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ABSTRACT  
Path expressions are the principal means of locating data in a 
hierarchical model. But path expressions are brittle because they 
often depend on the structure of data and break if the data is 
structured differently. The structure of data could be unfamiliar to 
a user, may differ within a data collection, or may change over 
time as the schema evolves. This paper proposes a novel construct 
that locates related nodes in an instance of an XML data model, 
independent of a specific structure. It can augment many XPath 
expressions and can be seamlessly incorporated in XQuery or 
XSLT. 

Categor ies and Subject Descr iptors 
H.2.1 [Database Logical Design] Subjects: Data models. 
H.2.3 [Database Languages] Subjects: Query Languages. 

General Terms 
Algorithms, Languages. 
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XML, Path Expressions, XPath, XQuery. 

1. INTRODUCTION 
In 1970, E. F. Codd proposed a relational model of data to replace 
the popular (at that time) hierarchical model [3]. Codd critiqued 
the hierarchical model because it did not support the symmetric 
exploitation of data. 1  The hierarchical model used asymmetric 
path expressions to locate data. A path expression is a 
specification of a path (or a set of paths) in a hierarchy. Path 
expressions are asymmetric because they depend on how the data 
in the hierarchy is structured and the same data can be organized 
in different hierarchies. Codd presented five reasonable 
hierarchies for a simple part/supplier data collection and 
demonstrated that, in general, a path expression formulated with 
respect to one hierarchy would fail on some other hierarchy. 
It is generally accepted that Codd won the debate with the 
hierarchical model as evidenced by the current industrial 
dominance of relational database management systems. But thirty-
five years later a hierarchical data model has resurfaced with the 
                                                                 
1 Codd’s critique included other arguments such as the critical 

concept of (physical) data independence that are not germane to 
this paper. 

 
 
 

advent of XML [14]. XML data models are tree-like, hierarchical 
models. As a consequence, asymmetric path expressions have 
reappeared in XML query languages. The core of most XML 
query languages is a path language to navigate to various places in 
a hierarchy. For XQuery the path language is (a subset of) XPath. 
Asymmetric path expressions make queries brittle in the sense 
that a query might fail to produce the desired result if the structure 
changes or if it is executed on the same data organized in a 
different hierarchy. 
There are four scenarios where symmetric exploitation of 
hierarchical data is particularly attractive: lack of schema 
knowledge, heterogeneous data, irregular data, and schema 
evolution. First, detailed knowledge of the data’s structure or 
schema is often needed in order to correctly formulate a path 
expression. Many data collections lack a schema, and even when a 
schema is present, it may be complex and difficult to decipher for 
some users. The ability to query data without knowing its specific 
structure would be useful for both expert and casual users. Second, 
there is the increasing need for data integration. It is becoming 
common to pull data from different sources into a single data 
collection. Each source could organize similar data in a different 
hierarchy. If queries are not symmetrically exploitable, then a 
single logical query over the heterogeneous hierarchies would 
potentially require different path expressions for each structure. 
Third, the decentralized nature of the web has facilitated a growth 
in the generation and exchange of data authored by casual users. 
More often than not, data provided by these users does not 
conform to a strict schema; rather the data in a single collection is 
irregularly structured. Last, even in a centralized database with a 
single, simple, well-defined schema, shifts in business strategy 
and corporate environments sometimes engender evolution in how 
data is organized. Legacy path expressions that depend on a 
particular hierarchy may no longer work when a schema evolves.  
A common theme underlying the various scenarios above is that 
the asymmetric nature of path expressions makes them brittle. 
This paper proposes a novel extension to XPath to support the 
symmetric exploitation of XML data. We extend XPath with a 
symmetric locator. This extension allows a user to query XML 
data without knowing its exact structure in many situations. That 
is, a user simply needs to know the names of relevant elements 
and attributes and their possible relationships to properly 
formulate a query. The extension is simple in syntax and 
semantics. Specifically, we introduce a new axis: the closest axis, 
which locates nodes that are closest to a context node. In 
abbreviated syntax the closest axis is represented by a “->” 
operator, so the expression $n->t locates all nodes of type t 
“closest to” the node bound by $n. Remarkably, this simple 
operator can replace asymmetric steps in path expressions in many 
XQuery queries written for daily tasks. 
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… 
  <author> 
    <name>E. F. Codd</name> 
    <book> 
      <title>The Relational Model for Database Management</title> 
      <publisher>Addison Wesley</publisher> 
      <price>$46.95</price> 
    </book> 
    <book> 
      <title>Cellular Automata</title> 
      <publisher>Academic Press</publisher> 
      <price>$9.95</price> 
      </book> 
  </author> 
… 

 
Figure 1. A fragment of author.xml 

 

… 
  <book> 
    <title>The Relational Model for Database Management</title> 
    <author><name>E. F. Codd</name></author> 
    <price>$46.95</price> 
    <publisher>Addison Wesley</publisher> 
  </book> 
  <book> 
    <title>Cellular Automata</title> 
    <author><name>E. F. Codd</name></author> 
    <price>$9.95</price> 
    <publisher>Academic Press</publisher> 
  </book> 
… 

 
 

Figure 2. A fragment of book.xml 
 

This paper is organized as follows. A motivating example is 
presented in Section 2. Section 0 defines the syntax of the closest 
axis, while Section 4 describes its semantics. We consider both in-
memory and persistent implementations in Section 5. Section 6 
illustrates the use of the closest axis by rewriting some of the 
queries in the XML Query Use Cases [16]. Section 7 discusses 
related work and Section 8 concludes the paper. 

2. MOTIVATION 
Consider how a collection of bibliographic information such as 
authors, books and publishers may be represented in a hierarchy. 
One of (but not limited to) the following two hierarchies may be 
used: 1) the hierarchy contains a list of authors, each of which 
contains a list of books by that author, or 2) the hierarchy contains 
a list of books, each of which contains a list of authors of that 
book. As an example, consider some bibliographic data about the 
author E. F. Codd that involves two books and two publishers. 
The two different representations are captured by two XML 
documents, author.xml and book.xml, shown respectively 
in Figure 1 and Figure 2. Both documents contain the same data 
but they have different structures. 
For some queries, different path expressions are needed to query 
each hierarchy. For example, consider a query to retrieve books 
by E. F. Codd. The XQuery query for author.xml is given 
below. 

return doc("author.xml")//author[name= 'E. F. Codd']/book 
This query uses a path expression that navigates from the root to 
the proper author elements and then finds the desired book. But 
this query does not work for book.xml since it has a different 
structure. To query book.xml a different query has to be 
formulated. 

return doc("book.xml")//book[author/name='E. F. Codd'] 
The path expression in each query differs. Moreover, no single 
path expression suffices to locate the desired data in both 
hierarchies.  
While asymmetric path expressions are wedded to a particular 
hierarchy, the key to developing a symmetric locator is to identify 
what is invariant across the same data organized in different 
hierarchies. Observe that in both Figure 1 and Figure 2, book 
titles by an author are closest to that author. Here “closeness” is 

the distance on the path between nodes in the hierarchical model 
of an XML document. In both hierarchies the author E. F. Codd is 
the closest author to each of the titles. This is not something 
specific to <author>s and <title>s only. In fact, whenever two nodes 
are closest in Figure 1, so are their counterparts in Figure 2. 
This invariant property of different hierarchies can be exploited 
with a symmetric locator that locates related information based on 
closeness rather than a specific path. The symmetric locator is a 
closest axis. In abbreviated syntax the axis is denoted by an 
operator “->”. Semantically, the axis locates all nodes that are 
closest to the context node. So “$n->t” returns a sequence of all t 
nodes closest to the node bound by $n. With this operator, the 
query posed at the beginning of this section can be expressed as 
follows: 

return doc("any.xml")->author[->name='E. F. Codd']->book 
where any.xml could be either author.xml or book.xml. It can also be 
applied to a hierarchy that, for example, contains a list of 
publishers, each of which contains a list of books. Furthermore, 
the query works for data with a heterogeneous structure. Suppose 
we mix bibliographic data from multiple sources (say, from the 
hierarchy of Figure 1 and that of Figure 2), the same query would 
work without any change. In contrast, it would be cumbersome to 
formulate a query using asymmetric path expression to query 
heterogeneous data. The user first has to know which structures 
are present in the data, and then write a different path expression 
for each distinct structure. Complicated as it is, such a query 
could only handle those hierarchies taken into account, and may 
need to change whenever data from another source (with a 
different structure) is added to the collection. In summary, the 
closest axis is more convenient to formulate and more robust 
against structural changes than asymmetric path expressions. 
Although the closest axis is intended to replace asymmetric XPath 
axes in many practical uses, it cannot replace all of them. Without 
the sophisticated navigational functionalities provided by 
asymmetric path expressions, a query language may be less than 
Turing-complete [7]. When path expressions are inevitable for a 
task, one still needs to resort to XPath. (See Section 6 for more 
discussion on this.) So it is important to remember that the closest 
axis extends but does not replace path expressions. 



3. SYNTAX 
The closest axis has a very simple syntax that can be seamlessly 
integrated into XPath. Figure 3 shows the EBNF grammar for the 
axis, where the newly-introduced symbols are underlined. 

[29'] AxisStep ::= (ForwardStep | ReverseStep | ClosestStep) PredicateList 
[n1] ClosestStep ::= ClosestAxis NodeTest | AbbrevClosestStep 
[n2] ClosestAxis ::= <"closest" "::"> 
[n3] AbbrevClosestStep  ::= "->" NodeTest 

Figure 3. EBNF grammar  for  the extended XPath 

This grammar extends the current XPath grammar defined in the 
W3C candidate recommendation “XML Path Language (XPath) 
2.0” [15]. There are 73 rules in the current XPath grammar, 
among which only rule [29] has to be modified. The modified rule, 
annotated [29'], introduces a new step, ClosestStep. ClosestStep is 
further defined by the new rule [n1]. A ClosestStep may or may not 
be abbreviated. New rules [n2] and [n3] define the unabbreviated 
and abbreviated syntax, respectively. An unabbreviated step is in 
the form closest::NodeTest, and an abbreviated step is ->NodeTest. 
The new XPath grammar has a total of 76 rules, with one of the 
original rules modified and three added. 

4. SEMANTICS 
This section presents the formal semantics of the closest axis. We 
first present a data model for XML documents, and then define 
the closest axis. The specific semantics of the axis depends on the 
important concept of node “type”. We also discuss a technique 
that computes node type in the absence of data schema. 

4.1 Tree Data Model 
XML documents are commonly modeled as ordered, labeled trees. 
We first define such an XML data model. 
Definition [tree] A tree is a tuple (V, E, � , L, C, T), where  

• V is the node set. r∈V is a special node called the root of T, 
• E� ⊆� V×V is the edge set such that there is a path between every 

pair of nodes, there is no cycle among the edges, and edges 
that share a common node – called the parent of the other 
node (the child) in each such edge – are ordered, 

• 
�  is an alphabet of labels and text values, 

• L:V� �  is a label function that maps each node to its label,  
• C:V� � � ∪{ε} � is a value function that maps a node to its value, 

in which C(v)=ε if node v has an empty value, and 

• T:V� S is a type function that maps each node to a type, which 
is a value in the type set S.  �  

This tree data model is a stripped-down version of the Document 
Object Model (DOM) [13]. Though the model is simple it is 
sufficient for our purposes in this paper. Elements are represented 
by nodes in our tree data model. Other kinds of nodes in the DOM 
such as attributes and comments are ignored.2   
The label function maps each node to its label, that is, its element 
tag. So a <book> node would map to the label book. 
The type function refines the label function by possibly 
partitioning the nodes associated with the same label into different 

                                                                 
2 Due to this simplification, the closest axis will locate elements 

only. However, the closest axis can be defined for a complete 
data model as well; in that situation all kinds of nodes can be 
located. 

types. The type function specifies the type of each node. There are 
several ways that the type could be computed. If a schema is 
available, then the type of a node might be given by an element 
type definition in the schema. For instance a <name> element type 
definition might provide the type for author names, while 
publisher names resolve to a different type even though they share 
a common label. When a schema is unavailable, the simplest case 
is to make the type and label functions the same. That is, nodes 
are typed by their labels. Because the type plays an important role 
in the definition of the closest axis, Section 4.3 and Section 4.4 
give two more refined methods of computing the type in the 
absence of a schema. 
Ordering of elements is important for XML. We adopt the 
common document order which orders nodes in a tree data model 
based on the first appearance of the corresponding text in the 
document. In author.xml, for example, text fragment <name> 
appears earlier than both occurrences of <book>. Hence, the name 
node precedes the book nodes in the tree data model. 

4.2 The Closest Axis 
As introduced in the motivating example in Section 2, the closest 
axis is used to locate “the closest nodes” to the context node. 
Whether a node is close or far depends on a distance metric as 
defined below. 
Definition [distance] Suppose (V, E, � , L, C, T) is a tree and u, 
v∈V. The distance between u and v, denoted dist(u,v), is the 
number of edges on the shortest path between u and v.  �  

In a tree, the shortest path between two nodes is unique. The 
distance between the nodes is measured by the length of this 
path.3 
The closest axis evaluates to the sequence of nodes that are closest 
to the context node. 
Definition [the closest axis] Suppose (V, E, � , L, C, T) is a tree 
and c∈V is the context node. Then the closest axis is defined as 
follows. 

closest(c) = [d1 , … , dn], where 
• d1 , … , dn∈V, 
• � i, 1 �  i �  n, � x, y∈V,  

L(x) = L(di) ∧ T(y) = T(c) � dist(c, di) �  dist(y, x);       (i) 
• � i, j, 1 �  i < j �  n, di precedes dj in document order.       (ii) �  

The closest axis is defined as a function that takes a context node 
c and returns a node sequence. The function has two primary 
conditions. First, the node ordering condition (ii) states that the 
result preserves the original document order. Second, the node 
selection condition (i) constrains the nodes that appear in the 
result. The condition stipulates that a node is in the result if it is 
the closest node of a particular label to the context node, but that 
the distance to the closest node is within the minimal distance of a 
node of the same type as the context node to a node of the same 
label as a node in the result. The intuition is that the closest axis 
seeks out all the nodes of each different label that are closest to 

                                                                 
3 As an aside, the term path used with precision refers to “the 

shortest walk” where a walk can contain multiple occurrences of 
nodes. However, “paths” as used in XPath are in fact “walks”, 
and hence not necessarily the shortest between the source and 
target nodes. We follow this convention and use “the shortest 
path” specifically. 



the context node, but restricts the search based on the minimal 
possible distance between a given type and a given label.  
To better understand the meaning of the node selection condition, 
let’s consider an example. Figure 4 shows the hierarchy for the 
XML given in Figure 1. Assume that the type of each node is its 
label. Let the context node be the leftmost title node. The nodes 
closest to the title node are pointed to by dashed arrows. The five 
closest nodes are ordered in the closest axis in document order. In 
this example there is only one node of each label that is closest, 
but in general there could be several nodes with the same label 
that are closest. Note that none of the nodes in the other book 
subtree is closest to this title.  

name

author

book book

titletitle publisherpublisher price price

 
Figure 4. Nodes closest to the first title 

 
In the above example, the node selection condition in the axis 
definition could in fact be simplified to the following 

� i, 1 �  i �  n, � x∈V, L(x) = L(di) � dist(c, di) �  dist(c, x)  (i') 

in which the types are absent.  
This simplification is possible because the tree is of a regular 
structure. We say that the tree’s structure is regular if the 
following holds 

� c∈V, � l∈
� , � v∈V such that  

L(v) = l ∧ dist(c, v) = min{ dist(y, x) | L(x) = l ∧ T(y) = T(c)}. 
That is, for any node c and any label l in a regular tree, we can 
always find a node v labeled l such that c and v are of the minimal 
distance of nodes typed T(c) and nodes labeled l. The fact that 
every node is guaranteed to have a minimal distance node of any 
given label reduces (i) to (i'). 
For hierarchies that are not regular, the node selection condition 
(i) is more appropriate than the simplified version (i '). For 
example, suppose that the first book does not have a price child, as 
shown in Figure 5. Here the label and type are still the same; but 
the tree is irregular in the sense that the context title node could 
not find a label price node within the minimal distance of all 
possible pairings of type title node and label price node, which is 
two. The closest axis using condition (i') (just the labels) would 
locate the price child of the second book since it is the closest price. 
But this price should not belong to the closest axis of the first book 
because it is closer to the second book than the first.  

name

author

book book

titletitle publisherpublisher price

 
Figure 5. The search is restr icted by the type information 

 
In the trees in Figure 4 and Figure 5, the label and type functions 
are the same. But there are scenarios where nodes of the same 
label should be differentiated for the results to be intuitively 
appropriate. For example, the price of a book and the price of a car 
need to have different types. Suppose the closest node labeled 
name to car price is four while the closest node labeled name to 
book price is three. If all price nodes were of the same type, then 
no car price would have any name node in its closest axis. By 
distinguishing the two types of price nodes, a car price node can 
include in its closest axis all name nodes at a distance of four. 
Note that the book price’s axis contains author name, while the car 
price’s axis probably contains owner or dealer name, a different 
type of name. But the node selection condition (i) is concerned 
with type of the context node only, but not the type of the nodes 
in the axis.  
Our use of the term “closest” to describe the new axis is evocative 
but imprecise. For some data collections, the results may be 
counterintuitive. For example if an author name node is equi-
distant from both a book price type and a car price type (an 
unlikely scenario, but possible) then the closest axis of this node 
includes nodes of both type book price type and car price. So while 
the closest axis can be used to symmetrically exploit data, the 
meaning of the axis depends on the data. 
The closest axis is similar to the current XPath axes insofar as it 
returns a node sequence relative to a context node. A node test 
and predicates can be further applied to filter the sequence. Unlike 
all other axes, the closest axis is a non-directional axis. That is, it 
does not locate nodes in a particular direction (up, down, left, 
right) in the hierarchy. Instead it utilizes node and type 
information to find nodes that are close to the context node in any 
direction. Only non-directional axes can symmetrically exploit 
data.  
An interesting consideration is whether nodes connected by 
ID/IDREF relationships can be considered as closest nodes. In a 
tree, there would be no edge between two such nodes, so the two 
nodes would not be closest. But we could easily add a “virtual” 
edge to connect such nodes and compute distances in the resulting 
graph. However, in the interest of simplicity we do not consider 
such virtual edges in this paper. 

4.3 Root-to-Node Path Type 
Node type is important in determining which nodes are in the 
closest axis. The use of types takes into account the fact that 
different kinds of real-world entities may be represented by nodes 
of identical labels in a tree. So a proper type function T should for 
example distinguish a book price from a car price.  



The type function can sometimes be easily inferred when the data 
is accompanied by schema information in the form of DTD or 
XML Schema. But a common situation is that we do not know the 
schema. We now introduce a technique to compute the types in 
the absence of a schema. The node types produced by these are 
potentially helpful in refining the possible results of a closest axis. 
Definition [root-to-node path type] A tree (V, E, � , L, C, T) uses 
root-to-node path type, or path type in short, if for any v∈V, T(v) 
is a list of the labels of the nodes on the inclusive path from the 
root r to v.  �  

The path type is essentially a concatenation of the labels of the 
nodes from the root to the node. With path type, nodes of the 
same type always have the same label, but not vice versa. The 
rationale behind path type is the following claim: 

If two nodes are of the same type, then their respective child 
nodes with the same label should be of the same type too.  

It is rather common for two nodes in a tree to have the same label 
but represent different kinds of entities. However, it is rarely the 
case that such two nodes’ respective parents have the same type. 
In our previous example of book price and car price, suppose their 
respective parents are book and car. The paths from the root node 
to a book price node and a car price node are different; therefore 
book price and car price have different path types. 
Path type can be efficiently computed when the tree is parsed. The 
type of a node is obtained by appending its own label to the end 
of the path type of its parent. The complexity of the computation 
is O(n) where n is the number of nodes in the tree. 

4.4 Signature Type 
The signature type is also useful in specifying queries with the 
closest axis. Furthermore, it is crucial to the efficient 
implementation of the closest axis.  

4.4.1 Signature 
We first introduce the concept of signature. A signature is a 
succinct description of the structure of a data forest, similar to a 
Data Guide. 
Definition [signature] Denoted sig(F), the signature of a forest F 
is a forest such that 

• C(v) = �  for every node v in sig(F); 
• if F is a tree that consists of a root r and forest S (the root of 

each tree in S is connected to r by an edge), then sig(F) is a 
tree that consists of a root node labeled L(r) and the forest 
sig(S) (if F consists of a single node r, then sig(F) contains a 
single node as well); 

• if F is a forest that consists of n trees H1,…, Hn (n>0), then 
sig(F) consists of a set of trees: sig(H1),…, sig(Hk), 
where H i∈{H1,…,Hn} (1� i � k) and 
{sig(Hi)|1� i � k}={sig(H i)|1� i � n}; tree equivalence is 
defined in terms of isomorphism between labeled trees. �  

A signature summarizes the structure of a forest. A signature tree 
never contains two sibling subtrees that are isomorphic.  
For example, the tree in Figure 4 (the tree data model of 
author.xml in Figure 1) has the signature shown in Figure 6. 
This signature is smaller in size than the data. The data tree 
contains two book subtrees of identical structure – each book 
node has title, publisher and price children, all of which are leaf 

nodes. Keeping one copy of this book structure in the signature 
tree is sufficient to capture the structure of the data tree. 

name

author

book

title publisher price 
Figure 6. Signature of author.xml 

A signature is unlike a schema specification such as a DTD. Any 
forest has exactly one signature, but could potentially conform to 
many schemas. Also, a schema usually precedes the data. Data is 
created in a structure that conforms to the given schema. Users 
normally have to know about the schema to query the data. In 
contrast, a signature is computed from the given data to assist the 
evaluation of the closest axis. Hence a signature is preceded by 
the data. 
A signature can be computed efficiently. The definition of 
signature gives a recursive algorithm that computes it. 
Usually the signature will be much smaller than the data, 
especially for large data collections since many data items will 
share a common structure. But in the worst case, they are the same 
size. 
Finally, we extend the concept of signature from trees to nodes. 
Definition [node signature] The signature of a node v in a data 
tree is the signature of the tree rooted at v. �  

Node signature is compatible with tree signature. The signature of 
a tree is just the node signature of the root node.  

4.4.2 Signature Type 
Observe that there is a correspondence between nodes in a data 
tree and nodes in the signature tree. We can define the type of a 
node in a data tree as its corresponding node in the signature. 
Definition [signature type] Suppose sig(F) = S. The signature 
type of a node in F is its corresponding node in S. �  

Because a tree signature is recursively computed in a bottom-up 
fashion, node signature is simultaneously determined while 
computing the signature of the whole tree. As the pre-condition 
for the node classification algorithm, we assume that node 
signature of each node is already available, represented by a the 
function sig(). The algorithm is listed in Figure 7.  
The algorithm computes signature type for all nodes by invoking 
the recursive function visit() on the root of the data tree. It starts 
with the obvious base condition: the root of a tree is mapped to 
the root of its signature tree. It then recursively computes the type 
of each node in a top-down fashion. At a node n in the data tree, 
the function returns if n has no child; otherwise, it decides the 
type of each of its child by comparing the signature of this child to 
the each of the child subtree of T(n), the node in the signature tree 
that n corresponds to. (Note that in the algorithm, the tree rooted 
at s is equivalent to sig(s), because a signature tree does not 
contain isomorphic sibling trees.) Once the type of a child c is 
determined, visit(n) calls visit(c) recursively. Here the most costly 
part is to determine isomorphism between trees. As mentioned 
before, comparing unordered trees can be efficiently computed 
with the help of a sort. 



 pre-condition: 
• data tree (V, E, � , L, C, T) and its signature S, 
• T is only defined on the root node r, 
• T(r)=r', r' is root of S, 
• sig: V-> set of trees rooted at v, v∈V'. 
 
computing the types: 
visit(r) 
 
post-condition: 
T: V-> V' is defined on all nodes in V 
 
function definition visit(n): 

if n has no child 
return 

else 
for  each child c of n  

for  each child s of T(n) in S 
if sig(c) is isomorphic to the tree rooted at s 
then T(c) = s 

visit(c) 
 

 
 

Figure 7. An algor ithm for  computing node type 

 

5. IMPLEMENTATION 
This section investigates how the closest axis can be efficiently 
computed. At first sight, it seems quite probable that the 
evaluation of the closest axis would be completely different from 
that of a usual XPath axes. Axes like descendent are directional, 
while the closest axis is non-directional; its semantics just 
describes the property of the closest nodes without giving a 
specific direction to where it is located. 
XPath/XQuery implementations can be broadly classified as 
either in-memory or persistent. We present both in-memory and 
persistent implementations in this section. An in-memory 
implementation loads the entire data tree into memory and 
evaluates the axis directly on the tree. However, some data 
collections are too large for memory. In a persistent 
implementation, the data resides predominately on disk. Indexes 
are commonly used in persistent implementations to optimize 
performance by reducing the number of blocks read from disk 
during query evaluation. 

5.1 In-memory Evaluation 
The closest axis can be naïvely implemented by exploring from 
the context node in all directions until each kind of label is 
reached that is within the minimal distance between the type of 
the label and the type of the context node. Such an evaluation 
simply has to enumerate all the possible paths starting from the 
context node to look for the closest node(s). The algorithm that 
computes all the closest nodes to a context node, v, is shown in 
Figure 8.  
Though the naïve algorithm computes the closest axis it has high 
cost. The algorithm explores maxDistance edges from the context 
node, potentially covering the entire tree. 
 

 pre-condition: 
• data tree (V, E, � , L, C, T) 
• typeDistance(� ) is a hash table that maps each label to a 

distance, initially the distance for every label is the 
distance between the context node type and the closest 
type for this label 

• maxDistance is the maximal type distance over all the 
labels 

• closest(� ) is a hash table that maps each label to a list of 
closest nodes, initially each list is empty 

• v is the context node 
 
computing the closest axis: 
closest(v, 0, maxDistance) 
 
post-condition: 
closest(� ) is a hash table that maps each label to a list of 
closest nodes 
 
function definition closest(c, d, maxDistance): 

// Return if distance exceeds maximum possible 
return if d > maxDistance    
// Try each edge from c 
for  (c,x)∈ E  
  // Check if this is the right distance 
  if d = typeDistance(label(x)) 
     // x is at the right distance  

         insert(x, closest(label(x))) 
       
      // Continue exploring from this edge 
      closest(x, d+1) 
  
Figure 8. A naïve, in-memory algor ithm for  evaluating the 

closest axis 

Further, the naïve algorithm assumes the existence of a 
typeDistance hash table that has already computed the minimal 
distances between pairs of types. This table can be constructed 
when a DOM is built or just prior to evaluating the axis using the 
signature described in Section 4.4.1. Essentially, the strategy is to 
evaluate the closest axis in the signature forest to find all of the 
types closest to the type of the context node. For example, in the 
evaluation of the closest axis from the first title node in Figure 4, 
the signature shown in Figure 6 could be explored to determine 
the distance from the title type to the closest types corresponding 
to each label. 

5.2 Node Test Optimization 
We anticipate that the closest axis will almost always be used with 
a node test for a specific label, e.g., “closest::price.” (See Section 6 
for closest axis use cases). The evaluation cost can be significantly 
reduced in such cases. One way to reduce the cost in the naïve 
algorithm is to set the maxDistance to the distance of the type 
corresponding to the label in the node test, e.g., price in the 
example given above. On average this will cut the cost in half. 
However, a significantly better strategy is possible.  
The better strategy is to convert the non-directional search to a 
directional search. Observe that a signature provides both a 
distance and a path to the desired type. To continue with the 
example, assuming that the context node is a title type, a single 
path connects the price type to the title type in the signature. The 
path climbs to the book parent and then drops to the price child. In 



general, the path between any two types traverses through the 
least common ancestor (LCA) of the two types in the signature. 
So the optimization is to replace the closest axis with a different 
expression that follows the path to the nodes specified by the node 
test. In the example, the non-directional expression “closest::price” 
would be replaced with the following directional path expression: 
“parent::*/child::price.” The conversion can be performed by a pre-
processor prior to evaluating an expression, or the directional path 
expression can be substituted during evaluation of a closest axis. 
Note that in general, there might be several closest types, so a 
union path expression that follows all of the paths might be 
needed. 

5.3 Persistent Implementation 
For the closest axis to be of practical value for database 
applications, it needs to be computed efficiently in persistent 
implementations. Since the axis will almost always be used in 
combination with a non-wildcard node test, we focus on the 
implementation of the node test optimization and introduce an 
LCA-join operation that efficiently evaluates the closest axis. 
Many XPath/XQuery implementations use a node numbering 
scheme and indexes to quickly evaluate queries. (Related work is 
discussed in Section 7.) As an example, consider the following 
scheme. Given a tree, assign each node a number according to its 
ordinal in document order. The numbers range from 1 to n, the 
total number of the nodes. This can be achieved by a preorder 
traversal of the tree. Each node is also assigned the number of its 
maximum descendent. This allows ancestor/descendent 
relationships to be determined by reasoning about the node 
numbers. All nodes with a number larger than the number of a 
node v and no larger than its maximum descendent’s are 
descendents of v. Figure 9 shows the numbering for the data tree 
of author.xml in Figure 1. The first book node has the number 
3 and its maximum descendent is 6. So its descendents are all the 
nodes numbered between 3 and 6. 

name
[2-2]

author
[1-10]

book
[3-6]

book
[7-10]

title
[8-8]

title
[4-4]

publisher
[9-9]

publisher
[5-5]

price
[6-6]

price
[10-10]

 

Figure 9. Number ing the data tree of author.xml 

Next, an index of types is created. The index maps each type in 
the signature to an ordered list of node numbers for nodes of that 
type. Then the closest axis can be computed by simply merging 
three lists as depicted in Figure 10. The list merging is an LCA-
join. In the figure, there are three lists of nodes: parents, children, 
and least common ancestors (lca in short). The parents list is the 
list of context nodes (we assume that these nodes are all of the 
same type, if not then each type in the list will be joined in a 
separate LCA-join). The children list contains the nodes in the 
closest type to the type of the context nodes. The lca list is the list 
corresponding to the label that is the least common ancestor of the 
child and parent labels in the signature. For instance, for title 
children and publisher parents in Figure 6, the lca is book. The 

lists are merged in the direction of a lexical ordering of the data 
(from left to right in the figure). A parent is closest to a child if 
both are descendent of the same lca. If a parent is not a 
descendent of the current lca, then either the current lca is before 
the current parent (child), in which case the current lca pointer is 
advanced, or the current parent (child) is before the current lca, in 
which case the current parent (child) pointer is advanced. 
Typically only two lists are merged instead of three since the 
parent or child is the lca. 

 

… …
current lca

direction of merge

… …
current parent

… …
current child

 
Figure 10. An LCA-join 

As an example consider Figure 11. It illustrates the task of finding 
the closest <title> elements to the <publisher> elements for the data 
tree of author.xml in Figure 1. The lca is book. The merging 
process starts with the pointers at the start of each list. The first 
publisher and title are both descendents (within the range) of the 
first book, so this publisher is closest to the title. The next publisher 
however is not within the range of the current lca hence it is not 
closest to the first title. The LCA-join continues by advancing the 
lca and child pointers to find the next closest pair.  
The LCA-join is of special importance in database management 
systems. If an XML DBMS can iterate through elements of a 
particular type, then the closest axis with a non-wildcard node test 
can be efficiently computed with an LCA-join. The time 
complexity of an LCA-join is O(n), where n is the number of 
nodes in a type list. Indexes to map an element type to a list of 
nodes for that type are commonly available in native XML 
DBMSs (e.g., Xindice, eXist, and BerkeleyDB-XML provide 
element type indexes.) 

 

book
[3-6]

book
[7-10]

title
[4-4]

title
[8-8]

publisher
[9-9]

publisher
[5-5]

current lca

current childcurrent parent

book
[3-6]

book
[7-10]

title
[4-4]

title
[8-8]

publisher
[9-9]

publisher
[5-5]

current lca

current childcurrent parent

 
Figure 11. The LCA-join of publisher and title 

 

6. USING THE CLOSEST AXIS IN 
PRACTICE 
In this section we turn our attention to the use of the closest axis 
in practice. To show its wide applicability, we demonstrate how 
the closest axis can replace directional axes in queries from the 
first use case in the W3C XML Query Use Cases [16].  
We first take a look at two queries from the first use case –
“Experiences and Exemplars”. For each query, the problem and 
the solution using the closest axis are shown. 



Q1. L ist books published by Addison-Wesley after  1991, 
including their  year and title. 

Solution using the closest axis: 
<bib> 
 { 
  for $b in doc("http://bstore1.example.com/bib.xml")->bib->book 
  where $b->publisher = "Addison-Wesley" and $b->@year > 1991 
  return 
    <book year="{ $b->@year }"> 
     { $b->title } 
    </book> 
 } 
</bib>  
 

Each of the five closest axes in the above query replaces a child 
axis in the original query. As we can see, there is no directional 
axis in the modified query. 

Q9. In the document " books.xml" , find all section or  
chapter  titles that contain the word " XML" , regardless of the 
level of nesting. 

Solution using the closest axis: 
<results> 
  { 
    for $t in doc("books.xml")//(chapter | section)->title 
    where contains($t->text(), "XML") 
    return $t 
  } 
</results>  
 

The closest axes in the above query replace child axes in the 
original query as well. However, we choose not to replace the 
descendant-or-self axis with the closest axis. Although it is usually 
the case that all chapter nodes are of the same distance to the root 
of a document, it may not always be true. When some chapter 
nodes are farther away from the root, the closest axis will miss 
these nodes even though it is the intension that they be selected. 
In this particular case, doc("books.xml")//chapter is still the best way 
to properly locate chapter nodes. This example shows that when 
the descendant-or-self axis is invoked from the document root it 
functions as a symmetric locator. The expression 
doc("anyBibDoc.xml")//book is not structure-dependent, and hence is 
symmetric in effect. 
In addition to the queries shown above, we have also inspected 
other queries in this use case. It turns out that every directional 
axis in the various use cases can be replaced by the closest axis, 
with the exception of the descendant axis. This can be explained 
by the fact that these XPath expressions are all used to located 
related nodes, and the related nodes are always closest to the 
context nodes. In this use case, there is no instance of the use of 
the parent axis; but the closest axis should be effective in replacing 
it as well should it be used.  
Although not present in the entire use cases document, recursive 
hierarchies can also be problematic. Consider a recursive schema 
in which all part elements are nested to represent subparts. 
Located at the leaves in the hierarchy are those atomic parts that 
have no subparts. In such a hierarchy the expression part->part may 
or may not give the expected result. This expression returns the 
immediate subparts while some users may believe all (recursive) 

subparts should be returned. Again, the descendant-or-self axis 
should be used to locate all subparts relative to a part. 
Some XPath expressions fundamentally depend on a direction and 
cannot be augmented with a closest axis. An example would be 
that a query to find the names of all the elements that enclose a 
book element, a parent axis would be necessary to locate the 
enclosing element. 

7. RELATED WORK 
By facilitating the symmetric exploitation of hierarchical data, this 
paper contributes to the following areas. First, it is a means for the 
integration of XML data, because heterogeneous data can 
potentially be queried with the same query. Second, it offers a 
novel (not only syntactically but also semantically) construct to 
XML query language. A user can effectively query XML data 
without knowing its specific structure. We review related work in 
these two areas respectively. 
Many research projects have focused on the problem of data 
integration [2] [5] [6] [10]. The goal of data integration is to 
combine data from different sources into a single source. From a 
user’s point of view, there is only one source and she can query 
the data using the schema of that single source. For example, YAT 
[2] and SilkRoute [5] translate relational data into XML. Query 
over the underlying relational data is expressed through an XML 
interface. The heterogeneity considered in these data integration 
systems largely lies in the form of the data, e.g., relational and 
XML data. This paper considers XML data only, but with 
heterogeneous structures. 
Data integration systems are usually classified as global-as-view 
(GAV) and local-as-view (LAV). GAV means that there is a 
global view, defined as a view over local schemas. In contrast, a 
LAV approach defines local views in terms of the global schema. 
Most data integration solutions are GAV, with just a few (for 
example [10]) being LAV. Since our approach is structure-
independent, there is no schema or view visible to a user at all. 
However, the philosophy of symmetric exploitation can in some 
sense be regarded as a GAV data integration approach. The notion 
of a global schema is manifested by the non-directional nature of 
the closest axis. This schema is essentially a virtual graph. In this 
graph, each directed edge represents the fact that the destination 
node is in the closest axis of the source node. None of the 
(undirected) tree edges needs to be represented in this graph.  
Such a graph is a special kind of global schema in that the user is 
not even expected to be aware of it.  
Querying hierarchical data is often a non-trivial task. There has 
been some work on the convenient formulation of queries over 
XML data. For example, [8] and [12] propose descriptive 
languages for specifying transformations of XML data. Similar to 
the closest axis, these languages hide from users much of the 
procedural specification necessary in a language such as XQuery 
or XSLT. However, these special-purpose techniques are limited 
because they still suffer from being structure-dependent. A query 
might have to be rewritten when the data changes. Our objective 
to flexibly issue queries independent of the structure is shared by 
[4] and [9]. [4] presents a semantic search engine for XML. The 
search relies on an interconnection relationship to decide whether 
nodes are “semantically related.” Two nodes are interconnected if 
and only if the path between them contains no other node that has 
the same label as the two nodes. [9] proposes a schema-free 
XQuery, facilitated by a Meaningful Lowest Common Ancestor 
Structure (MLCAS) operation. Both the interconnection in [4] 



and the MLCAS in [9] are similar to the “closest” relationship 
between nodes in this paper. However, the closest axis is more 
flexible due to the use of node type. Reasoning solely on node 
label can lead to more counterintuitive results. With types, a query 
can be much richer in semantics and can thus produce desirable 
results more easily. 

8. CONCLUSION 
XPath suffers from a lack of symmetric exploitation in path 
expressions. Path expressions in XPath are asymmetric because 
they are enmeshed in the structure of a hierarchy to navigate to 
desired data. Asymmetric path expressions are brittle and have a 
tendency to break when the hierarchy evolves or when the 
expression is applied to a new hierarchy with a different structure. 
This paper proposes a new axis, which we call the closest axis, 
that can be used to exploit data symmetrically. The closest axis 
contains nodes that are closest to the context node, where 
closeness is measured as the distance from the context node in any 
direction. Unlike other axes, the closest axis is non-directional. So 
though the structure of the data may vary, the nodes in the closest 
axis for a given context node remain closest. We described the 
syntax and semantics of the closest axis. We also showed how the 
closest axis can be efficiently implemented for both in-memory 
and persistent XPath/XQuery evaluation engines. The key to 
efficient implementation is to use type information to quickly find 
a path that leads to a closest node. We introduced an LCA-join 
operation to compute such paths in a persistent implementation. 
Finally, we showed how some XQuery Use Cases could be 
rewritten using the closest axis. Though the closest axis does not 
make the queries significantly shorter, the same queries can be 
evaluated over heterogeneously structured hierarchies. 
Much still remains to be done. Though we have specified the 
semantics of the closest axis and sketched efficient algorithms to 
evaluate it, we have yet to implement the axis in a product. We 
plan to test two implementation strategies using eXist, an open 
source native XML DBMS. One strategy will utilize a pre-
processor to convert non-directional queries into directional 
queries. This will demonstrate that the closest axis can be 
implemented as a layer, at low cost. The second strategy will 
modify the internals of eXist to implement the LCA-join. A 
benchmark comparison of the two techniques will help to 
determine the effectiveness of the LCA-join. The LCA-join also 
has applications in restructuring data, where data is transformed 
from one hierarchy to another. Another avenue of future work is 
to define a complete set of non-directional axes. We speculate that 
there exist other non-directional axes that involve conditions 
expressed on labels and types. We are also working on a 
functional query language called PathFree that will entirely 
eliminate path expressions since the closest axis can be used to 
locate data and a related technique can restructure data. 
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