multiset S (see Fig. 2). We (logically) assign
to each tree node a positive integer equal to its rank in S .
This number helps in navigation and search because of the
following two properties of the sorted multiset S .

1. Let u1, . . . , uc be the children of a node u. The triplets
s[u1], . . . , s[uc] lie contiguously in S in this order. The
last triplet s[uc] has its last-component set to 1; the
other triplets have their last-component set to 0.



2. Let v1, v2 denote two nodes with the same label (i.e.,
α[v1] = α[v2]). If s[v1] precedes s[v2] in S , then the
children of v1 precede the children of v2 in S .

Example 1 In Fig. 2 we have two nodes labeled <book,
whose upward path is <biblio. These nodes have rank 4
and 5, and have a total of 6 children that are stored in the
subarray S [6, 11]. The children of S [4] are S [6, 8], and the
children of S [5] are S [9, 11]. Note that Slast[8] = Slast[11] = 1
since these are the last children of their parent.

For every internal node label β, we define F(β) as the rank
of the first row of S such that Sπ is prefixed by β. Thus, for
the example of Fig. 2 we have F(<author) = 2, F(<biblio) =
4, F(<book) = 6, and so on. Suppose that the tree contains
m internal nodes with label β. We can rephrase Properties
1–2 above stating that starting from position F(β) there are
m groups of siblings which are the offsprings of the nodes
with label β. The end of each group is marked by a value
1 in the array Slast, and the k-th group of siblings gives the
children of the node corresponding to the k-th occurrence of
the label β in Sα (see Example 1 for the case β = <book).

To efficiently navigate and search T , in addition to XBW(d)
and the array F, we need auxiliary data structures for the

rank and select operations over the arrays bSlast and bSα. Re-
call that given an array A[1, n] and a symbol c, rankc(A, i)
denotes the number of times the symbol c appears in A[1, i],
and selectc(A,k) denotes the position in A of the k-th oc-
currence of the symbol c.

The pseudocode of the procedure for computing the rank
of the children of the node with rank i is shown in Fig. 3 to
highlight its simplicity. We first compute the label c of node

i by setting c = bSα[i] (Step 1). Then, we set k = rankc( bSα, i)
(Step 2) and we have that S [i] is the k-th node with label c

is bSα. Because of properties 1–2 the children of S [i] are the
k-th group of siblings starting from position y = F(c). The
rank of the children is therefore easily computed by way of

rank/select operations over the array bSlast (Steps 4–6). For
example, in Fig. 2 for i = 5 we have c = <book and k = 2
so we are interested in the second group of siblings starting
from F(<book) = 6.

The procedures for navigation and SubPathSearch have a
similar simple structure and are straightforward adaptations
of similar procedures introduced in [11].The only nontrivial
operations are the rank and select queries mentioned above.
Note that navigation operations require a constant number
of rank/select queries, and the SubPathSearch procedure re-
quires a number of rank/select queries proportional to the
length of the searched path. In this paper we introduce the
new procedure ContentSearch that combines the techniques
of [11] with the FM-index data structure of [12, 13] and will
be discussed in Sect. 3.3.

3. IMPLEMENTATION

3.1 Computation of theXBW transform
To build the tree T we parse the input document d using

the Expat library by James Clark.3 Expat is a stream ori-
ented parser written in C. We set its handlers in order to
create the tree nodes and their labels. The time required to

3http://expat.sourceforge.net/.

Algorithm GetChildren(i)

1. c = bSα[i];

2. k = rankc( bSα, i);

3. y = F[c];

4. z = rank1( bSlast, y − 1);

5. First = select1( bSlast, z+k− 1)+1;

6. Last = select1( bSlast, z + k);

7. return (First, Last).

Figure 3: Algorithm for computing the range
(First, Last) such that S [First],S [First + 1], . . . ,S [Last] are
the children of node S [i].

Algorithm XBzip

1. Compute XBW(d) = 〈 bSlast, bSα, bSpcdata〉;

2. Merge bSα and bSlast into bS ′

α

3. Compress separately bS ′

α and bSpcdata using Ppmdi.

Figure 4: Pseudocode of XBzip.

build the tree T from one hundred MBs of XML data is a
few seconds. In [11] the authors show that given T we can
compute XBW(d) in time linear in the number of tree nodes.
In our tests we followed a simpler approach: we represent
Sπ as an array of pointers to T nodes and we sort S operat-
ing on this array of node pointers. Experimentally we found
that the stable-sorting of Sπ is the most time-consuming
part of XBW computation because of the many pointer in-
directions that generate cache misses. Future work will be
devoted to implementing more efficient algorithms, by using
insights from the optimal algorithm proposed in [11].

3.2 Compression ofXBW(d): the XBzip tool
If we are only interested in a compressed (non-searchable)

representation of the XML document d, we simply need to

store the arrays bSlast, bSα and bSpcdata as compactly as possi-
ble. This is done by the XBzip tool whose pseudocode is
given in Fig. 4. Experimentally, we found that instead of

compressing bSlast and bSα separately it is more convenient to

merge them in a unique array bS ′

α obtained from bSα adding

a label </ in correspondence of bits equal to 1 in bSlast. For

example, merging the arrays bSlast and bSα of Fig. 2 yields

bS ′

α = <biblio</=</=</<book<book</@id<author

<title</@id<author<title</=</=</=</=</

This strategy usually offers superior performance in com-
pression because it is able to capture repetitiveness in the
tree structure.

As we observed in Sect. 2.2 the arrays bS ′

α and bSpcdata are
locally homogeneous since the data descending from a cer-

tain tree path is grouped together. Hence, we expect that bS ′

α

and bSpcdata are best compressed splitting them in chucks ac-
cording to the structure of the tree T . For simplicity in our

tests we compress bS ′

α and bSpcdata using the general purpose
compressor Ppmdi [26]. Somewhat surprisingly this sim-
ple strategy already yields good experimental results (see
Sect. 4.1).



Algorithm XBzipIndex

1. Compute XBW(d) = 〈 bSlast, bSα, bSpcdata〉;

2. Store bSlast using a compressed representation support-

ing rank/select queries (see text);

3. Store bSα using a compressed representation supporting

rank/select queries (see text);

4. Split bSpcdata into buckets such that two elements are in

the same bucket if they have the same upward path;

5. Compress each bucket using the FM-index.

Figure 5: Pseudocode of XBzipIndex.

3.3 Supporting navigation and search: the
XBzipIndex tool

In Sect. 2.3 we observed that for navigation and search
operations, in addition to XBW(d), we need data structures

that support rank and select operations over bSlast and bSα.
In [11] the authors use rank/select data structures with theo-
retically efficient (often optimal) worst-case asymptotic per-
formance; in this paper we depart from their approach and
use practical methods. In particular, we will view the ar-
ray as strings, and thus use string indexing techniques. The
resulting tool is called XBzipIndex and its pseudocode is
shown in Fig. 5. Some details follow.

The array bSlast. Observe that search and navigation pro-

cedures only need rank1 and select1 operations over bSlast.
Thus, we use a simple one-level bucketing storage scheme.
We choose a constant L (default is L = 1000), and we par-

tition bSlast into variable-length blocks containing L bits set
to 1. For each block we store:

• The number of 1 preceding this block in bSlast (called
1-blocked rank).

• A compressed image of the block obtained by Gzip.

• A pointer to the compressed block and its 1-blocked
rank.

It is easy to see that rank1 and select1 operations over bSlast

can be implemented by decompressing and scanning a single
block, plus a binary search over the table of 1-blocked ranks.

The array bSα. Recall that bSα contains the labels of in-
ternal nodes of T . We represent it using again a one-level

bucketing storage scheme: we partition bSα into fixed-length
blocks (default is 8Kb) and for each block we store:

• A compressed image of the block (obtained using Gzip).
Note that single blocks are usually highly compressible

because of the local homogeneity of bSα.

• A table containing for each internal-node label β the

number of its occurrences in the preceding prefix of bSα

(called β-blocked ranks).

• A pointer to the compressed block and its β-blocked
rank.

Since the number of distinct internal-node labels is usu-
ally small with respect to the document size, β-blocked ranks
can be stored without adopting any sophisticated solution.

The implementation of rankβ( bSα, i) and selectβ( bSα, i) de-
rives easily from the information we have stored.

The array bSpcdata. This array is usually the largest compo-
nent of XBW(d) (see the last column of Table 1 and Table 3).

Recall that bSpcdata consists of the Pcdata items of d, ordered
according their upward paths. Note that the procedures for
navigating and searching T do not require rank/select oper-

ations over bSpcdata (see Sect. 2). Hence, we use a represen-

tation of bSpcdata that efficiently supports XPath queries of
the form //Π[contains(.,γ)], where Π is a fully-specified
path and γ is an arbitrary string of characters. To this end
we use a bucketing scheme where buckets are induced by
the upward paths. Formally, let Sπ[i, j] be a maximal in-

terval of equal strings in Sπ. We form one bucket of bSpcdata

by concatenating the strings in bSpcdata[i, j]. In other words,

two elements of bSpcdata are in the same bucket if and only
if the have the same upward path. Note that every block
will likely be highly compressible since it will be formed by
homogeneous strings having the same “context”.4 For each
bucket we store the following information:

• An FM-index [12, 13] of the bucket.5 The FM-index is
a compressed representation of a string that supports
efficient substring searches within the bucket. Sub-
string searches are efficient since they only access a
small portion of the compressed bucket (proportional
to the length of the searched string, and not to the
length of the bucket itself).

• A counter of the number of Pcdata items preceding

the current bucket in bSpcdata.

• A pointer to the FM-indexed block and its counter.

Using this representation of bSpcdata, we can answer the query
//Π[contains(.,γ)] as follows (see procedure ContentSearch
in Fig 6). By the procedure SubPathSearch we identify the
nodes whose upward path is prefixed by ΠR (i.e. the reversal

of Π). Then, we identify the substring bSpcdata[F, L] contain-
ing the labels of the leaves whose upward path is prefixed

by =ΠR. Note that bSpcdata[F, L] consists of an integral num-
ber of buckets, say b. To answer the query, we then search
for γ in these b buckets using their FM-indexes, taking time
proportional to |γ| for each bucket. Since the procedure Sub-
PathSearch takes time proportional to |Π|, the overall cost
of the query is proportional to |Π|+ b|γ|.

In addition to the above data structures, we also need two
auxiliary tables: the first one maps node labels to their lex-
icographic ranks, and the second associates to each label β
the value F[β]. Due to the small number of distinct internal-
node labels in real XML files, these tables do not need any
special storage method.

4. EXPERIMENTAL RESULTS
We have developed a library of XML compression and

indexing tools based on the XBW transform. The library,
called XBzipLib, consists of about 4000 lines of C code and
runs under Linux and Windows (CygWin). This library can
be either included in another software or it can be directly

4Notice that Xcq [20] uses a similar partitioning of the Pc-
data into data streams, however queries are supported by
fully scanning the tree structure properly compressed by ex-
ploiting a DTD.
5We used the following parameter settings for the FM-index
(cfr [12]): b = 2Kb, B = 32Kb and f = 0.05. These param-
eters can be tuned to trade space usage for query time.



Algorithm ContentSearch(Π, γ)

1. (First, Last)← SubPathSearch(Π);

2. F← rank=( bSα, First − 1) + 1;

3. L← rank=( bSα, Last);

4. Let B[i, j] be the range of buckets covering bSpcdata[F, L].

5. Search for γ in the FM-indexes of the buckets B[i, j].

Figure 6: Search for the string γ as a substring of
the textual content of the nodes whose leading path
is Π (possibly anchored to an internal node).

used at the command-line with a full set of options for com-
pressing, indexing and searching XML documents. We have
tested our tools on a PC running Linux with two P4 CPUs
at 2.6Ghz, 512Kb cache, and 1.5Gb internal memory.

In our experiments we used nine XML files which cover
a wide range of XML data formats (data centric or text cen-
tric) and structures (many/deeply nested tags, or few/almost-
flat nesting). Whenever possible we have tried to use files
already used in other XML experimentations. Some char-
acteristics of the documents are shown in Table 1. The fol-
lowing is the complete list providing the source for each file.

• Pathways6 contains the graphical description of meta-
bolic pathways by means of the KEGG Markup Lan-
guage (KGML). The XML structure contains many
distinct attribute values consisting of long strings and
many attributes per tag.

• XMark7 has been produced by xmlgen (of the XML
Benchmark Project) and models an auction database
with significantly nested elements.

• Dblp8 is the popular bibliography database of ma-
jor Computer Science journals and conference proceed-
ings. Its main feature is the highly structured format
of the file.

• Shakespeare9 is a corpus of marked-up Shakespeare’s
plays, which contains many long textual passages with
few distinct tag and attribute names.

• Treebank10 is a collection of parsed (and partially en-
crypted) English sentences from The Wall Street Jour-

nal, tagged with parts of speech. It is deeply nested
and with many distinct tag and attribute names.

• XBench has been produced by the homonymous soft-
ware as a single text-centric XML document, covering
the case of an e-commerce catalog data that is cap-
tured as XML. The structural features are similar to
Shakespeare but for a larger file.

• SwissProt11 is a protein sequence database which
strives to provide a high level of annotations, a mini-
mal level of redundancy and high level of integration
with other databases. It is the file having the largest
tree size, with many distinct tag and attribute names.

6http://www.genome.jp/kegg/xml/
7http://monetdb.cwi.nl/xml/
8http://www.cs.washington.edu/research/xmldatasets/
9http://www.ibiblio.org/xml/examples/shakespeare/

10http://www.cis.upenn.edu/~treebank/
11http://www.cs.washington.edu/research/xmldatasets/

• News12 is a large corpus of news articles gathered from
more than 2000 news sources from July 2005. The
XML tree is small and flat, but the textual data is
very large.

4.1 XML compression
To evaluate the real advantages of XML-conscious tools

we compare them with general purpose compressors. The
literature offers various general purpose compressors rang-
ing from dictionary-based (Gzip), to block-sorting (Bzip2),
and Ppm-based compressors (we used Ppmdi [26] which is
the one with the best performance). In addition, we compare
XBzip with the current state-of-the-art XML-conscious com-
pressors:

• Xmill13 [21] is one of the earliest known XML-conscious
compressors. It is user-configurable and separates struc-
ture, layout and data. Content data are distributed
into separate data streams (int, char, string, base64,
etc) which can be compressed with either ad-hoc al-
gorithms or with the classical Gzip, Bzip2 or Ppmdi
tools. We did not adopt any ad-hoc compressor for
the Xmill’s streams because we test many different
sources and they have different characteristics; also,
whatever ad-hoc optimizer one chooses to use with
Xmill, this can be used with XBzip (see Sect. 3.2)
or on the PPM-based compressors.

• XmlPpm14 [8] compresses every token (tag, attribute,
value, content) by means of one among several “mul-
tiplexed” PPM compressors. Recently [9] proposed a
variant of XmlPpm which exploits DTDs or schemas
to improve compression. We did not experiment with
this variant because, according to the author’s con-
clusions, on large documents it achieves compression
ratios similar to XmlPpm.

• ScmPpm15 [3] combines the Ppm-technique with the
Structural Contexts Model (SCM) idea, which is to
use a separate Ppm-model to compress the text that
lies inside each different structure type.

• Lzcs16 [2] is based on a Lempel-Ziv approach which
takes advantage of redundant information (repeated
subtrees) that can appear in the tree structure of the
XML document. Compressed documents generated by
Lzcs are easy to display, access at random, and nav-
igate. In a second stage, the Lzcs-output can be fur-
ther compressed using Ppmdi: this improves compres-
sion but loses random access and navigation features.

We comment on two interesting issues arising from our ex-
periments (see Fig. 7).

• XBzip and Scmppm are the best algorithms in terms of
compression ratio. Surprisingly, Ppmdi is competitive
with them, and it is much faster. With the exception
of Gzip, all other (XML-conscious and unconscious)
compressors lie within a 5% absolute difference in their
compression ratios.

12http://www.di.unipi.it/~gulli/
13http://sourceforge.net/projects/xmill (vers 0.8).
14http://xmlppm.sourceforge.net/.
15http://www.infor.uva.es/~jadiego/download.html.
16http://www.infor.uva.es/~jadiego/download.html.



Dataset Size (bytes) Tree Size #Leaves Tree depth #Tag/Attr | bSα| | bSpcdata|
Max/Avg (distinct)

Pathways 79,054,143 9,338,092 5,044,682 10 / 3.6 4,293,410 (49) 24,249,238 36,415,927
XMark 119,504,522 5,762,702 3,714,508 13 / 6.2 2,048,194 (83) 15,361,789 85,873,039
Dblp 133,856,133 10,804,342 7,067,935 7 / 3.4 3,736,407 (40) 24,576,759 75,258,733
Shakespeare 7,646,413 537,225 357,605 8 / 6.1 179,620 (22) 1,083,478 4,940,623
TreeBank 86,082,516 7,313,000 4,875,332 37 / 8.1 2,437,668 (251) 9,301,193 60,167,538
XBench 108,672,761 7,725,246 4,970,866 9 / 7.2 2,754,380 (25) 7,562,511 85,306,618
SwissProt 114,820,211 13,310,810 8,143,919 6 / 3.9 5,166,891 (99) 30,172,233 51,511,521
News 244,404,983 8,446,199 4,471,517 3 / 2.8 3,974,682 (9) 28,319,613 176,220,422

Table 1: XML documents used in our experiments. The first three files are data centric, the others text

centric. Note that columns | bSα| and | bSpcdata| report the byte length of these two strings.

Figure 7: Comparison of XML compressors. Compression ratio (top) and compression time (bottom). Com-
pression times are scaled with respect to Gzip compression time. Note that Xmill, XmlPpm, Scmppm, and
XBzip all use Ppmdi as their base compressor.

• Xmill and XmlPpm are faster than Ppmdi over all
files except Treebank (which is a pathological case
for structure and ciphered-content), but they are sig-
nificantly slower than Gzip (which achieves by far the
worst compression). XBzip is from 2 to 6 times slower
than Xmill and XmlPpm. Profiling shows that 90%
of XBzip running time is spent for the computation of
the XBW transform which is currently done using an
algorithm requiring quadratic time complexity in the
worst case (see Sect. 3.1). This can be easily decreased
to linear time by implementing the optimal algorithm
described in [11]. The decompression time of XBzip is
already comparable to the one of Xmill and XmlPpm.

In summary, the experimental results show that XML-
conscious compressors are still far from being a clearly ad-
vantageous alternative to general purpose compressors. How-
ever, the experiments show also that our simple XBW-based
compressor provides the best compression for most of the
files. We think that the new compression paradigm intro-
duced with XBW (i.e. first linearize the tree then compress)

is much interesting in the light of the fact that we are sim-
ply applying Ppmdi without fully taking advantage of the

local homogeneity properties of the strings bS ′

α and bSpcdata

(see Sects. 2.2 and 3.2). This will be further investigated in
a future work.

4.2 Searching XML compressed files
The literature offers various solutions to index XML files [6].

Here we only refer to XML compression formats that sup-
port efficient query operations. In Table 2 we compare our
XBzipIndex against the best known queriable compressors.
We were not able to test XPress [23], XGrind [27] and
XQzip [10], because either we could not find their software
or we were unable to run it on our XML files. However,
whenever possible we show in Table 2 the performance of
these tools as reported in their reference papers.

• Huffword [24] is a variant of the classical Huffman-
compressor in which the dictionary consists of the to-
kens (usually words) extracted from the document.



Dataset Huffword XPress XQzip XBzipIndex XBzip
Pathways 33.68 – – 3.62 1.84
XMark 34.15 – 38 28.65 18.07
Dblp 44.00 48 30 14.13 9.69
Shakespeare 42.08 47 40 21.83 17.46
TreeBank 67.81 – 43 54.21 29.52
Xbench 44.96 – – 19.47 15.45
SwissProt 43.10 42 38 7.87 4.66
News 45.15 – – 13.52 10.61

Table 2: Compression ratio achieved by queriable compressors over the files in our dataset. For XPress and
XQzip we report results taken from [23, 10] (the symbol – indicates a result not available in these papers).
The comparison between the last two columns allows us to estimate the space overhead of adding navigation
and search capabilities to XBzip. Note that we can trade space usage for query time by tuning the parameters
of the FM-index [12].

This is the typical storage scheme of (Web) search en-
gines and Information Retrieval tools. Therefore its
compression performance can be seen as a lower bound

to the storage complexity of these approaches (see e.g.
[18]).

• XPress and XGrind adopt an homomorphic trans-
form to preserve the structure of the XML data. Their
compression ratio is usually not competitive with XML
compressors because of the fine-granularity of the in-
dividually compressed data units. To answer a query,
these tools need to scan the whole compressed file. As
a result, for large files query time is of the order of
tens of seconds. In Table 2 we refer only to XPress
because [23] shows that it outperforms XGrind.

• XQzip removes duplicate subtrees, as in Lzcs, and
groups the data into data streams according to the en-
closing tag/attribute, as in Xmill. As a result XQzip
achieves compression better than XPress and XGrind
and close to Xmill; and yet needs the whole scan of
the compressed file for subpath and content seareches.

From the previous comments and Table 2 we observe that
XBzipIndex significantly improves the compression ratio of
the known queriable compressors by 20% to 35% of the orig-
inal document size. Table 3 details the space required by
the various indexing data structures present in XBzipIn-

dex. As expected, the indexing of bSlast and bSα requires neg-
ligible space, thus proving again that these two strings are
highly compressible and even a simple compressed-indexing
approach, as the one we adopted in this paper, pays off.

Conversely, bSpcdata takes most of the space and we plan to
improve compression by fine tuning the parameters of the
FM-indexes that we use for storing this array (see Sec. 3.3).

As far as query and navigation operations are concerned,
we refer to Table 4. Subpath searches are pretty much insen-
sitive to the document size, as theoretically predicted, and
indeed require few milliseconds. Navigational operations
(e.g. parent, child, block of children) require less than one
millisecond in our tests. As mentioned before, all the oth-
ers queryable compressors—like XPress, XGrind, Xqzip—
need the whole scanning of the compressed file, thus requir-
ing several seconds for a query, and use much more storage
space.

5. CONCLUDING REMARKS
We have adopted the methods in [11] for compressing

and searching labelled trees to the XML case and produced

two tools: XBzip, a XML (un)compressor competitive with
known XML-conscious compressors but simpler and with
guarantees on its compression ratio; XBzipIndex that in-
troduces the approach of using full-text compressed indexing
for strings and improves known methods by up to 35% while
simultaneously improving the search operations by an order
of magnitude.
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