
Wake-on-WLAN

Nilesh Mishra
Department of CSE, Indian Institute of

Technology, Kanpur, INDIA 208016

nilmish@cse.iitk.ac.in

Kameswari Chebrolu
Department of EE, Indian Institute of Technology,

Kanpur, INDIA 208016

chebrolu@iitk.ac.in

Bhaskaran Raman
Department of CSE, Indian Institute of

Technology, Kanpur, INDIA 208016

braman@cse.iitk.ac.in

Abhinav Pathak
Department of CSE, Indian Institute of

Technology, Kanpur, INDIA 208016

abpathak@cse.iitk.ac.in

ABSTRACT
In bridging the digital divide, two important criteria are
cost-effectiveness, and power optimization. While 802.11 is
cost-effective and is being used in several installations in
the developing world, typical system configurations are not
really power efficient. In this paper, we propose a novel
“Wake-on-WLAN” mechanism for coarse-grained, on-demand
power on/off of the networking equipment at a remote site.
The novelty also lies in our implementation of a prototype
system using low-power 802.15.4-based sensor motes. We
describe the prototype, as well as its evaluation on field in a
WiFi testbed. Preliminary estimates indicate that the pro-
posed mechanism can save significant power in typical rural
networking settings.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Wake-on-WLAN, Rural Networking, Power Management,
802.11 mesh network, 802.15.4

1. INTRODUCTION AND MOTIVATION
Bringing Information and Communication Technology (ICT)

to the developing world involves addressing two important
technical issues: cost minimization, and power optimiza-
tion. IEEE 802.11 (WiFi) equipments are cost-effective due
to mass production, and are being used (or being explored
for use) in long-distance mesh networks to provide rural In-
ternet connectivity [2, 5, 13]. Such networks can provide
Internet, VoIP, tele-medicine and other related services to
these regions in a cost effective manner. A typical deploy-
ment is exemplified by our Digital Gangetic Plains (DGP)
testbed, shown in Fig. 1 [2]. We have a multi-hop network

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

with point-to-point links, where some village nodes may act
as relays to the wired gateway node.

Figure 1: The Digital Gangetic Plains (DGP)
testbed

Power consumption is an important concern in deploy-
ments where access to the power grid is not always available,
or where it is unreliable. This is often the case in develop-
ing countries, especially in rural locations [2, 3]. To have
reliable operation of the network, the only alternative is to
use a battery to power the WiFi equipment. The battery
can be recharged whenever power is available from the grid
or through solar panels [2, 3]. However since power can be
unavailable from the grid for several days at a stretch, and
large solar panels for extended operation can be an expen-
sive proposition in a rural setting, there is an utmost need
to conserve power.

In this work, we first quantify the power consumption of
a popular platform for several WiFi mesh networks: a sin-
gle board computer platform Soekris [11] that uses off-the
shelf WiFi cards. Similar measurements of wireless interface
power consumption were presented in [12] for hand-held
devices. However, unlike in [12], we find that the power

consumption of the WiFi interface itself is a small percent-
age, and the overall power consumption is dominated by
the Soekris board. The Soekris power consumption can be
as high as 5-6W even when the WiFi card is in idle mode
(listening).

Based on this observation, a suitable approach to con-
serve power is to turn-off the equipment (Soekris) when the
links are idle and to turn it on when connectivity is desired.
While the equipment at a site can be turned off when the
link at that site is detected idle for a certain configurable
duration, the challenge is in turning on the equipment when
needed. A remote host which needs connectivity would have
to turn on equipment at each intermediate hop to the wired
gateway. This needs a mechanism for remote power-on. We
term this wake-up mechanism as Wake-on-WLAN, after the
equivalent mechanism available for wired Ethernet: Wake-
on-LAN [1].

To enable something similar to Wake-on-LAN in a wireless
setting involves support from both the WLAN cards (listen-
ing at very low power) and the motherboard of the single
board computer (powering on when triggered by the WLAN
card). Unfortunately currently available WLAN cards or
single board computer platforms do not come with this sup-
port. So, we rely on a novel implementation of Wake-on-
WLAN. We use off-the-shelf 802.15.4-based sensor motes
(Moteiv’s Tmote sky) [14]. We take advantage of the fact
that both 802.11b/g and 802.15.4 work in the ISM 2.4GHz
band. 802.15.4 specifies a CCA (clear-channel assessment)
mode which requires the received energy to be below a (con-
figurable) threshold. The radio (Chipcon’s CC2420) [4] on
the sensor mote allows this to be programmed, and can gen-
erate an interrupt when the energy level crosses the thresh-
old.

To wake-up a remote site, we first send continuous 802.11
transmissions. The remote end’s 802.15.4 radio chip, on
sensing the energy level of these transmissions, powers-on
the Soekris board (which has the WiFi interface). The boot
sequence invokes the necessary procedure to establish the
WiFi link. Thus the WiFi link is established on-demand.
Note that our Wake-on-WLAN mechanism is coarse grained,
and not on a per-packet basis. In fact, our measurements
show that the Soekris power-on can take as much as about
50 seconds. However, we feel that this latency is alright in
the usage model envisioned for rural deployments. In such
deployments, for cost savings, it is common to have a shared
computing resource (say, a PC) for an entire village [7]. It is
not uncommon for a customer to await his/her turn at the
shared terminal. Hence a delay of a minute or two at the
beginning of a session for on-demand wake-up of a remote
location should be tolerable.

The additional hardware used to enable remote power-on,
does not add significantly to the power consumption, nor to
the overall cost. The 802.15.4 radio as well as the sensor
motes are designed in a careful manner to optimize power
since these are meant to be used in a deploy-and-forget fash-
ion. So, the power consumption of these motes is very small.
Further, they can be programmed with a duty cycle to con-
serve power, the trade off being the amount of time needed
to establish the link. With respect to cost, the sensor motes
are currently priced at U.S.$70 (as of this writing) and come
with a lot of features (10k RAM, 48k flash, USB interface
etc). Many of these features are extraneous in our setting
and we believe this cost can be reduced considerably through

a custom fit design for the Wake-on-WLAN application.
An alternative to the above approach would be to de-

sign a narrow band RF detector (e.g. diode detector) in the
2.4GHz range. The sensitivity of the detector would need to
be around -80 to -90dBm, since such low signal strengths are
not uncommon in long-distance 802.11 links. Initial inves-
tigations suggest that designing a RF detector that realizes
sensitivity in this range is not an easy task. This may in-
volve more or less a redesign of the front-end of the radio
chip. So, instead, we rely on a radio chip (CC2420) that is
very cheap (a few dollars) and provides this front-end to us
readily.

We have tested our prototype implementation of the above
remote wake-on mechanism outdoor on a 3.5Km link in our
DGP testbed. The 802.15.4 based sensor mote was suc-
cessful in powering up the Soekris board when it detected
802.11 transmissions on the link. We have also carried out a
preliminary analysis of power savings considering link usage
pattern observed on one of our testbed links that provides
VoIP connectivity to a rural village. The analysis shows
considerable power savings, of the order of about 91% when
the Wake-on-WLAN feature is employed.

To our knowledge, prior work related closest to ours are
the Wake-on-Wireless mechanism [9] and the Turducken sys-
tem [10]. In [9], the authors have built a mechanism to
power-on a (WiFi-enabled) Personal Digital Assistant (PDA)
on-demand. To achieve this, they use a pair of components
called the “smart-brick” and the “mini-brick”. The smart-
brick is connected to an infrastructure proxy, which is trying
to reach a PDA (for instance, to establish a VoIP call). The
smart-brick communicates using a 900MHz radio with the
mini-brick, which then sends a signal over the serial port of
the PDA to power it on.

In [10] the authors describe the architecture of a system to
optimize power usage by introducing hierarchy in the set of
devices. A low-power consuming device is at the bottom of
the hierarchy. It powers on a higher level device on-demand,
on availability of new information. The goal is to maximize
the life of mobile devices keeping the desired level of consis-
tency across the network/distributed system. The authors
use a WiFi signal detector connected to a sensor mote at the
bottom of hierarchy, to detect the availability of a WiFi link.
The sensor mote signals a PDA (the next level in the hier-
archy) if a link is available via serial communication which
in turn wakes up the computing device (laptop) if there is
new data available.

While the goal of the work in [9, 10] is similar to ours
(power savings), the mechanism used to achieve it, as well
as the scenario of usage are quite different. In terms of the
mechanism, the work in [9] uses a separate control channel
for the wake-up. This involves separate radio operating in a
different frequency (900MHz) at either end: the node per-
forming the wake-up as well as the node being woken up.
Unlike in [9], we use the data channel itself for the remote
wake-up. Similarly [10] uses a separate WiFi sensor attached
to a mote to detect the WiFi signal, leaving the mote’s radio
unused. In contrast, we do not need separate radio hardware
at the node which wishes to initiate the wake-up. Nor do
we use a separate antenna setup at the node which is being
woken up: the 802.15.4 radio shares the external antenna
with the 802.11 radio. The 802.15.4 radio at the receiving
end simply carrier senses 802.11 transmissions in the band
to perform the wake-up.

In terms of scenario of usage, we are concerned with a
WiFi-based rural network setting, operating in the 2.4GHz
band, which is quite different from that considered in [9, 10].
We have suited our design to work on long-distance WiFi
links. For instance, the fact that the 802.15.4 radio and
the 802.11 radio share an external antenna is appropriate in
our long-distance links since the external antenna could be
a high-gain directional antenna [2]. To our knowledge, we
are the first to design, prototype, and demonstrate a Wake-
on-WLAN mechanism for long-distance WiFi networks, as
well as to explore its usefulness in power savings in rural
settings.

The rest of the paper is organized as follows. We be-
gin with a description of the various power consumption
measurements of wireless equipment, in Section 2. Subse-
quently, Section 3 presents the design and prototype imple-
mentation of the Wake-on-WLAN mechanism. Evaluation
of Wake-on-WLAN is carried out in Section 4. Finally, Sec-
tion 5 presents various points of discussion, and Section 6
concludes the paper.

2. POWER CONSUMPTION
MEASUREMENTS

In order to understand the need for power savings, we first
need to quantify the power consumption of the equipment
used in providing wireless connectivity. The equipment that
is typically used at each hop of the wireless network consists
of (a) wireless 802.11 bridge/router that provides connec-
tivity and routes incoming packets towards the correct des-
tination, (b) antenna for extended range, and (c) RF cable
for connecting antenna with the bridge/router. Of these, the
802.11 bridge/router is the active component that consumes
power. One of the most popular platform that is used as a
bridge/router in several current WiFi mesh networks is the
Soekris single board computer equipped with various inter-
faces such as PCMCIA and miniPCI slots. This platform
provides flexibility in configuring the setup, since it can run
a general purpose Operating System (Linux). We have eval-
uated the power consumption of the equipment based on
this platform.

In this section, we first describe the setup used for the
power measurements, followed by the actual measurements.

2.1 Hardware Setup
We have used Soekris net4521 model for our measure-

ments (see Fig. 2). This is a compact and low-cost computer
based on a 133 MHz 486 class processor. It has two 10/100
Mbit Ethernet ports, up to 64 Mbyte SDRAM main mem-
ory and uses a Compact Flash module for program and data
storage. It has a MiniPCI type III board and up to two PC-
Card/Cardbus (PCMCIA) adapters where WiFi cards can
be inserted.

For the software, we used Pebble Linux v41 [8]. Peb-
ble Linux is a smallish (smaller than 64megs, larger than 8
megs) distribution image designed for embedded style de-
vices such as the Soekris boards.

We used a DC supply for the Soekris. For non-technical
reasons, our experiments were split across two sessions, and
we used two different power supplies at these times. Once
it was an 18V supply, and the other time it was a 24V sup-
ply. In the former case, the actual voltage as measured
varied between 17.90V and 19.05V (different values in dif-

Figure 2: The Soekris net4521 single board com-
puter

ferent experiments). In the latter case, the variation across
experiments was between 22.30V and 27.60V. (The voltage
reading is given in each experiment separately below.)

Fig. 3 shows the setup of our experiments. An 802.11
Access Point (AP) is used for sending traffic over the wire-
less link. The traffic originates from (or terminates at) a
desktop PC which is on the same Ethernet segment as the
AP. The other end point of the traffic is the Soekris board
equipped with a 802.11 card. For any data transfer during
the measurements, we use TCP traffic.

Figure 3: Power measurement: experimental setup

For the client cards, we used the following: (a) Senao
2511CD plus ext2 using Prism2 chipset (PCMCIA, 802.11b),
(b) Atheros NL-5354MP+ (miniPCI, 802.11b/a), (c) Orinoco-
Gold (PCMCIA, 802.11b), and (d) DLink DWL-a650 (PCM-
CIA, 802.11a). As indicated above, some cards were 802.11b,
some were 802.11a, and some supported both. While using
an 802.11b client, we used a Cisco a350 AP, and while using
an 802.11a client, we used a DLink DWL-5000 AP.

The power (and hence energy) consumed by the Soekris
in its operation was measured using a multimeter. The ter-
minals of the multimeter were connected across the input
supply of the Soekris. The multimeter was connected in
series for measuring current flowing and in parallel for mea-
suring voltage difference.

2.2 Power Consumption Readings
For each of the cards, we measured the Soekris power

consumption under four scenarios: (a) without any wireless

card connected, (b) with card inserted but idle, (c) with
the Soekris (wireless card) receiving data, and (d) with the
Soekris sending data. Note that when we make the Soekris
board as the TCP data receiver, it would also be sending
data (TCP acks, and MAC-level packets). But so far as the
power consumption measurement goes, we ignore this and
consider that the Soekris is only receiving data. Similarly,
when we make it the TCP data sender, we consider it to be
only transmitting data.

For each power measurement, we measured the voltage
and the current, one at a time. This was done for a few times
for each setup and we averaged the values (the variance was
minimal and hence is not reported). In all the cases the
power was measured at the interface where the adapter pin
is inserted into the Soekris.

Setup Current Voltage Power Thrpt
No cards Present – Transmission through Ethernet

No Transfer 0.25A 19.00V 4.75W –
Soekris rcv’ing 0.25A 19.00V 4.75W 9.41Mbps
Soekris sending 0.25A 19.05V 4.76W 6.93Mbps

Senao card: 802.11b
No Transfer 0.21A 23.30V 4.89W –
Soekris rcv’ing 0.23A 23.10V 5.31W 4.31Mbps
Soekris sending 0.28A 22.30V 6.24W 4.09Mbps

Atheros card: 802.11b
No transfer 0.27A 22.80V 6.16W –
Soekris rcv’ing 0.28A 22.50V 6.30W 5.36Mbps
Soekris sending 0.30A 22.30V 6.69W 5.53Mbps

Orinoco Card: 802.11b
No Transfer 0.30A 18.40V 5.52W –
Soekris rcv’ing 0.31A 18.25V 5.66W 5.05Mbps
Soekris sending 0.32A 18.30V 5.86W 4.70Mbps

Atheros card: 802.11a
No transfer 0.23A 27.60V 6.35W –
Soekris rcv’ing 0.23A 27.60V 6.35W 7.89Mbps
Soekris sending 0.30A 27.50V 7.95W 7.71Mbps

DLink card: 802.11a
No transfer 0.22A 27.60V 6.07W –
Soekris rcv’ing 0.22A 27.60V 6.07W 6.49Mbps
Soekris sending 0.23A 27.50V 6.33W 5.52Mbps

Table 1: Power measurement in Soekris: idle, re-
ceive, and transmit modes

Table 1 shows the measurements. For comparison, we
have also measured the throughput and power values with
no wireless card present, and when we transfer data through
the Ethernet interface of the Soekris. The table shows data
for the various client cards listed earlier.

We first observe that in the case of data transfer through
the Ethernet card, the power consumed is the same irre-
spective of the three cases (idle, receiving, transmitting).
This observation serves as experimental control for the other
measurements. We next observe that the additional power
consumed after insertion of the card (in idle mode) is sig-
nificant, but is relatively small. The maximum such power
consumption is in the case of the Atheros card (among the
802.11b cards): an increase of 1.41W (4.75W to 6.16W), or
1.41/4.75=29.7%.

We next observe that the power consumption is always

higher in the case when the Soekris is transmitting, as op-
posed to when it is receiving. However, the difference be-
tween these two is small in relative terms. So is the difference
between the ’receiving’ and ’idle’ cases.

A point worth noting is that the maximum radio transmit
power rating of these 802.11 cards is quite less in compari-
son to the actual power consumption. Among the cards we
tested, the Senao card has the maximum transmit power
rating, of 0.25W. In all cases, the difference in power con-
sumption between the ’receive’ and ’transmit’ states is much
higher than the actual radio transmit power. Hence most
of the power is consumed by other parts of the system, and
not by the radio itself.

We also observe considerable variations in the power con-
sumption numbers with the various cards used. On average,
the Orinoco 802.11b card was the least power consuming,
and the Atheros 802.11a card was the most power consum-
ing.

We have given the throughput measurements also along-
side for completeness, although these do not have direct sig-
nificance to our power measurements. Note that for 802.11b,
the maximum possible PHY bit-rate is 11Mbps; this should
result in an TCP throughput of about 5.5Mbps after dis-
counting for all the PHY/MAC/IP overheads. The through-
put achieved is less than this expected value due to the fact
that the bottleneck in several cases turns out to be the
Soekris CPU/Memory system, and not the wireless inter-
face. Further, most of the cards (and/or their Linux drivers)
do not have Direct Memory Access (DMA) support, due to
which there is further slow-down: the CPU has to be in-
volved in all data transfer from/to the wireless card. The
same reasons hold even when we use 802.11a, where we use
a PHY transmit rate of 36Mbps.

We also measured the time and power required to boot-up
the Soekris. This is an important thing to measure, since in
our Wake-on-WLAN mechanism, the Soekris may be pow-
ered off and powered on later. We performed these mea-
surements with the Senao card inserted in the Soekris. (The
Senao card is what we use for our outdoor link in our evalu-
ation later.) We observed that the boot-up time is about 50
seconds: the time taken for the “pebble login:” prompt to
appear on the Soekris serial console. The power consump-
tion during this time is about the same as (and sometimes
lower than) the steady-state power consumption, about 5W.

3. DESIGN AND PROTOTYPE IMPLEMEN-
TATION OF WAKE-ON-WLAN

The take-away from the above set of power measurements
is that the idle power consumption can be as high as 5W.
Hence a node can conserve power by turning itself off if it
expects to be unused. Such a mechanism can especially be
useful in a network usage model which is not 24x7, but is
spread over the day. For instance, in our DGP testbed,
we have a VoIP service setup at the Sarauhan location (see
Fig. 1). The usage is spread through the day (having corre-
lations with the time-of-day no doubt). There are anywhere
from 10-30 phone calls per day, each lasting a minute or two
on average.

In a multi-hop setting, if nodes turn off to save power, it
is necessary to have a mechanism to turn them on remotely.
This is the Wake-on-WLAN mechanism. For instance, in
Fig. 4, the nodes B and A are intermediate hops for C to get

Figure 4: An example multi-hop configuration

Internet connectivity through L, the wired gateway node.
If B and A are powered off to begin with, and a user at
C wishes to access a service, C first uses Wake-on-WLAN
to power-on B, which in turn uses the same mechanism to
power-on A. As mentioned earlier, the user experiences ex-
tra delay due to the need to remotely power-on B and then
A. But we expect this to be tolerable under the envisioned
usage model since waiting for a few minutes is common any-
way with a shared resource at village locations.

3.1 Wake-on-WLAN Architecture
Our architecture for Wake-on-WLAN is depicted in Fig. 5.

A node Z wishes to remotely power-on node X. The setup
at X consists of a Soekris board, with the appropriate WiFi
card connected to an external antenna. It is configured
appropriately to act as a bridge or a router to be part of
the WiFi network. Fig. 5 also shows the other components
which are part of our design. These are: an RF switch, a sen-
sor mote with an 802.15.4 radio, a power switching circuit,
and a battery. The figure uses arrows to show control-flow,
lines without arrows to show RF connections, and double-
lines to indicate power supply.

Figure 5: Wake-on-WLAN architecture

To achieve Wake-on-WLAN, Z starts sending 802.11b/g
signals (these could simply be beacons). The role of the
sensor mote at X is to sense these signals. The 802.15.4
radio at X is connected to the same external antenna as
the WiFi card at X. This can be achieved through an RF
switch. The switch is capable of redirecting RF signals in
one direction or the other (to the 802.15.4 radio or to the
Soekris). When the Soekris is powered-off, the RF switch is
in a configuration where the RF signals go to the 802.15.4
radio.

On sensing energy from Z’s 802.11b/g transmissions, the
802.15.4 radio generates an interrupt to the sensor’s proces-
sor. This in turn is captured by a program running on the
mote, and is translated to a 3V voltage level on a general-
I/O pin of the mote. This then triggers the power switching
circuit to supply power to the Soekris box, and thus switches
it on.

At this point, the sensor mote turns the RF switch to di-
rect the RF power towards the Soekris. Then the mote pow-
ers off itself. The Soekris boots up and acts as a router/bridge

as per its configuration in the WiFi network. In a multi-hop
configuration, it may turn out that once node X’s Soekris
powers on, there may be a further node it has to power on
further upstream. The same Wake-on-WLAN mechanism is
used for this.

At some later time, the Soekris at X may decide to power-
off itself. The power-off mechanism is implemented by a
software module running on the Soekris. The module moni-
tors the usage of the link to which the Soekris is connected.
The module may power off the Soekris if the link is detected
to be idle for more than a configurable threshold. The mod-
ule may also use an application-profile and time-of-day to
determine when to power-off the Soekris. (The implemen-
tation details of the module itself are orthogonal to the rest
of the Wake-on-WLAN mechanism.) At this time, before
powering itself off, the Soekris triggers the power switching
circuit to power-on the sensor mote.

The sensor mote when it comes up, turns the RF switch
to direct the RF signals to itself. It is now ready for any
future wake-up signals from Z.

We now describe our prototype implementation of the
above design.

3.2 Prototype Implementation
In our prototype implementation, we have closely followed

the design as represented by Fig. 5. One minor difference
is that we have used a 2-way RF splitter instead of an RF-
switch. This has the minor disadvantage that the RF signal
gets split uniformly between the sensor mote and the Soekris
even though only one of them requires the RF signals at
any time. This implies a 3dB drop in the received signal
strength. This is tolerable, although avoidable in an ideal
setup.

For the sensor motes, our implementation uses Moteiv’s
Tmote sky, which has a CC2420 radio and a micro-controller
which controls the radio. The Chipcon CC2420 radio is a
single chip 2.4GHz IEEE 802.15.4 compliant RF transceiver.
The chip implements a clear channel assessment (CCA) func-
tion which is needed to implement CSMA-CA functionality
as specified by the 802.15.4 standard. The CCA signal in
CC2420 is based on the measured RSSI value and a pro-
grammable threshold. The threshold can be programmed in
steps of 1dB, using the RSSI.CCA THR register of the chip.
There are 3 CCA modes supported by the chip:

• Clear channel when received energy is below threshold.

• Clear channel when not receiving valid IEEE 802.15.4
data.

• Clear channel when energy is below threshold and not
receiving valid IEEE 802.15.4 data.

The first mode is what is useful in our setting for detecting
energy levels of 802.11 transmission. In this mode, CCA=1
when RSSI VAL < CCA THR - CCA HYST (CCA hystere-
sis can be introduced by programming CCA HYST) and
CCA=0 when RSSI VAL ≥ CCA THR. The polarity of the
CCA bit is actually reversed in our experiments by setting
an appropriate control bit. Note that the RSSI.CCA THR
can be programmed in steps of 1dB and takes a default value
of -77dBm. The CCA threshold can be set to very low val-
ues (-70 to -80dBm). This is useful if the Wake-on-WLAN
mechanism has to be used across long-distance (several 10s
of kilometers) links where the RSSI can be quite low.

In an actual deployment, we may be using any of the
several possible 802.11b/g channels. Hence we need to be
able to tune the operating frequency of the 802.15.4 radio
accordingly to sense 802.11 transmissions in a given chan-
nel. The CC2420 chip offers the ability to tune the operat-
ing frequency of the radio chip to operate in the same fre-
quency channel as that of 802.11. This frequency can be pro-
grammed in steps of 1MHz by setting the 10 bit word FSC-
TRL.FREQ [9:0]. The operating frequency is then given by
2048 + FSCTRL.FREQ [9:0] MHz. The default value of
FSCTRL.FREQ is 357, hence it operates at 2.405GHz.

The switching circuit that is used by the sensor mote to
power on the Soekris is as shown in Fig. 6 and Fig. 7. This
circuit uses a relay (GS-SH-205T) as the switch. A NOT
gate IC is used for boosting the voltage level and a transistor
to switch the relay’s coil. The relay in turn switches on the
Soekris’s power supply. The relay’s switch can withstand
the initial heavy current during the Soekris boot-up. The
relay’s solenoid when switched on consumes about 0.20W of
power.

Figure 6: The Power Switching Circuit: Picture

Figure 7: The Power Switching Circuit: Schematic

Our prototype at this time does not include a mechanism

for the Soekris to power-off itself, we have only demon-
strated the wake-up mechanism. Also, the sensor mote is
not switched off at any time. We are currently testing a
switch design which lets the Soekris turn itself off by com-
municating with the mote. This switch is also intended to
latch the state so that the mote can sleep while the Soekris
is up. We now turn to an evaluation of our implementation.

4. PERFORMANCE EVALUATION
Fundamental to our design is the ability of an 802.15.4

sensor mote to detect 802.11 based transmissions. In this
section, we first validate the claim that the sensor mote is
able to detect transmissions generated by an 802.11 radio
(Section 4.1). We then demonstrate that the idea of Wake-
on-WLAN is indeed practical by testing it outdoor on our
DGP testbed (Section 4.2). Finally we show calculations
analyzing the amount of power savings that can be accom-
plished by the Wake-on-WLAN mechanism (Section 4.3).

4.1 Detecting 802.11 Transmissions
In order to confirm that the mote is able to detect 802.11

based transmissions, we use the following setup. A laptop
with a D-Link DWL650 card (802.11b) is setup as an 802.11
transmitter. The HostAP open-source Linux driver is used,
with the card setup in pseudo-ibss ad-hoc mode [6]. The
pseudo-ibss mode ensures that there are no beacons sent by
the card, so that we can control when transmissions are be-
ing sent on air. We use 802.11b channel number 11, since it
was not being used by any indoor Access Point in our indoor
setting. We wrote an application called trafficgen which can
be run on the laptop when desired, to transmit UDP pack-
ets of fixed size at a desired interval. These transmissions
happen on the 802.11b interface of the laptop. The time
interval between successive packet transmissions is a config-
urable parameter, and we consider values of 10ms, 20ms and
100ms. These packets are transmitted with a packet size of
1462 bytes at 1Mbps. This results in a transmission time of
about 11.7ms on air.

The sensor mote is tuned to listen to the same channel
as the 802.11 transmissions by varying the FSCTRL.FREQ
register value. The mode for CCA is also set to give a clear
channel when the received energy is below threshold. Fur-
ther, the mote is configured to sample the channel every 3ms
via a timer interrupt. When the timer expires, the CCA pin
of the radio is polled. This polling is configured to gener-
ate a data point of active high if the channel is busy and
active low if it is idle. These experiments were conducted
indoors using the motes default internal antenna and the
mote operating near (within 1m of) the 802.11 transmitter.

Fig. 8 shows a plot of the data points as a function of
time. The three graphs show the plots for three inter-packet
intervals used in the trafficgen application: 10ms, 20ms,
and 100ms respectively. The trafficgen application was not
switched on during the first few data points in each of the
graphs. When the inter-packet interval in trafficgen is set
to 10ms, the application sending rate exceeds the link ca-
pacity of 1Mbps. Therefore the channel is busy most of the
time: this can be seen in the first graph in Fig. 8. In the
second graph, when the interval was set to 20ms, the cycle
in the plot corresponds to about 7 consecutive data points:
5 high + 2 low or 4 high + 3 low. This is about 3*7=21ms,
close to the inter-packet interval chosen in the trafficgen pro-
gram. The same calculation holds true even for the 100ms

inter-packet interval. This shows that the sensor mote is
able to successfully capture the traffic pattern of the 802.11
transmissions.

 0

 1

 0 10 20 30 40 50 60 70 80 90 100C
C

A
 (

0:
 c

hn
l f

re
e)

Time (units of 3ms)

 0

 1

 0 10 20 30 40 50 60 70 80 90 100C
C

A
 (

0:
 c

hn
l f

re
e)

Time (units of 3ms)

 0

 1

 0 10 20 30 40 50 60 70 80 90 100C
C

A
 (

0:
 c

hn
l f

re
e)

Time (units of 3ms)

Figure 8: Plot of CCA readings: 10ms, 20ms and
100ms packet gap respectively (1: channel busy, 0:
channel free)

4.2 Validation on an Outdoor Testbed
To further validate the feasibility of the Wake-on-WLAN

mechanism we performed a field test over the DGP testbed.
We chose the IITK-Mohanpur link spanning 3.5Km (see
Fig. 1). During the test we powered on the Mohanpur
Soekris setup from the IITK location. The setup was very
similar to the proposed architecture in Fig. 5. At the IITK
location, a Soekris with a Senao 2511CD plus ext2 Prism2
802.11b card was connected to a parabolic grid antenna
(gain 24dBi). The trafficgen program at IITK sent pack-
ets of size 1462 bytes at 1Mbps, every 20ms.

The sensor mote at Mohanpur is modified to use an ex-
ternal antenna feed via an SMA connector. The WiFi card
used at the Mohanpur end was also a Senao 2511CD plus
ext2. We use an RF splitter to connect the sensor mote
as well as the WiFi card to the same external antenna (a
parabolic grid with a 24dBi gain). The mote is programmed
to listen on the same frequency on which the 802.11 link is
established.

We tested the wake-up mechanism on 802.11b channel 1
as well as channel 11. To begin with, the Soekris at the
Mohanpur location was turned off. The sensor mote turns
on the Soekris via the power switching circuit when it detects
the 802.11 transmission and the received power is above the
configured CCA threshold value.

In this experiment, we consider different values of transmit
power levels and different CCA threshold values. Table 2
shows the scenarios under which the Soekris was turned on
remotely. In each of the readings, we calculate the received
signal strengths using the Senao 802.11b card.

In the table, the first four readings show the case when
the CCA threshold was set to -74dBm (register value of
-32). In the first of these readings, a transmit power of
20dBm at the IITK location resulted in a received power of
-62dBm at the Mohanpur link. Since this value is above the

CCA threshold, the sensor mote successfully turned on the
Soekris. However, when the transmit power was reduced to
0dBm, the received power fell to about -84dBm. Since this
is below the CCA threshold, the mote did not turn on the
Soekris.

In the next set of readings, the CCA threshold was lowered
to -90dBm. In all the cases the Soekris was turned on, since
the received power exceeded the CCA threshold.

TxPower RxPower Soekris turned
(IITK) (Mohanpur) on remotely?

Case1: CCA = -74dBm
20dBm -62dBm yes
10dBm -72dBm yes
0 dBm -84dBm no
-2dBm -85dBm no

Case2: CCA = -90dBm
20dBm -62dBm yes
10dBm -72dBm yes
0 dBm -84dBm yes
-2dBm -85dBm yes

Table 2: Wake-on-WLAN results: IITK-Mohanpur

The above experiment clearly indicates that the Wake-on-
WLAN mechanism works as expected. The CC2420 in our
prototype has a very good sensitivity of up to -94dBm, which
is particularly beneficial in long-distance settings where the
received signal power can be very low.

4.3 Analysis of Power Savings
We have so far shown the practical feasibility of Wake-on-

WLAN. We now turn our attention to quantify the power
savings that can be achieved by this mechanism.

Let us first consider the energy consumption of a single
Soekris board that does not employ any Wake-on-WLAN
(wow) mechanism. In a typical setup the power usage of
Soekris, denoted by Pup is about 5 to 8W (Table 1). If we
denote by Tup, the time the 802.11 radio is powered on, the
energy consumed by the Soekris board is given by:

Eno wow = Pup × Tup

Here we have ignore the differences in Soekris energy con-
sumption in idle, receive, and transmit modes.

In the scenario where a sensor mote is used for powering on
the Soekris, the total time is made up of three components:
Tbootup the total time expended in booting up the Soekris,
Tactive, the total time the Soekris is active and Tidle, the
total number of hours Soekris is powered-off while the mote
is active. This is illustrated in Fig. 9.

The energy consumed by the sensor mote is given by:
Emote = Vmote × Imote × Tidle

The energy consumed by the Soekris during boot-up is:
Ebootup = Pbootup × Tbootup

The energy usage of the Soekris during its active operation
is:

Eusage = Pup × Tactive

The total energy usage in this case is:
Ewow = Emote + Ebootup + Eusage

In our prototype, the power consumption of the power
switching circuit is about 0.2W when the Soekris is powered
on. This can be ignored since this is anyway a small fraction
of the Soekris power consumption.

Figure 9: Soekris idle, boot-up, and active periods

To quantitatively estimate the power savings, consider an
example scenario. Consider a VoIP service setup at a vil-
lage location in the network (say, in the form of a public tele-
phone booth). We have such a service setup at the Sarauhan
village in our testbed (see Fig. 1). Call logs collected over
many months indicate that there are an average of about 15
VoIP (all outgoing) calls per day. The average duration of
a call is about 71sec.

Consider the above usage pattern in the setup shown in
Fig. 4, with the VoIP service being setup at B. Assume
for now that the only purpose of the node A is to provide
network connectivity for B. We estimate the energy savings
that can be accomplished per day at A as follows. Make the
conservative assumption that the Soekris at the intermedi-
ate hop A turns itself off only after 5 minutes of idle waiting.
Tactive per day is thus given by (5 ∗ 60 + 71) ∗ 15 = 5565s =
92.75min. Tbootup per day is given by 50 ∗ 15 = 750s or
12.50minutes. Again we are making a worst-case assump-
tion that the VoIP calls are spread about, so as to require a
reboot for each call.

Tidle per day is given by 24hr−Tactive−Tbootup = 22.25hrs.
Consider Pup = Pbootup = 5W , which is around the range of
values in Table 1. We have Eno wow = 5 × 24 = 120Whrs.
To estimate Emote, we consider Vmote = 3V , and Imote =
23×10−3A (from Tmote sky’s data-sheet [14]). Thus, Emote =
3×23×10−3

×22.25 = 1.54Whrs. Ebootup = 5×750/3600 =
1.04Whrs and Eusage = 5 × 5565/3600 = 7.73Whrs. Thus
Ewow = 10.31Whrs.

Thus the overall energy savings is (Eno wow − Ewow)/
Eno wow = 91.41%. In other words, with Wake-on-WLAN,
the energy consumption is a factor of Eno wow/Ewow = 11.6
times lesser.

In the above calculations, even if we were to consider the
case where node A also has its own traffic toward the land-
line, the power savings would be substantial. To see this,
suppose that node A also has VoIP traffic (from A to the
landline) similar to that of B. The effect this would have is
that in the calculations above, the Ebootup and Eusage values
would double. Even in such a case the power consumption
with Wake-on-WLAN would be about a factor of five to six
times lesser.

5. DISCUSSION
Our evaluation above shows that Wake-on-WLAN can

achieve considerable power savings, which can be very valu-
able in rural settings. The power-off strategy as well as the
actual savings obtained depends on the application profile:
the distribution of network usage and its variation with the
time-of-day. An understanding of this requires further field

experience.
One practical aspect with respect to Wake-on-WLAN which

we have not investigated in depth is the effect of random
noise in the 2.4GHz band on our wake-up mechanism. If
such random noise were present, one way to get around
false carrier-sense by the 802.15.4 radio would be to look
for specific signature patterns in the transmissions. We feel
that this can be easily implemented: our experiments in
Section 4.1 indicate that it is indeed possible to get a pre-
dictable pattern of CCA with a controlled pattern of 802.11
transmissions.

We expect Wake-on-WLAN to be used primarily to wake-
up “upstream” nodes (nodes closer to the wired gateway) in
the network. However, if there are, say, incoming VoIP calls
to village locations, then the same Wake-on-WLAN mecha-
nism can also be used to wake-up “downstream” nodes.

We have thus far focused on Wake-on-WLAN mainly as a
mechanism for power savings. Dynamically turning on/off
links in a network can also offer other flexibilities. For in-
stance, we could morph the network topology to take-on
different forms at different times. This morphing mecha-
nism can be of use to support fault-tolerance, where certain
back-up links need to be turned on when the main link fails.
The back-up links are turned off to begin with, not only to
conserve power but also to avoid interfering with the main-
link transmissions. Such network morphing could also be
used to dynamically adapt to changing data traffic patterns
in the network.

Our Wake-on-WLAN mechanism relies on the fact that
802.15.4 operates in the same spectrum as 802.11b/g. Thereby,
it does not work with 802.11a which operates in a different
frequency band. However, we note the following. Now-
a-days, it is very common to get cards that support both
b/g+a functionality. The cost difference between pure 802.11a
and 802.11a+b/g is not substantial. If one were to use such
cards, during normal mode of operation, 802.11a can be uti-
lized. However to wake up the remote end, the card can
be switched to operate in the 802.11b/g mode. Once the
wake-up is successful, it can be reverted back to 802.11a.

The Wake-on-WLAN mechanism does not add substan-
tially to the cost of the system. We have currently used a
Tmote sky sensor mote, which costs about U.S.$70. How-
ever, a more careful design can substantially reduce the cost
of this part of the system. We are relying only upon the
CC2420 radio, which by itself costs less than U.S.$5. The
other parts of the Wake-on-WLAN design are negligible in
cost. The power switching circuit cost less than U.S.$2 in
our prototype. The RF splitter we used was an external
splitter and hence was expensive (O(U.S.$100)). However,
surface mount RF switches or splitters are available for neg-
ligible cost (O(U.S.$1)).

What we have proposed in this paper is a way to achieve
power savings when using off-the-shelf low cost equipment.
Further power savings can be accomplished by careful design
of the single board computers as well as the 802.11 cards.
Such designs should also of course strive to remain low cost,
and also be able to offer peak performance when necessary
(11Mbps or 54Mbps performance). Addressing this chal-
lenge can be a very valuable contribution.

Another useful feature which is desirable in our setting is
software or hardware-based hibernate support for the Soekris
boards. This will not only reduce the power consumption for
the boot-up process during Wake-on-WLAN, but will also

reduce the latency involved in the remote wake-up process.

6. CONCLUSIONS
In this paper we have motivated the need for power sav-

ings in a rural inter-networking scenario by presenting power
measurements of several popular WiFi devices operating on
a Soekris single board computer. Our measurements show
that the current hardware engineering in the case of the
Soekris as well as the WiFi cards is not suited for low-power
operation, and optimizations in this space can be very valu-
able. Accordingly, we consider a situation where wireless
equipment can be turned on/off at will to conserve power.
To enable this remote power-on mechanism, we propose a
novel Wake-on-WLAN mechanism based on 802.15.4 radio
chips that can detect energy levels of 802.11 transmissions.
We have successfully tested the proposed mechanism in an
outdoor long distance link. Preliminary analysis based on
expected link usage patterns suggests that our proposed
mechanism can achieve substantial power savings.

Acknowledgment
We thank A. R. Harish for helping us with the power mea-
surement of various devices. Mohit Mundhra deserves a spe-
cial thanks for his help in taking several of the power con-
sumption measurements. We are also thankful to Sukant
Kole and Sayandeep Sen for providing us with numbers for
the VoIP usage data from the Sarauhan setup. Finally we
thank Media Lab Asia (IIT Kanpur) for providing us with
equipment and technical support.

7. REFERENCES
[1] AMD White Paper on WOL.

http://www.networking.ibm.com/eji/ejiwake.html.

[2] P. Bhagwat, B. Raman, and D. Sanghi. Turning
802.11 Inside-Out. In HotNets-II, Nov 2003.

[3] E. Brewer, M. Demmer, B. Du, K. Fall, M. Ho,
M. Kam, S. Nedevschi, J. Pal, R. Patra, and
S. Surana. The Case for Technology for Developing
Regions. IEEE Computer, 38(6):25–38, June 2005.

[4] Chipcon: CC2420. http://www.chipcon.com/index.
cfm?kat_id=2\&subkat_id=12\&dok_id=115.

[5] DjurslandS.net: The story of a project to support the
weak IT infrastructure in an low populated area of
Denmark. http:
//djurslands.net/biblioteket/international/

djurslands_net_english_presentation.ppt.

[6] Host AP driver for Intersil Prism2/2.5/3, hostapd,
and WPA Supplicant. http://hostap.epitest.fi/.

[7] n-Logue Communications. http://www.n-logue.com/.

[8] Pebble Linux.
http://www.nycwireless.net/pebble/.

[9] E. Shih, P. Bahl, and M. J. Sinclair. Wake on
Wireless: An Event Driven Energy Saving Strategy for
Battery Operated Devices. In MOBICOM, Sep 2002.

[10] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins.
Turducken: Hierarchical power management for
mobile devices. In MobiSys, Jun 2005.

[11] Specifications for Soekris Engineering net4521 board.
http://www.soekris.com/net4521.htm.

[12] M. Stemm and R. H. Katz. Measuring and reducing
energy consumptions of network interfaces in
hand-held devices. IEICE (Institute of Electronics,
Information and Communication Engineers)
Transactions on Communications, Special Issue on
Mobile Computing, E80(B8):1125–1131, Aug 1997.

[13] Technology and Infrastructure for Emerging Regions.
http://tier.cs.berkeley.edu/.

[14] Tmote-sky. http://www.moteiv.com/products.php.

