
One Document to Bind Them: Combining XML, Web
Services, and the Semantic Web

Harry Halpin
Institute for Communicating and Collaborative

Systems
University of Edinburgh

2 Buccleuch Place
Edinburgh, United Kingdom

H.Halpin@ed.ac.uk

Henry S. Thompson
World Wide Web Consortium
and University of Edinburgh

2 Buccleuch Place
Edinburgh, United Kingdom

ht@inf.ed.ac.uk

ABSTRACT
We present a paradigm for uniting the diverse strands of
XML-based Web technologies by allowing them to be in-
corporated within a single document. This overcomes the
distinction between programs and data to make XML truly
“self-describing.” A proposal for a lightweight yet power-
ful functional XML vocabulary called “Semantic fXML” is
detailed, based on the well-understood functional program-
ming paradigm and resembling the embedding of Lisp di-
rectly in XML. Infosets are made “dynamic,” since docu-
ments can now directly embed local processes or Web Ser-
vices into their Infoset. An optional typing regime for info-
sets is provided by Semantic Web ontologies. By regarding
Web Services as functions and the Semantic Web as pro-
viding types, and tying it all together within a single XML
vocabulary, the Web can compute. In this light, the real
Web 2.0 can be considered the transformation of the Web
from a universal information space to a universal computa-
tion space.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages

General Terms
Design, Theory

Keywords
Pipelining, Semantic Web, Web Services, XML, functional
programming

1. INTRODUCTION

1.1 Standard Confusion
Given the current plethora of XML-based standards and

technologies, XML is being pulled in multiple directions: the
Semantic Web, Web Services, and maintaining the good-
old fashioned Web based on REST and HTML. As argu-
ments over the relative merits of tree-structured XML versus
graph-structured RDF occupy some, on the ground the Web

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

is moving fast with the rapid adoption of microformats such
as RSS and the use of AJAX (Asynchronous Javascript and
XML) to deliver applications quickly over the Web. Cur-
rently, the Semantic Web and the infamous “Web Service
Stack” seem far removed from the Web of everyday users.
However, many of the “Web 2.0” technologies like AJAX
and the various microformats that come “close to RDF” are
clever but present abstraction and data integration issues.
The question of the hour is: Can the Web community ar-
ticulate a vision that does justice to the direction the Web
is heading? By re-inspecting the idea of “self-describing”
that gave XML much of its original impetus, we believe an
answer can be found. Note that the original impetus for
this thinking on the role of “self-describing” was due to Tim
Berners-Lee, and a preliminary description of the proposed
solution, in the form of a reconstruction of XML pipelines as
functional programs, was presented at XML 2005 [26] and
is briefly recapped in Section 2 in this paper.

1.2 Is XML Self-Describing?
XML has always been touted as “self-describing,” and

Tim Berners-Lee has put forward “self-describing” as a cen-
tral design principle of the Web [2]. Yet, Tim Berners-Lee
has noted that XML documents are not “self-describing”
since they do not provide a description of their preferred
method of processing or their meaning. The Semantic Web
is meant to correct the latter, although as of yet nothing cor-
rects the former. In one important sense, XML documents
are self-describing; the element and attribute names provide
a hint as to their usage, although this constraint is too infor-
mal to be enforced. An element can be called “brillig” just
as easy as it can be called “date,” and the XML document
that contains these elements can still be well-formed and
valid. The informal semantics of tag names rests upon the
assumption that authors will actually use sensible names.

Tag names are not enough. If a document is shared be-
tween two or more parties, there is an assumption that the
meaning of the document is implicit in some common un-
derstanding. The hints given by the element names are just
useful reminders of this understanding. Every schema is a
public agreement, and the details of this agreement are usu-
ally not described by the document itself or known to out-
side parties. Only a handful of microformats like RSS are
well-understood by virtually “everybody on the Web.” In
these cases the meaning and usage of microformats are well-

cat input.xml |

xsv someschema.xsd |

saxon xhtmlout.xsl >

output.xml

Figure 1: UNIX Pipelines

<pipeline>

<param name="target" select="result"/>

<process id="p2" type="transform">

<input name="stylesheet" label="xhtmlout.xsl"/>

<input name="document" label="valid"/>

<output name="result" label="result"/>

</process>

<process id="p1" type="validate">

<input name="document" label="input.xml"/>

<input name="schema" label="someschema.xsd"/>

<output name="psvi" label="valid"/>

</process>

</pipeline>

Figure 2: XPDL Example

known due to the clear and easily-accessible description of
these formats and their widespread adoption. In fact, cur-
rent progress on the Web is in a large part driven by the
increasing usage and combinations of these microformats.
Are all but the most popular of microformats doomed to
be misunderstood? With additional processing and explicit
semantics, the answer should be no.

When XML document types exploit namespaces, the op-
portunity for at least recording the intended understanding
of names ‘in’ the namespace is available, but in practice
we find that either no information at all is retrievable from
a namespace URI, or the information which is available is
neither standardised nor complete.

2. COMBINING DATA WITH PROGRAMS

2.1 Shell Scripts to Pipelines
One simple and well-known way of processing text files

in UNIX is to arrange diverse UNIX components in a shell-
script or “pipeline,” with the input given by standard input
and the output returned to standard output. This process-
ing model is usually a strictly linear ordering of components,
informally called “One Damn Thing After Another.” Figure
1 is an example of a UNIX pipeline that does simple valida-
tion against a schema and then uses XSLT to transform the
valid XML document into XHTML, using shell wrappers
around components like Saxon to get them to conform to
receiving input on standard input, and redirecting standard
output to a file.

Many XML-based applications can be described in terms
of pipelines. Instead of making one large, and often clumsy,
program to accomplish a complex XML processing task, one
breaks the larger problem into smaller sub-problems that
can each be solved by specialized XML processors. These
specialized processors then communicate by passing XML
documents to each other in a linear order. As noted by
Sean McGrath, this supports effective debugging and quick
development time [16]. A host of XML pipelining products
have appeared, with SUN and other XML pipeline vendors
submitting the XML Pipeline Definition Language(XPDL)
[27]. To translate our previous example in Figure 1 into
XPDL, see Figure 2.

<page xmlns:fx="http://www.ltg.ed.ac.uk/~ht/functionalXML">

<fx:transform xmlns:xi="http://www.w3.org/2001/XInclude"

stylesheet="xmlhtmlout.xsl">

<fx:validate schemaDocument="someschema.xsd">

<document version="2.0">

<head profile="http://www.w3.org/2003/g/data-view">

<link rel="transformation"

href="http://www.example.org/xml2rdf.xsl" />

</head>

<body>

<title>Some Document</title>

<author = "Harry Halpin" />

<title>

My input data is below!

</title>

<data>

The data itself!

</data>

</body>

</document>

</fx:validate>

</fx:transform>

</page>

Figure 3: fXML Example

2.2 From Pipelines to Functional Program-
ming

XML pipelining languages do not make an XML docu-
ment self-describing, since the processing instructions are
outside the document itself, and so cannot take advantage
of the natural compositionality of XML documents. In a re-
cent paper [26], the same processing steps are easily put
inside the XML document itself, by nesting the data to
be processed inside an element that describes its proces-
sor. Arguments needed by the processors are given either as
attributes or child elements of the processor. Therefore, cer-
tain elements of an XML document no longer describe data,
but functions whose data is other elements and attributes
in XML. Including the literal data of our initial input, the
example can be rephrased using the fx namespace of this
new theoretical language, called “functionalXML” or just
“fXML,” as shown in Figure 3. In this example a W3C
XML schema-validation process is nested within an XSLT
transformation process.

From a formal perspective, with their deterministic input
and output, both XML pipelines and the simple functional
expression thereof map onto finite state automata (FSA)
that are guaranteed to terminate. There is a stark choice
awaiting the use of the functional programming paradigm
for XML processing. As one adds features such as variables,
conditionals and functions, it is easy to lose FSA equiva-
lence, and subtle interactions between features determine
whether or not the language is Turing-complete. Once this
has happened, the language is a full-blown programming
language, theoretically equivalent in power to XQuery and
Java! This path is already being pursued by XML pipeline
languages such Orbeon’s XPL [4] and NetKernel [21].

Note that the design choice of embedding pipelines in
XML is far from controversial. The question of embed-
ding XML processing languages in XML was at first held
to stalwartly in early XML design, such as in XSLT and
W3C XML Schema. However, more recent work in XML
has gone in the other direction, attempting to simplify pro-
gramming by keeping the syntax of the processing language
in a non-XML compact notation, such as RELAX NG and
XQuery. This viewpoint sees XML, instead of making the
data more human readable, as making data more difficult
to manipulate for humans. This viewpoint holds that XML
syntax is fine for tree-structured data, but for complex pro-
gramming XML syntax is a verbose overload that strains

the finite memory of programmers. After all, programmers
come well-equipped with parsers!

Even though we are proposing to directly embed a small
programming language within arbitrary XML, we agree with
the points made by XQuery, RELAX NG, and others. In-
deed, no complex programming should be done within XML
documents. However, pipeline languages are by definition
simple languages that encapsulate more complex processors,
and this can be done within XML. First, if the pipeline
is chaining together other processors, in effect creating a
meta-language for XML processors, it is overkill to create a
pipeline using Java and underkill for the pipeline to be kept
at the shell script level. One wants something powerful yet
light-weight that neither extreme offers. Also, by exploiting
the universality of the Infoset one can easily attach process-
ing to XML documents in a way that takes advantage of the
natural compositionality of XML. Lastly, by attaching the
processors to XML documents, one makes the XML “self-
describing” in a manner that sensibly and elegantly ties to-
gether current Web technologies, as we demonstrate in the
rest of the paper.

2.3 Functional Programming in XML
With the chains of pipelining determinism broken, one

should proceed carefully in order to keep it simple. This is
especially relevant when transforming what was formerly a
static XML Infoset into a Turing-complete program. XML
programming languages have in general been going in a
direction of increasingly complexity. XSLT 2.0 can now
schema validate documents and includes a host of useful
built-in functions. XQuery can search databases and provide
type inference. This complexity makes life easier for pro-
fessional programmers, but for novices this complexity can
make using these languages difficult. Part of the genius of
XML was that it initially was so simple that any computer-
literate person could learn its main points in about ten min-
utes. The question is what are the most elementary yet most
powerful programming language constructs that can create
and combine processes within an XML document?

Variables, scope, and control structures are needed. Fol-
lowing Scheme, scoping can be introduced via the use of a
fx:let construct, and variables can be bound within a scope
by a fx:bind construct that binds data to a variable [25]. A
name attribute of fx:bind can then be used to name the vari-
able, and the variable can be distinguished from other data
by the use of a dollar sign within the XML document. Con-
trol structures could be accomplished in a way similar to the
XSLT choose, with a cond keyword to serve as a wrapper for
case...else conditionals. These should natively incorporate
XPath for their use test expressions. In our example given
by Figure 4, we only transform an XML document if the
version attribute is greater than 1.0.

There is no reason that a fXML variable could not hold a
function itself, and there should be some process for creating
new functions. This can be accomplished via the use of
fx:defun to define functions, binding them to code and data
via the use of a fx:lambda construction and giving them a
grounding on the local machine via use of a fx:processdef

element. Arguments can then be given using the children
of an fx:args element of the fx:lambda element. This allows
a name to be defined not only for XML data, but for a
process such as GRDDL [12], as in Figure 5. In this example
we check for a GRDDL attribute and do the transform to

<fx:let xmlns:fx="http://www.ltg.ed.ac.uk/~ht/functionalXML">

<fx:bind name="myvariable">

<fx:include href="document.xml"/>

</fx:bind>

<fx:cond>

<fx:case test="$myvariable/document/@version > 1.0">

<fx:transform stylesheet="xhtmlout.xsl">

<fx:validate schemaDocument="someschema.xsd">

<fx:include href="$myvariable"/>

</fx:validate>

</fx:transform>

</fx:case>

</fx:cond>

</fx:let>

Figure 4: Variables and Binding in fXML

<fx:let xmlns:fx="http://www.ltg.ed.ac.uk/~ht/functionalXML">

<fx:defun name="myGrddl">

<fx:lambda>

<fx:args>

<fx:arg name="inputXML" />

</fx:args>

<fx:processdef grounding= "glean.py --output $stdout $inputXML" />

</fx:lambda>

</fx:defun>

<fx:bind name="myvariable">

<fx:validate schemaDocument="someschema.xsd">

<fx:include href="document.xml"/>

</fx:validate>

</fx:bind>

<fx:cond>

<fx:case test="$myvariable/head/link/@rel

&eq; "transformation"">

<fx:apply name="myGrddl">

<fx:include href="$myvariable" />

</fx:apply>

</fx:case>

<fx:else>

<fx:transform stylesheet="xhtmlout.xsl" />

<fx:include href="$myvariable" />

</fx:transform>

</fx:else>

</fx:cond>

</fx:let>

Figure 5: Defining Functions

RDF using our new function if such an attribute is found,
and otherwise continue with our transformation to XHTML.
Note that the function is defined using fx:defun, and then
applied using fx:apply. These in principle should not differ
from other functions such as fx:transform in their ability
to take as their first argument their first child and so on,
although an alternative attribute-driven syntax could also
be used. “Standard output” is redirected to the document
at hand, in traditional pipeline style.

It should be noticed that the very simple language being
proposed here is very much like Lisp, or to be exact Scheme
[25]. In fact, a compact notation for fXML can be given in
a Scheme-like way. This is shown in Figure 6, which is just
the example given in Figure 4 with a non-XML notation.
Although neither Lisp nor Scheme has dominated industry,
they are both recognized for being exceptionally elegant and
extensible languages whose syntax belies their real power.
As an added bonus, by following in their footsteps fXML
maps onto the λ calculus formalism, one of the oldest and
most well-understood formal foundations of programming
languages.

This parallel suggests other constructs that could be added
to fXML. First, some sort of error control similar to XPDL’s
error element or the try/catch mechanism could be used.

(let ((myvariable "input.xml"))

(cond ([$myvariable/document/@version > 1]

(transform (validate myvariable "someschema.xsd") "xhtmlout.xsl"))))

Figure 6: fXML compact notation

One could even imagine porting a number of constructions
from Lisp or Scheme into fXML, for example an equiva-
lent of mapcar. Each of these would have to be modified
to make sense in terms of XML, which is at its most ba-
sic level more complex than S-Expressions [22]. Unlike S-
Expressions, attributes are inherently unordered while ele-
ments are generally taken to be ordered. Yet even with only
the minimal syntax presented so far, at this stage fXML
overcomes one of the more cited “drawbacks” of both Lisp
and Scheme. fXML, by using an XML-based syntax, over-
comes the “curly bracket” paranoia that makes some hate
Lisp, since fXML uses tag names to disambiguate brackets.
It also increases the power of XML by providing a coherent
way to easily embed processes in XML using a tried-and-
tested paradigm that novices should find simple and expe-
rienced programmers familiar.

3. WEB SERVICES AS FUNCTIONS

3.1 Embedding Web Services
Is there a way to combine Web Services with XML docu-

ments easily? While many Web Services wrap their data in
XML for transfer, and Web Services describe themselves in
XML, it is shockingly difficult to include the results of a Web
Service directly into an XML document. From a computa-
tional view, there are truly difficult complexities about poli-
cies, trust, and non-functional properties at the core of Web
Services that are beyond the scope of this paper. A num-
ber of solutions exist that tackle this complexity explicitly,
primarily BPEL (Business Process Execution Language) for
process choreography, and are useful but aim at a different
problem domain, that of allowing a business analyst to de-
scribe the interactions of processes across service end-points
[8]. However, for pipelining and data integration, we would
argue for hiding as much of this complexity away from the
user as possible when dealing with Web Services. Many Web
Services are at their core functions that are available over

the Web. In most cases, what we are doing with Web Ser-
vices is giving a program a URI so that it can be accessible
on the Web.

Currently, we have assumed that all functions bound in
fXML would be functions that are locally accessible. To
extend this to Web Services one must allow another type of
function, one that instead of being on the local machine is a
remote service identified by a URI. The use and composition
of Web Services, making many assumptions about trust and
more, can be construed as analogous to function application
and composition as done in functional programming. In our
previous example as given by Figure 3, there is no reason
why the XML Schema validator has to be local and can not
be a Web Service.

In Figure 7 our XML Schema validation is not done lo-
cally, but by a Web Service that is defined as a function in
a manner similar to local functions, using fx:restWebService

instead of fx:processdef, with the URI of the Web Service
given by the location attribute. In this example, we use a
REST web service for validation that functions by using an
HTTP POST with the document to be validated delivered
as the payload, and the resulting valid XML document or
error is accessed via HTTP GET on the URI of the Web
Service [9]. This HTTP boiler-plate is automated by the
grounding of the function in the fx:restWebService. This
allows us to bind our validator wsValidate to a Web Service.

<fx:let>

<fx:defun name="wsValidate">

<fx:lambda>

<fx:args>

<fx:arg name="inputXML" />

<fx:arg name="schemaDocument" />

</fx:args>

<fx:restWebService

location="http://www.example.org/SchemaValidator" />

</fx:lambda>

</fx:defun>

<fx:transform stylesheet="xhtml.out">

<fx:apply name="wsValidate" schemaDocument="someschema.xsd">

<fx:include href="input.xml"/>

</fx:apply>

</fx:transform>

</fx:let>

Figure 7: Web Services Inside Documents

3.2 REST and SOAP
The debate between REST and SOAP has engulfed Web

Services for some time, and we would not want it to also
engulf fXML. It would be better to imagine a continuum of
Web Services, with one end having a complex layering of se-
curity and orchestration that standards like those in the WS
stack provide [7], and the other end of the spectrum allowing
the relevant data to be accessed by using HTTP in a REST-
ful manner [9]. These, and any other way of retrieving XML
remotely over the Web, can be incorporated easily in fXML
by adding additional grounding definitions to functions that
automate the boilerplate needed. A soapWebService should
automatically wrap the input and unwrap the output using
a SOAP envelope, and also use the location of a WSDL file
so that operations as defined by ports and operations given
by a WSDL can be used.

3.3 Scripting as Functions
Another popular technology is AJAX, yet another de-

velopment in scripting. In a nutshell, AJAX is the use
of Javascript to asynchronously update XML on the client
from the server using the XMLHttpRequest object. How-
ever, as others have pointed out, the use of Javascript in this
technology is arbitrary and mostly driven by the fact that
Javascript is the only client-side programming language that
is nearly universally available in most recent browsers. In
the case of AJAX, all user behaviors that normally would
invoke a server response are captured and processed by the
AJAX engine, and channeling user behavior comes at the
cost of burdening the web page with an immense amount
of Javascript. This can leave arbitrary DOM nodes up for
modification by Javascript. The use of Javascript is just
one example of how scripting languages are currently mixed
with XML, and server-side scripting such as PHP is another
trenchant example. Usually these various scripting tech-
nologies use script elements or processing instructions to
put their code directly into an XML document, often lead-
ing the interesting parts of XML documents to be veritable
black holes.

There is no reason that the advantages of scripting cannot
also be incorporated into an XML document itself using a
functional approach. This would force encapsulation and ab-
straction over the script engine(s) as the relevant functions
would be invoked via fx:apply in fXML. “View Source”
can be comprehensible again, as long as one is kept to the
XML at the right stage of processing. A scripting applica-
tion could be described as binding Javascript and PHP to
a particular elements in an XML document, allowing user
behavior to asynchronously update that and only that ele-

<body xmlns:fx="http://www.ltg.ed.ac.uk/~ht/functionalXML">

<fx:defun name="myMap">

<fx:lambda type="javascript">

<fx:script location="ajax_access_map.js"/>

</fx:lambda>

</fx:defun>

<fx:defun name="myDirections">

<fx:lambda type="php">

<fx:include href="directions.php" />

</fx:lambda>

</fx:defun>

<h1>Welcome to My Web Page</h1>

<p>Get directions to my location type either my

work or home address here:</p>

<fx:apply name="myDirections"/>

<p>You may find this map useful as well!</p>

<fx:apply name="myMap"/>

</body>

Figure 8: Scripts as Functions

ment and encouraging modularization of scripting code as
is already good practice. The elements can then be typed
with their script engine, allowing any processing instruc-
tions or script tags to be generated by fXML. In Figure 8
we present an application that uses PHP to get an address
from the user and then provides a Javascript-enabled map of
the area around the address, but abstracts away the script-
ing by hiding it in fXML elements. Server-side scripting
can be encapsulated via XInclusion and client-side scripting
given a function as shown before. While this may not pro-
vide any increased functionality for the web page, it does
allow the XML code to be inspected and possibly reasoned
about in a functional manner.

4. THE SEMANTIC WEB AS TYPES

4.1 The Semantic Web for Data Integration
The Semantic Web is a solution in need of a problem. The

problem of the hour for the Semantic Web is data integra-

tion. Seamless data integration is the holy grail of XML.
While XML provides a well-understood syntax for the ex-
change of data, unless two parties have a very clear idea of
what XML they are exposing or capable of receiving, en-
coding data in XML will under no circumstances magically
cause data to integrate. The best way for data to integrate
is for all the data to have compatible abstract models re-
gardless of their particular syntax, as could be given by a
model theory of the data using formal semantics. This is pre-
cisely what the Semantic Web offers. Only when the data
in two XML documents can be shown to be compatible in
their models can we be assured that we can combine the two
sources of data safely, such that I know your tag name for
“lastName” is the same as my tag name for “surname.” In
the “open world” of the Web, unlike in traditional “closed
world” databases, one has no idea what data might attempt
to be integrated with what other data. Knowledge represen-
tation systems based on describing taxonomies of data and
their relationships, such as description logics and first-order
logic (the upcoming Semantic Web rule language), are in
general based on well-tested and developed methods from
artificial intelligence that can make the semantics of data
explicit [11, 3, 13]. However, for many cases the mapping of
XML to RDF is the key to giving XML documents a formal
model semantics that operates outside the level of a single
XML document. After converting relevant parts of the XML
document to RDF, the merging of RDF graphs can then be
a step towards data integration on the Web. After the data
integration is complete on the level of RDF, one might be

able to serialize the results back as an XML document that
provides a link to a transformation or a mapping back to
the RDF graph. However, this final step is currently not
even the topic of much research or approaching being stan-
dardized. Only once this step is done can we successfully
“round-trip” from XML to RDF and back again. Yet for
the applications described here this final step is not needed.

The use of RDF to model the semantics of a XML vo-
cabulary has pleasant ramifications for both XML and the
Semantic Web. First, XML infosets and the Semantic Web
should be viewed not as competing paradigms but as com-
plementary efforts. XML is a great syntax for transferring
just about anything over the Web, since tree models are well-
studied in computer science and naturally fit onto much of
the data that the Web traffics in, and since raw XML can be
deciphered by humans, unlike the XML serialization syntax
for RDF. As more and more industries move towards using
XML as the de facto standard for transferring data, asking
them to forsake their investment in their own XML formats
is wishful thinking at best. However, there is a compelling
case for using semantics for data integration, and while XML
provides no application semantics as such, RDF at least en-
ables it to be made explicit [18]. So the Semantic Web, or
something like it, is what is needed to provide the formal se-
mantics for data integration. However, instead of waiting for
people to explicitly encode their data using Semantic Web
standards, the Semantic Web needs to find ways to layer
itself onto XML.

There are two main methods for integrating the Semantic
Web with what one might call vernacular XML (the myriad
of custom XML vocabularies not given in RDF), one declar-
ative and the other procedural. Both can be made to work
rather easily with fXML. The declarative model imports
mapping attributes into either an XML Schema or directly
into the XML document itself [14]. This sort of mapping
has been receiving increased attention lately, as exemplified
by WSDL-S [23]. However, usually the mapping from XML
data to the Semantic Web is not a trivial case of corre-
spondence between Semantic Web classes and properties to
vernacular XML elements and properties, but instead is de-
pendent on a variety of factors within the XML document.
In this case a procedural model, called GRDDL (Gleaning
Resource Descriptions from Dialects of Language) provides a
mapping from vernacular XML data to XML-encoded RDF,
often via an XSLT stylesheet [12]. In essence, a pointer to
a transformation process can be given as the root element
in a document. Since this methodology is so straightfor-
ward, it has been gaining in popularity rapidly. Due to the
fact that the results of the first approach can be, and of
the second already are, expressed as XML infosets, fXML
can easily incorporate both the declarative and procedural
approaches. In the first case, the mapping from a Semantic
Web ontology could be given either by an explicit reflected
Post-Schema Validation Infoset and a generic PSVI to RDF-
in-XML transformation [15]. In the second case fXML can
be used to evaluate the GRDDL binding explicitly, as we
illustrate in Figure 9. Either way, with fXML allows one
to use the methodology of one’s choice in connecting an on-
tology to an XML document. In Figure 9 we use fXML
to call GRDDL to produce RDF-in-XML for an XML doc-
ument and merge the result with the interpretation of a
pre-existing RDF-in-XML document level. Therefore, at its
most basic “semantic” fXML (given by the sfx namespace)

<document xmlns:sfx="http://www.ibiblio.org/hhalpin/sfXML"

xmlns:fx="http://www.ltg.ed.ac.uk/~ht/functionalXML">

<sfx:grddl>

<fx:include href="neworder.xml" />

</sfx:grddl>

<fx:include href="bookdata.rdf" />

</document>

Figure 9: Data Integration with RDF in XML

can be considered mappings of infosets to triples (such as the
case with GRDDL) and the mapping of triples to triples, as
opposed to mappings of infosets to infosets. When we can
use triples and infosets together we gain the advantages of
both, especially if we can hide the details at a high level of
abstraction.

4.2 The Semantic Web as Types
Both type theories and ontologies classify data abstractly.

If XML is data, then can the Semantic Web provide types
for that data? However, isn’t this what XML Schema is
supposed to do? If the XML document has been schema
validated, additional data such as the type of the XML
data is given by the Post Schema-Validation Infoset [22],
and this type information can easily be used to export the
types found in most conventional databases and program-
ming languages [15]. On one hand, XML Schema does pro-
vide the types needed if those types happen to be “integers,”
“strings,” and the like. Traditionally in programming lan-
guages like C this is all one needs. Even in languages with
a rich type system like Haskell, the purpose of a type sys-
tem is to be a “syntactic system for proving the absence of
certain program behaviors by classifying phrases according
to the kinds of values they compute” [19]. Calling the vari-
able firstName (as in firstName equals “Harry”) a string is
important, and like an XML tag, the decision to name a
variable “firstName” is meaningless to the compiler in of it-
self, which just considers it another variable that can have
as its value a string. However, on the Web it may be im-
portant that a string is a firstName as in “the first name
of a person,” and not just any string. Moving from the
closed-world programming paradigm to the open-world pro-
gramming paradigm, it makes sense to explicitly model the
world semantics of your data, not just give them data types.
By world semantics we mean the denotations of a symbol
in the world outside the computational process, while by
data types we mean the classification of possible behaviors
of data inside the computation. For example, the world se-
mantics of “Pat Hayes” is a particular person who was born
in Newent in the United Kingdom, yet this and innumerable
other facts are just not relevant to the possible behaviors of
the string “Pat Hayes” (like being concatenated with other
strings) inside a computational process. On the Web, one
is more likely to determine whether or not a computation is
valid based on what the data represents in the world outside
the Web rather than its data type alone. This is based on
the distinction between using ontologies as world semantics,
where we model the world semantics with a formal model
[1], and data types, where we model the computational pro-
cess itself [24]. Yet both are methods of enforcing “patterns
of abstraction” [20].

For example, when determining if a discount should be ap-
plied to Pat Hayes when he is shopping at an online store,
one needs to know a lot beyond data types. One needs to

<fx:let xmlns:sfx="http://www.ibiblio.org/hhalpin/sfXML"

xmlns:storeOnt="http://www.example.org/StoreOntology/" >

<sfx:bind name="myPerson">

<sfx:grddl>

<fx:include href="customerOrder121.xml" />

</sfx:grddl>

</sfx:bind>

<p>Thank you for your purchase.

<fx:cond>

<sfx:case "$myPerson &eq; storeOnt:FrequentCustomer" >

You will receive a discount for

your loyalty to the store!

</sfx:case>

<sfx:else>

Shop more and you’ll receive special

discounts!

</sfx:else>

</sfx:cond>

</p>

</fx:let>

Figure 10: Using the Semantic Web in sfXML

<fx:let xmlns:sfx="http://www.ibiblio.org/hhalpin/sfXML"

xmlns:storeOnt="http://www.example.org/StoreOntology/" >

<sfx:bind name="myPerson" type="storeOnt:StoreCustomer">

<fx:include href="customerOrder121.xml" />

</sfx:bind>

</fx:let>

Figure 11: Ontologies as Types in sfXML

know if “Pat Hayes” is a person, not merely a string that
can be equivalent to other strings and so on. In Figure 10,
we want to know if Pat Hayes has bought enough books on-
line store as to qualify for a “frequent customer” discount.
This type of world semantics can be encoded by using the
Semantic Web, e.g. by having Pat Hayes belong to class
StoreCustomer, subclass of Person. The question can then
be reframed as does Pat Hayes also belong to the class Fre-

quentCustomer, subclass of StoreCustomer? Our example
shows how sfXML can determine this by using GRDDL to
transform the data into triples and then explicitly checking
the triples for FrequentCustomer. This checking is done via
an sfx:cond and sfx:case statement that uses an “equality”
test to test whether or not a triple of the needed class (or
possibly property) is given in the tested triples. We can con-
strue subclass and subproperty relationships as analogous to
subtyping relationships. In which case, the type attribute al-
lows us to bypass the boilerplate coding and “equality” test.
The type attribute just automates the RDF transformation
of the XML input and checks whether the results are valid
based on a check for the wanted class (the “type”). If this
test fails, the assignment to the variable fails as an invalid
type of data has been assigned to a typed variable. This
simplification is shown in Figure 11.

In other words, while XML Schema gives us types that tell
us how data should be encoded in XML, the Semantic Web
can give us types that tell us what things in the real world
our data represents. In that regard, the Semantic Web can
be considered as a type system for the real world. Unlike
most type systems for traditional programming languages,
the Semantic Web is an open-world system.

4.3 Semantic Web Services as Typed Func-
tions

If the Semantic Web is an open-world system that can be
used as types, and Web Services are functions available on
the Web, then Semantic Web Services can be construed as
typed functions for the Web. This analogy is useful, for it
provides the ability to invoke Web Services not just by their

<body>

<fx:let xmlns:fx="http://www.ibiblio.org/hhalpin/sfXML"

xmlns:dirOnt="http://www.example.org/DirectionsOntology/">

<sfx:bind name="myAddress" type="dirOnt:Address">

<sfx:include href="myaddr.rdf"/>

</sfx:bind>

<sfx:bind name="yourAddress" type="dirOnt:Address">

<sfx:include href="your_addr.rdf"/>

</sfx:bind>

<h1>Welcome to My Web Page</h1>

<p>The directions to my House are here:</p>

<sfx:defun name="doDir">

<sfx:lambda type="dirOnt:Directions">

<sfx:args>

<sfx:arg name="origin" type="dirOnt:Origin"/>

<sfx:arg name="destination" type="dirOnt:Destination"/>

</sfx:args>

</sfx:lambda>

</sfx:defun>

<sfx:defun name="doMap">

<sfx:lambda outputType="dirOnt:Map">

<sfx:args>

<sfx:arg name="address" type="dirOnt:Location"/>

</sfx:args>

</sfx:lambda>

</sfx:defun>

<sfx:apply name="doDir" origin="$yourAddress" destination="$myAddress" />

<p>You may find this map useful as well!</p>

<sfx:apply name="doMap" address="$myAddress"/>

</fx:let>

</body>

Figure 12: Semantic Web Services

URI, but by the type of information they have. This type
system can then invoke service composition machinery and
discovery processes [17]. The implementation details of this
is a hard problem in of itself, but for a user discovery should
be transparent.

For example, one may not even know a particular Web
Service that provides directions from one street address to
another. Web Services have an irritating propensity to dis-
appear, so even when one has a particular URI for this sort
of Web Service it is unwise to rely upon that URI solely. Al-
most all Web Services providing driving directions will have
as input parameters the two street addresses, and as their
output a set of driving directions. Assuming a fully oper-
ational Semantic Web, these Web Services can categorize
themselves as Semantic Web Services and type their input
and output to commonly available ontologies via a mapping
from WSDL to RDF as given by WSDL-S or an equivalent
technique [23]. If we have a Directions class and an Address

class in an ontology of driving directions, then a Directions

Semantic Web Service would take as its input two arguments
of class Address, one being also a member of the Origin class
and the other a member of the Destination class. Likewise
one can imagine a Map class for map images, and we also
need an Address to find a map. Building on our previous
scripting example, a new Semantic Web Service framework
is sketched Figure 12. By binding the Web Services with
types, we make sure the XML document used as input has a
triple mapping to the input type, and the output document
has a triple mapping to the output type. For type check-
ing, the transformation from XML to triples for the input
document could be done automatically by sfXML, and it
could be done for the output via an explicit mapping like
WSDL-S for the output of a Web Service. Assuming the
type checking has been successful, the output assumes the
results of the service are given in vernacular XML, not the
RDF triples themselves. This allows the output to then be
easily included back into the original XML document that
invoked the service.

In defining Web Services purely in terms of their input and
output type signatures using the Semantic Web, we consider
the Web Service needed to be an anonymous function that

gets bound to an actual Web Service when a Semantic Web
Service for the actual service has input and output types
that match the desires ones. While the Web Service discov-
ery process can be complex, the ordinary use of Semantic
Web Services may be even easier than using Web Services
without Semantic Web types, since using Semantic Web Ser-
vices should let one just specify what one wants instead of
how to get it. This process could also inter-operate with
existing initiatives that allow the binding of Semantic Web
ontologies to Web Services [23], and in fact can directly rely
on these methods to provide the types for functions. Seman-
tic fXML can serve as a wrapper for various Semantic Web
Services technologies, and put the result of these sometimes
obscure and hard-to-use technologies directly into an XML
document.

5. ARCHITECTURAL VISION

5.1 The Web is a Computer
The Web is currently faced with the danger of being frag-

mented between XML, Web Services, the Semantic Web,
and the “Web 2.0” initiative, as exemplified by AJAX and
microformats. Instead of attempting to argue that one of
these initiatives is superior to the others, we instead present
a unified abstraction of data, types, and functions to unify
the initiatives at a suitable level of abstraction: XML en-
codings of a functional programming language for infosets,
and an extension for it to deal with triples and the use of
triples as analogous to type checking. Although it would
have been perhaps easier to explain this abstraction in the-
oretic terms, we ground our examples using two XML vocab-
ularies, fXML and sfXML, illustrating how such a unified
viewpoint can be used to build the next generation of the
Web solidly upon the success story of XML. As should be
clear, what the functionalXML perspective presents is a vi-
sion of the Web that is remarkably simple: data, types, and
functions all accessible over the Web and composed within
XML documents. Given this framework, one can treat the
Web itself as one computer [10]. The Web is moving from
a universal information space to a universal computation
space.

5.2 Turing’s Promise
As explored by the philosopher Andy Clark, one criteria

used to judge a system as an unitary object is the latency be-
tween its potential components [6]. As latency decreases, we
are likely to regard two components as part of the same sys-
tem. For example, because there is such low latency between
your hand and your brain, you naturally regarded your hand
as part of yourself. As more feedback with less latency is re-
ceived from artifacts like a laptop, it is not unreasonable for
people to consider these artifacts to be almost part of their
selves, to the point that when when a laptop breaks down it
as if part of the self has been disabled. There can be an al-
most a physical feeling of pain [6]. In the same manner, one
argument against both the Web and Web Services is that
the process of wrapping data in http and formatting it in
verbose XML increases latency. However, as network infra-
structure decreases latency, the distinction between what is
“local” to a machine and what is “on the Web” will become
less and less noticeable to the user, even when the data is
encoded in XML and wrapped in http.

In that regard, as latency decreases, the difference be-
tween the local computer and the Web dissipates. Therein
lies the true power of Web Services. Once the Web has
matured past a certain point, there should be no notice-
able difference between functions on the Web and functions
available locally on a hard disk. Before ASCII, computers
had their own non-universal codes for storing data such as
numbers and letters, making it difficult to exchange data be-
tween computers. The same problem faces structured data
on the Web, and XML is currently provides one standard for
making complex data truly universal. As more and more
computation moves to the Web, the combination of XML
and Unicode will doubtless replace ASCII as the data for-
mat of choice. Web Services are already becoming the de
facto way to access programs over the Web. Add to this the
ability to make what our data means explicit to both hu-
mans and machines through using the Semantic Web, and
one has the Web functioning as one open-ended, vast, de-
centralized computer.

Turing proved long ago that all computers instantiate one
universal formal model of computation, the Turing machine,
which the Church-Turing Hypothesis notes is equivalent to
the λ calculus that fXML is built upon [5]. However, it
is the details of incompatible hardware and idiosyncratic
software that has made our data and programs unable to
be universally shared. With the advent of the next stage
of the Web, the software can finally live up to the promise
implicit in Turing machines: the Web will finally serve as
one universal computer, not just in theory, but in practice.

6. REFERENCES
[1] J. Barwise and J. Perry. Situations and Attitudes.

MIT Press, Boston, Massachusetts, 1983.

[2] T. Berners-Lee. Weaving the Web. Harper, San
Francisco, 1999.

[3] H. Boley and S. Tabet. Design Rationale for RuleML:
A Markup language for Semantic Web Rules. In
Proceedings of Semantic Web Working Symposium,
2001.

[4] E. Bruchez and A. Vernet. XML Pipeline Language
(XPL) Version 1.0. Member submission, W3C, 2005.

[5] A. Church. A note on the Entscheidungsproblem.
Journal of Symbolic Logic, 1:40–41, 1936.

[6] A. Clark. Natural Born Cyborgs. Oxford University
Press, 2004.

[7] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, and
N. Mukhi. Unraveling the Web Services Web: An
introduction to SOAP, WSDL, and UDDI. IEEE

Internet Computing, 6, 2002.

[8] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and
S. Weerawarana. The next step in Web Services.
Communications of the ACM, 6(10):29–34, 2003.

[9] R. Fielding and R. Taylor. Principled design of the
modern Web architecture. In Proceedings of

International Conference on Software Engineering,
Toronto, Canada, 2001.

[10] H. Halpin. The Semantic Web: The origins of AI
redux. In the Proceedings of the Fourth International

Workshop on the Philosophy and History of

Mathematics and Computation, San Sebastien, Spain,
2004.

[11] S. Hawke and S. Tabet. Workshop for Rule Languages
for Interoperability. Report, W3C, 2005.

[12] D. Hazael-Massieux and D. Connolly. Gleaning
resource descriptions from dialects of language. In
Proceedings of XTech, Amsterdam, Netherlands, 2005.

[13] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A Semantic Web
rule language combining OWL and RuleML. Member
submission, W3C, 2004.

[14] J. Hunter and F. Nack. Combining RDF and XML
Schemas to enhance interoperability between
metadata application profiles. In Proceedings of

International World Wide Web Conference, 2001.

[15] A. Krupnikov and H. Thompson. Data binding using
W3C XML Schema Annotations. In Proceedings of the

XML Conference, Orlando, USA, 2001.

[16] S. McGrath. XML Pipelines. In Proceedings of XML

Open, Cambridge, UK, 2004.

[17] S. Narayanan and S. McIlrath. Simulation, verification
and automated composition of web services. In
Proceedings of the World Wide Web Conference,
Honolulu, USA, 2002.

[18] P. Patel-Schneider and J. Simeon. The Yin-Yang web:
XML syntax and RDF semantics. In Proceedings of the

World Wide Web Conference, Honolulu, USA, 2002.

[19] B. Pierce. Types and Programming Languages. MIT
Press, Boston, USA, 2002.

[20] J. Reynolds. Types, abstraction, and parametric
polymorphism. In Proceedings of Information

Processing Conference, Amsterdam, the Netherlands,
1983.

[21] P. Rodgers. Service-oriented-development on
netkernel. In Web Services Edge East, Boston, USA,
2005.

[22] J. Simeon and P. Wadler. The essence of XML. In
Proceedings of ACM Symposium on Principles of

Programming Languages, New Orleans, USA, 2002.

[23] K. Sivashanmugam, K. Verma, and A. Sheth.
Discovery of Web Services in a federated registry
environment. Proceedings of IEE Second International

Conference on Web Services, 2004.

[24] B. C. Smith. The Correspondence Continuum. In
Proceedings of the Sixth Canadian Conference on

Artificial Intelligence, Montreal, Canada, 1986.

[25] G. Steele and G. Sussman. Lambda: The Ultimate
Imperative. AI Lab memo aim-353, MIT, 1976.

[26] H. Thompson. FunctionalXML. Member submission,
W3C, 2005.

[27] N. Walsh and E. Maler. XML Pipeline Definition
Language. Note, W3C, 2002.

