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ABSTRACT
In this paper we describe an approach for the verification
of Web service compositions defined by sets of BPEL pro-
cesses. The key aspect of such a verification is the model
adopted for representing the communications among the ser-
vices participating in the composition. Indeed, these com-
munications are asynchronous and buffered in the existing
execution frameworks, while most verification approaches
assume a synchronous communication model for efficiency
reasons. In our approach, we develop a parametric model
for describing Web service compositions, which allows us to
capture a hierarchy of communication models, ranging from
synchronous communications to asynchronous communica-
tions with complex buffer structures. Moreover, we develop
a technique to associate with a Web service composition
the most adequate communication model, i.e., the simplest
model that is sufficient to capture all the behaviors of the
composition. This way, we can provide an accurate model
of a wider class of service composition scenarios, while pre-
serving as much as possible an efficient performance in ver-
ification.

Categories and Subject Descriptors: H.1.1 [Models
and Principles]: Systems and Information Theory — (E.4)
Formal models of communication; D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.2.4 [Software Engi-
neering]: Software/Program Verification — Formal meth-
ods, Model checking;

General Terms: Design, Verification.

Keywords: Web Service composition, BPEL, asynchronous
communications, formal verification.

1. INTRODUCTION
Web services provide the basis for the development and

execution of business processes that are distributed over the
network and available via standard interfaces and proto-
cols [8]. Service composition [12] is one of the most promis-
ing ideas underlying Web services: new functionalities can
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be defined and implemented by combining and interact-
ing with pre-existing services. Different standards and lan-
guages have been proposed to develop Web service compo-
sitions. Business Process Execution Language for Web Ser-
vices (BPEL, [2]) is one of the emerging standards for de-
scribing a key aspect for the Web service composition: the
behavior of the service. It provides a core of process descrip-
tion concepts needed for the definition of interactions among
distributed processes. This core of concepts is used both for
defining the internal business processes of a participant to
an interaction and for describing and publishing the exter-
nal business protocol that defines the interaction behavior
of a participant without revealing its internal behavior.

BPEL opens up the possibility of applying a range of for-
mal techniques to the verification of the behavior of Web
services, and different approaches have been defined for ver-
ifying BPEL [6, 13, 14, 15, 7, 17]. We are interested in
particular in those techniques that are applied to the verifi-
cation of BPEL compositions: in this case, we have to verify
the behaviors generated by the interactions of a set of BPEL
processes, each specifying the behavior of one of the services
participating to the composition.

A key aspect for this kind of verification is the model
adopted for representing the communications among the
Web services. Indeed, the actual mechanism implemented in
the existing BPEL execution engines is both very complex
and implementation dependent. More precisely, BPEL pro-
cesses exchange messages in an asynchronous way; incoming
messages go through different layers of software, and hence
through multiple queues, before they are actually consumed
in the BPEL activity; and overpasses are possible among
the exchanged messages.

However, most of the approaches proposed for a formal
verification of BPEL compositions exploit a synchronous
model of communications, which does not require message
queues and hence allows for a better performance in verifi-
cation. This synchronous mechanism relies on some strong
hypotheses on the interactions allowed in the composition:
at a given moment in time, only one of the components can
emit a message, and the receiver of that message is ready to
accept it (see e.g., [7]).

In our experience, these hypotheses are not satisfied by
many Web service composition scenarios of practical rele-
vance, where critical runs can happen among messages emit-
ted by different Web services. This is the case, for instance,
when a Web service can receive inputs concurrently from
two different sources, or when a service which is executing



a time consuming task can receive a cancellation message
before the task is completed.

Our goal is to provide extended composition mechanisms,
where the hypotheses on synchronous communications are
weakened, but the communication model is kept as simple
as possible. This way, an accurate modeling is possible for
a wider class of service composition scenarios, while an effi-
cient performance is still achievable in verification.

In this paper, we propose a model of composition, which
is based on a parametric definition of the communication
infrastructures. More precisely, it is possible to define dif-
ferent communication models by changing the number of
queues existing among the component processes and the sets
of messages associated with the various queues. By increas-
ing the number of queues, and hence by allowing more and
more asynchrony in the evolution of the system, we define a
hierarchy of communication models that are able to model
larger and larger composition scenarios. The most restric-
tive model, with only one shared queue of capacity 1, is
shown to be equivalent to the synchronous model of [7]. The
most liberal model, instead, which has dedicated queues for
each type of message, can describe virtually all the exam-
ples of BPEL compositions we found in the literature and
in practical usage.

The paper also describes an algorithm for the verification
of BPEL compositions. The algorithm is able to identify the
simplest communication model in the hierarchy that is ade-
quate for a specific set of BPEL processes. It then builds the
corresponding composition, that can be emitted in the in-
put languages of two state of the art model checkers, namely
NuSMV [4] and SPIN [9]. These model checkers can then
be used to verify properties of the compositions expressed in
standard specification languages such as Linear-time Tem-
poral Logic (LTL). We conducted some experiments on our
system in order to evaluate the applicability and scalability
of the approach. These experiments show that the perfor-
mance of the verification decreases when the complexity of
the communication model increases, and that the possibil-
ity to select automatically the right model is very useful to
improve the verification performance.

The paper is structured as follows. In Sect. 2 we in-
troduce several instances of the case study that motivate
the necessity to consider different variants of communica-
tion mechanism. Section 3 defines the parametric model for
Web service compositions. Section 4 investigates a hierarchy
of this models and addresses the problem of identifying the
most adequate model for a specific composition scenario and
Sect. 5 presents the algorithm for identifying and building
such most adequate model. An experimental evaluation of
the approach is presented in Sect. 6, while conclusions and
future work are presented in Sect. 7.

2. BPEL COMPOSITION SCENARIOS
In order to illustrate the problem of modeling service com-

positions, we consider several variants of the Virtual Travel
Agency domain. The goal of the Virtual Travel Agency is to
provide a combined flight and hotel booking service by inte-
grating two independent existing services: a Flight booking
service, and a Hotel booking service. Thus, the composi-
tion describes the interactions of four partners: User, Vir-
tual Travel Agency (VTA), Hotel and Flight services (see
Fig. 1.a).

In our framework, we model the composition using BPEL
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Figure 1: Composition participants

specifications that describe the workflows and the interac-
tions of the four partners. BPEL provides an operational
description of the (stateful) behavior of web services on top
of the service interfaces defined in their wsdl specifications.
An abstract BPEL description identifies the partners of a
service, its internal variables, and the operations that are
triggered upon the invocation of the service by some of
the partners. Operations include assigning variables, invok-
ing other services and receiving responses, forking parallel
threads of execution, and non-deterministically picking one
amongst different courses of actions. Standard imperative
constructs such as if-then-else, case choices, and loops, are
also supported.

In this paper, we will use diagrams like the ones in Fig. 1
for representing the BPEL specifications. The BPEL sources
for the examples we describe in the paper are available at
http://www.astroproject.org/.

2.1 Example 1: Tickets Reservation Scenario
In this scenario, the user can ask the VTA to book a flight

to a specified location and reserve a room in a hotel at that
location for a given period of time. It is possible that the
request of the user cannot be fulfilled, in which case the user
receives a not-available (na) notification from the VTA. If
a reservation offer is received instead, the user can accept
or reject it, sending a corresponding message to the VTA
(Fig. 1.b).

The Flight booking service becomes active upon a request
for a given location (e.g., Paris) and a given period of time
(e.g., August). In the case the booking is not possible, this
is signaled to the requestor, and the protocol terminates.
Otherwise, the requestor is notified with an offer informa-
tion and the protocol stops waiting for either a positive or
negative acknowledgment. In case of positive answer, the
flight is successfully booked and the reservation ticket is sent,
otherwise the interaction terminates with failure. Figure 1.c
represents the protocol provided by the Flight booking ser-
vice. The protocol of the Hotel service is similar.



The behavior of the VTA is as follows. After receiving a
reservation request from the user, the VTA interacts with
Flight and Hotel services to obtain ticket offers and expects
either a negative answer if this is not possible (in which
case the user is notified and the protocol terminates with
failure), or provides the user with an offer indicating hotel,
flights and cost of the trip. After that, the user may either
accept or refuse the offer, and in the first case VTA provides
the user with the tickets obtained from Hotel and Flight.
The diagram corresponding to the BPEL protocol of VTA
is represented in Fig. 1.d.

This composition scenario exhibits an important property
that allows for a very simple communication mechanism. At
any moment of time, only one of the partners is ready to emit
a message. Moreover, the corresponding receiver is ready
to accept the message. Using the terminology of [7], the
composition model satisfies the synchronous compatibility,
autonomy and lossless composition properties. As a conse-
quence, a synchronous communication model can be used to
define the composition without loosing completeness of be-
haviors. As demonstrated in [7], this allows for an efficient
verification of the composition scenarios.

2.2 Example 2: Reservation with Cancellation
Unfortunately, the simplified communication model of the

previous example is not applicable to all kinds of interac-
tions. A typical example is a business process with event
handlers. Let us consider an extension of the ticket reser-
vation scenario, such that the user can decide to cancel the
booking operation. In this case the user can send a cancel

message to the VTA and wait for the outcome of the can-
cellation. The VTA forwards the cancellation to the Flight
(and similarly to the Hotel process, we omit this for the sake
of simplicity). The Flight waits for a cancellation message
for a certain time after the acknowledgement of the reser-
vation. If the cancellation message is received on time, the
Flight notifies a successful cancellation. If the time for a
cancellation runs out, the Flight sends a ticket to the VTA,
thus forcing the failure of cancellation: cancellations sent by
the VTA after the ticket is sent are consumed and ignored.
The excerpts of the corresponding process specifications are
represented in Fig. 2.a.

The verification under the synchronous communication
model is not able to manage correctly this example, and
reports a deadlock. Indeed, if the Flight service fails to wait
for a cancellation, the onAlarm activity is fired and a ticket
is sent to the VTA process. Meanwhile, the VTA may re-
ceive a cancellation message from user and forward it to the
Flight service. Therefore both Flight and VTA would try to
send messages to each other and the composition would be
in a deadlock according to the synchronous semantics.

This deadlock is not real, in the sense it does not occur
in existing BPEL engines; since the Web services communi-
cations are asynchronous, and the message emission is not
blocking, both processes will emit messages to each other.
Both messages will be consumed then and the composition
terminates correctly.

The problem we are facing here is that the synchronous
model is too restrictive. The message delivery and process-
ing may require a certain time, thus leading to situations
where concurrent message emissions take place. These situ-
ations, however, are not allowed in the synchronous commu-
nication model. In order to verify correctly the considered
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Figure 2: Cancellation management

example, a relaxed model is needed that allows considering
these concurrent message emissions.

If one applies the verification approach of [7] for the anal-
ysis of such a composition, then the inapplicability of the
synchronous communication model is detected and reported.
However, [7] and other verification approaches fail to find
an alternative communication model that is adequate to the
scenario. In [7], an arbitrary communication model with 2-
position buffers is applied, which is rather expensive from
the verification point of view, and still does not guarantee
the correctness of the verification.

2.3 Example 3: Extended Cancellation
Let us consider a further modification of the case study.

In this case, after the VTA has sent a cancellation message
to the Flight, it waits for a message notifying whether the
cancellation is possible (message flight cancelled) or not
(message no flight cancel). In the latter case, it waits
for the ticket and sends is to the user. The Flight service,
on the other side, behaves as before with the only difference
that, after emitting the ticket and receiving the cancellation,
it sends a notification about cancellation rejection (message
no flight cancel). The corresponding diagrams are rep-
resented in Fig. 2.b.

Even if one verifies the example allowing for concurrent
message emissions, the following incorrect scenario may oc-
cur. The Flight service sends a ticket and waits for a cancel-
lation. At the same time, the VTA process sends a cancel-
lation request that the Flight service rejects. The VTA has
received a ticket and then a cancellation rejection, but it is
not able to process the messages in this order. Only if the ex-
ecution of processes in the run-time environment allows for
reordering of messages (which is the case for existing imple-
mentations) the deadlock disappears, since the cancellation
rejection can be processed before the ticket message.

This example shows a necessity not only to consider sys-
tems which do not follow the synchronous communication
semantics, but also to accept less restrictive models where
message reordering is allowed. If this is not done, then sce-
narios that can occur in practice are not considered in the
verification, and wrong results can be obtained.



2.4 Assumptions on the Composition
This chain can be further prolonged, leading to more com-

plex communication models. One can think of lossy chan-
nels, complex ordering conditions, complex queue models
etc. As a result, the behavior of the given composition
varies when different models are applied. In the following we
present a parametric communication model that is suitable
for the description of wide class of composition scenarios,
including those discussed in Examples 1, 2, 3. This model,
however, relies on certain hypotheses on the Web service
compositions. These hypotheses define some boundaries to
the scope of our verification framework, and will allow us
to abstract from low-level issues that are irrelevant for the
“logic” of the composition, and to simplify the formalization
of the model:

• The communication channels used by the participants
are disjoint. That is, it is never the case that two
processes are able to invoke or receive the same op-
eration from a third process. Formally, this means
that the sets of communication actions used by pairs
of processes are disjoint, and that the end points of the
communications are statically fixed.

• The communication channels are perfect, i.e. no mes-
sage losses can ever occur. This assumption may be
enforced by special techniques in the WS world. In
particular, WS Reliable Messaging or monitoring tech-
niques can be used for these purposes.

• The definition of the composition participant should
not include an infinite loop of internal actions. In-
deed, such a loop would describe a divergent behavior
of the system, i.e., a behavior where the service is not
interacting with the environment.

Under these assumptions, we consider a very general com-
munication infrastructure that allows for modeling the fol-
lowing features:

• Invoke operations are non-blocking. Due to the asyn-
chronous, loosely coupled nature of Web services, the
message emission cannot be blocked even if the receiver
is not ready to accept the message.

• Queue are unbounded, but with the restriction that
the number of messages in the queues cannot grow
unboundedly. That is, we do not define a limit to
length of the queues “a priori”, however we consider
invalid all those composite systems where the num-
ber of messages in the queue can grow unboundedly.
(This corresponds to assume that the queues are “long
enough” to contain all the messages that need to be
stored in the executions of the systems.)

• An arbitrary implementation of the underlying queu-
ing mechanism is allowed. That is, we do not commit
to a specific model of implementation of the queues.
In order to reflect this property, we assume the most
general behavior of queue, where the messages can be
consumed in any arbitrary order, regardless the order
in which they are stored in the queues.

We remark that the most critical requirement is the last
one. Indeed, existing BPEL engines manage queues in a
specific way, and some of the behaviors that are possible with

the arbitrary queues could not be possible in the concrete
implementation of queues of a specific engine. Assuming
the most general behavior of queues allows us to guarantee
that the theoretical model includes all behaviors that are
possible in every specific engine. We will see that, for certain
classes of systems, it is possible to identify some properties of
the engine that guarantee that all behaviors allowed by the
theoretical model can occur in the concrete implementation.

3. WS COMPOSITION FORMALIZATION
We now present the formal model we propose for repre-

senting and analyzing Web service compositions. We pro-
vide a formal representation of stand-alone Web services and
generic Web service compositions. We also define the behav-
ior of the composition used as a basis for the composition
verification.

3.1 BPEL as State Transition System
In our framework, we encode BPEL processes as state

transition systems which describe dynamic systems that can
be in one of their possible states (some of which are marked
as initial states) and can evolve to new states as a result of
performing some actions. We model process interactions as
external actions defined on a set of operations (or message
types) M . Following the standard approach in process al-
gebras, external actions are distinguished in input actions,
which represent the reception of message of type α ∈M , de-
noted as ←−α , and output actions, which represent messages
of type α ∈M sent to external services, denoted as −→α . We
also define a special action τ , called internal action, which
is used to represent evolutions of the system that do note
involve interactions with the external services. A transition
relation describes how the state can evolve on the basis of
inputs, outputs, or of the internal action τ .

Definition 1. A state transition system (STS) is a tuple
〈S ,S0, I ,O,R〉 where S is the finite set of states and S0 ⊆ S
is the set of initial states; I is a finite set of input actions and
O is a finite set of output actions; R ⊆ S× (I ∪O∪{τ})×S
is the transition relation.

The assumption on the finiteness of the states set is re-
quired in order to enable the analysis techniques presented
in this work. For the sake of space, we omit the discussion
on the formal translation from BPEL to STS. This trans-
lation is implemented inside our toolkit, which is available
from http://www.astroproject.org/.

3.2 State Transition System with Channels
In order to represent a composition of Web services, we

now define state transition systems with channels. This
model describes the executions of the composition according
to a parametric definition of the communication model.

Intuitively, this model is characterized by a set of global
states, describing the composition during its execution, and
a set of (FIFO) queues that store the messages exchanges
among partners1. A global state contains two components:
a control state that represents the local states of the par-
ticipating STSs, and a queue content that defines sets of

1We remark that in spite of the fact that the queues are
ordered, there is still a possibility to define an unordered
message consumption. In the following sections we will show
how this can be done in our framework.



messages stored in the queues in a particular moment of
time.

More precisely, let us assume that the composition is built
from n STSs 〈Si,Si

0, I
i,Oi,Ri〉 representing the participat-

ing Web services. We represent a control state as a vector
S = 〈s1, . . . , sn〉, where si is a local state of the ith STS.
We denote a vector with component si updated to s′i as
S[si/s′i]. Let us also assume to model the communications
among Web services with set of m queues with disjoint al-
phabets Mj ⊆ M , 1 ≤ j ≤ m. A queue qj may be declared
as bounded, with the corresponding capacity 0 < bj <∞, or
unbounded, in which case bj =∞. As one can see, given the
same set of STSs, different configurations may be used to
represent their composition. These configurations are para-
metric with respect to the number of queues, to the distri-
bution of the queue alphabets, and to the queue bounds.
We denote such configurations as communication models.

Definition 2. A communication model for the STS com-
position is a tuple ∆ = 〈B,LM 〉, where B = 〈b1, . . . , bm〉,
is a vector of queue bounds, and LM : M → [1 . . . m] is
a function that associates a message type α with a queue
i = LM (α). The alphabet Mi of queue i is defined as fol-
lows: Mi = {α | LM (α) = i}.

We define a queue content as a vector C = 〈w1, . . . , wm〉,
where wj ∈ M∗

j represents a sequence of messages stored

in the jth queue. An operator . denotes the concatenation.
That is, C.α = 〈w′

1, . . . , w
′
m〉, where w′

j = wj .α if α ∈ Mj ,
and w′

j = wj otherwise. We write |C| ≤ B to specify that
|qi| ≤ bi.

Definition 3. A State Transition System with Channels
(CSTS) for the composition of n STSs under a communi-
cation model ∆ = 〈B,LM 〉 is a transition system Σ∆ =
〈GS, gs0, A, T 〉 where

• GS is a set of global states of the form 〈S, C〉, where
S = 〈s1, . . . , sn〉, with si ∈ S

i, is a control state, and
C = 〈w1, . . . , wn〉, with wi ∈M∗

i and |wi| ≤ bi, repre-
sents the contents of the queues;

• gs0 = 〈S0, 〈ε, . . . , ε〉〉 is an initial global state;

• A is a set of actions a ∈ {∪iI
i

�
∪iO

i
�
{τ}}.

• T ⊆ GS ×A×GS is the global transition relation. A
transition t = (gs, a, gs′) is in T , if for some 1 ≤ i ≤
n, S′ = S[si/s′i] and (si, a, s′i) ∈ R

i, and one of the
following holds:

– a = −→α ∧ C(gs′) = C(gs).α ∧ |C(gs′)| ≤ B;

– a =←−α ∧ C(gs) = α.C(gs′);

– a = τ ∧ C(gs′) = C(gs).

The behavior of CSTS can be described with a directed
(possibly infinite) labeled tree, called reachability tree RT .
Nodes in this tree are labeled with (reachable) global states
gs ∈ GS; the root is labeled with the initial global state
gs0; edges are labeled with actions a ∈ A. The reachability
graph RG is obtained from RT by merging nodes labeled
with identical global states.

We say that the CSTS is complete if all the terminating
global states 〈S,C〉 (that is, leaves of the reachability tree)
have empty queue content: C = 〈ε, . . . , ε〉. We remark that

systems that are not complete loose message: indeed, at
the end of the computation there are unconsumed messages
in queues. We will consider only complete CSTS in the
following.

We say that action a ∈ A is fireable in state gs, if there is
a transition (gs, a, gs′) ∈ T . In this case, we write gs

a
→ gs′.

Let ω = gs1, a1, gs2, a2, . . . be a (possibly infinite) sequence
of states and actions interleaved. We say that the sequence

is fireable from gs1, written as gs1

ω

→∗, if ∀k ≥ 1, gsk

ak→
gsk+1. The behavior of the CSTS is a set of such sequences
fireable from the initial state:

Ω = {ω | gs0

ω

→∗}

The behavior of the CSTS describes possible executions of
the composition and is used as a formal basis for various ver-
ification techniques. In particular, we allow for reachability
analysis, and for the verification of temporal specifications
expressed as Linear-time Temporal Logic (LTL) formulas [5]
evaluated on the CSTS behavior.

Since we assume finite-state BPEL processes, the control
states of a CSTS are also finite. The only possibility to have
an infinite reachability graph is when the messages contained
in a channel can grow unboundedly. We have already dis-
cussed in Sect. 2.4 that we consider systems with channels
that grow unboundedly as “bad” systems. Moreover, finite-
state verification is not applicable on these systems. There-
fore, one of the critical problems to be addressed during the
analysis is to identify and rule out these systems. In the fol-
lowing, we say that the channel of a CSTS have a bounded
growth if, for every queue qi, either a finite bound bi <∞ is
declared, or there is some constant Ki such that the queue
contains at most Ki messages in all reachable states.

We remark that the proposed CSTS-based model of Web
service composition captures only the control flow of the
participating processes. However, BPEL allows one to de-
fine also the data flow of the composition. In other words,
it is possible to define the data values carried by the mes-
sages, conditions on the process transitions etc. This in-
formation has to be taken into account in the analysis of
the BPEL composition. As we show later, this is addressed
by enriching the composition with variables and other data-
dependent constructs before passing it to the model checker,
and performing the actual verification on the enriched mod-
els. The presence of data values in messages also influences
the alphabet on which the queues are defined. Indeed, the
management of queues could depend not only on the type of
the messages, but also on the associated values. This may
be resolved refining the model by introducing a new message
type for each distinct set of data values or, for each set of
data values that can be distinguished by the BPEL run time
environment. If the data domains are finite, the approach
we describe below works also in this refined setting. We in-
tend to better investigate in future works the issues related
to an adequate model of data domains in the definition of
the queue structure.

4. HIERARCHY OF MODELS
The definition of CSTS is parametric w.r.t. a communica-

tion model. Different communication models (and hence
queue structures) define different behaviors for the same
composition scenario. Therefore, the result of the verifi-
cation of a composite system depends on the selected com-



munication model. In order to guarantee the correctness of
the verification, we have to make it sure that the selected
communication model allows for all the behaviors that are
compatible with the assumptions presented in Sect. 2.4.

In this section we address the problem of defining suitable
communication models for CSTS, and of guaranteeing that
these communication models are adequate w.r.t. the real ex-
ecutions, i.e., that they do not discard any execution that
can happen according to our assumptions.

This is achieved through the following steps:

• We define the “most general” model in terms of CSTS.
This is a model which allows more behaviors than any
other communication model does.

• We define a family of possible communication mod-
els that we can adopt for the verification of compos-
ite systems. These communication models correspond
to different levels of complexity and efficiency of the
verification process. All the models we propose are
expressible in terms of CSTS, by changing the queue
model.

• We define the “adequacy” of a communication model
for a composite system: a communication model is
adequate if it expresses all the behaviors of the most
general model, i.e., no behaviors are lost due to the
specific queuing model.

• For each communication model, we also discuss the
requirements on the middleware that guarantee that
all the behaviors expressed by the model can happen
in real implementations of BPEL engines.

4.1 Relations among Communication Models
One of the tasks in the adequacy analysis is to check

whether the composition of Web services under the given
communication model does not loose behaviors w.r.t. some
other more general model. This requires introduction of cer-
tain relations between models, namely simulation relations.

We will write Σ∆ to denote the composition of a given set
of STSs under communication model ∆.

Definition 4. We say that Σ∆2
simulates Σ∆1

, written as
Σ∆1

� Σ∆2
, if ΩΣ∆1

⊆ ΩΣ∆2
.

We say that Σ∆1
and Σ∆2

are bisimilar, written as Σ∆1
≈

Σ∆2
, if ΩΣ∆1

= ΩΣ∆2
.

When the simulation relation among two communication
models ∆1 and ∆2 holds for any set of STSs, we say that
the model ∆2 is more general than the model ∆1.

Definition 5. Communication model ∆2 simulates model
∆1, written as ∆1 v ∆2, if for any composition of STSs,
Σ∆1

� Σ∆2
.

Being reflexive and transitive, this relation forms a partial
order on the set of communication models. Below we will
show that there is a “most general” model, that is the model
∆, such that for any other model ∆ holds ∆ v ∆.

The relation among communication models relies on the
structure of the queues. There are two dimensions in which
the models differ. First, the relation depends on the queue
bounds: the bigger a queue bound is, the more transitions
might be enabled. Second, it depends on the distribution of

the message alphabets: if the alphabet of each queue in one
model is a subset of the alphabet of some queue in another
model, then the first model is more general then the other.
The following theorem defines relation between models with
different queue structures.

Theorem 1. Consider two communication models ∆1 =
〈B1,L1M 〉 and ∆2 = 〈B2,L2M 〉. If for each queue q2i there
exists a queue q1j , such that

• ∀ α ∈M. L2M (α) = i ⇒ L1M (α) = j, and

• b1j ≤ b2i

then ∆1 v ∆2.

The theorem may be easily understood on the following
example. Consider a model ∆1 with one queue q1 with al-
phabet M = {α1, α2}, and a model ∆2 with two queues
q21 and q22 with alphabets {α1} and {α2} respectively. In-
deed, if an input action is allowed in the composition under
model ∆1 then it is also allowed in the second model, since
if a message is on the top of the queue in first model and
can hence be consumed, then it is on the top of one of the
queues in the second model. Similarly, if an output action
−→α1 is allowed in the first model, then the queue is not full,
that is |q1| < b1. Since |q21| ≤ |q1| (the two queues have the
same length if q1 contains only messages of type α1) and, by
hypothesis b1 ≤ b21, then |q21| < b21 and hence the output
action −→α is not blocked in the second model.

4.2 Most General Communication Model
The first step of the adequacy analysis is to define the ref-

erence model, that is, the model that allows for the largest
set of behaviors. In order to respect the assumptions of
Sect. 2.4, this model has to allow for potentially unbounded
queues, non-blocking emissions, and arbitrary, unordered ac-
cess to the content of any queue.

The definition of this model is based on the following ob-
servation. Two invocations of the same operation lead to a
situation where the queue contains two messages of the same
type. From the external point of view, the two messages are
indistinguishable. The same holds for the possibility to con-
sume them in any order: if two messages of the same type
are contained in the queue, then the order in which they are
consumed becomes irrelevant. Therefore, in order to model
arbitrary access to any message in any queue, it is enough
to model such a system with the separate queue for each
message type.

Definition 6. The Most General Communication Model
(MG-model) for the composition of n STSs is a model ∆ =
〈B,LM 〉, with |M | queues, bi =∞, and LM (αi) = qi.

It is easy to see that such a model is indeed a generaliza-
tion of any other communication model w.r.t. the behavior
of any composition of STSs.

Proposition 1. For any communication model ∆, ∆ v ∆,
where ∆ is MG-model.

Whenever a composition under a certain model ∆ simu-
lates the most general composition, we say that this model
is adequate for the description of the composition scenario.

Definition 7. A communication model ∆ is said to be ad-
equate for the given composition scenario if Σ∆ ≈ Σ∆.



An important result in the proposed framework is that the
finiteness of the reachability graph under the MG-model is
decidable. Indeed, the class of systems that can be modeled
in this way forms a subclass of Petri-Nets, and “bounded-
ness” is decidable for Petri-Nets [10].

Proposition 2. The finiteness of the reachability graph of
the composition of STSs under the MG-model is decidable.

Model ∆ defines the most liberal policy for the message
processing: each message stored can be accessed and con-
sumed regardless the reception order. On the other hand,
this model is also the least realistic, among the ones de-
scribed in this section, for what concerns the implementa-
tion of a middleware generating all the behaviors allowed
by the model. Indeed, all existing engines apply a specific
policy for the queues and do not allow for such an arbitrary
consumption of messages as the one allowed in the model.

4.3 Communication Models Interpretation
We now define a hierarchy of communication models that

are particularly significant for verifying Web service compo-
sitions and that have been proposed in the literature.

4.3.1 Synchronizable Communications.
This is the most restricted communication model that can

be defined in terms of CSTS formalization. In this model
there is only one queue of capacity one.

Definition 8. The synchronizable communication model is
∆1

1 = 〈B,LM 〉, with B = 〈1〉 and LM (α) = 1 for all mes-
sages α.

This model is strongly related to another communication
model widely used for modeling Web service compositions,
namely synchronous composition. In such a model, commu-
nicating processes synchronize on shared actions; therefore
this model can be represented without queues. More pre-
cisely, when the ∆1

1 model is shown to be adequate for a
given composition scenario, one can use a synchronous com-
position for the analysis of wide range of properties, thus
achieving better performance. In the following, we formal-
ize this result. We start with a definition of a synchronous
composition.

Definition 9. A synchronous composition Σs of n STSs is
a tuple 〈GS, gs0, A,R〉 where

• GS is a set of global states gs = 〈s1, . . . , sn〉; gs0 is
the vector of initial states of the STSs;

• A = {τ} ∪ {α | ∃ i .−→α ∈ Oi} is a set of actions;

• A transition t = (gs, a, gs′) is in R, iff

– a = τ , for some 1 ≤ i ≤ n, gs′ = gs[si/s′i],
(si, τ, s′i) ∈ R

i

– a = α, gs′ = gs[si/s′i, sj/s′j ], (si,
−→α , s′i) ∈ R

i,

and (sj ,
←−α , s′j) ∈ R

j .

Let us define a conversation of the composition as a se-
quence of messages emitted during interactions [7]. That is,
γ = α1, α2, . . . , with α ∈ M , is a conversation if there is a
behavior w = ω = gs1, a1, gs2, a2, . . . , and for each i > 0

there exists j > 0 s.t. gsj

aj
→ gsj+1 and aj = −→αi. We denote

a conversation set of the composition as Γ.

When the verification properties are defined on the set of
conversations, and the composition appears to be complete
under ∆1

1 model, then one can use the synchronous product
for the composition analysis.

Theorem 2. Let Σ1
1 and Σs be a complete composition

of n STSs under ∆1
1 model and their synchronous product

respectively, with the corresponding conversation sets Γ1
1 and

Γs. Then Γ1
1 = Γs.

Due to the strong hypotheses on the synchronizable com-
munication model, the kinds of systems for which the model
is adequate are also subject to restrictive hypotheses on the
kinds of interactions that can occur. As a consequence, the
compositions, for which this model was proved to be ade-
quate, are very robust and exhibit the same behavior on all
the implementations of BPEL engines. For this reason, the
synchronizable model is the less demanding on the underly-
ing middleware among the ones studied in this paper.

4.3.2 Locally Ordered Asynchronous Communica-
tions.

This model is used in some works for the representation of
WS compositions (see e.g. [7]). Each participant is equipped
with separate queue storing messages from all the partners.

Definition 10. A locally ordered asynchronous communi-
cation model of n STSs is ∆lo = 〈B,LM 〉, with n queues,
bi =∞, and ∀ α, s.t. ←−α ∈ Ii. LM (α) = qi.

This model is more general than the synchronizable model:

∆1
1 v ∆lo .

Indeed, this model is required for describing the composition
scenario in Sect. 2.2.

This communication model requires that messages are
queued on a process-by-process way. This policy for man-
aging queues is a reasonable and easy to implement, and
it provides a good compromise between the complexity of
the implementation and the class of examples it is able to
cover. Similar considerations also hold for the next model
we present.

4.3.3 Mutually Ordered Asynchronous Communica-
tions.

In this model, a pair of queues is defined for each pair
of processes, with each queue representing one direction of
interaction between these processes. This model, described
in [3], provides a natural representation of communicating
BPEL processes since each process explicitly distinguishes
each of its partners. The main feature of this model is that
each pair of communicating processes preserves the order of
partners’ events. In other words, the order of receptions is
equivalent for each pair of processes.

Definition 11. A mutually ordered asynchronous commu-
nication model of n STSs is ∆mo = 〈B,LM 〉, with n2−n
queues denoted as qi,j (i 6= j), s.t. bi,j = ∞, and ∀ α.
←−α ∈ Ij ∧ −→α ∈ Oj iff LM (α) = qi,j .

This model is clearly more general than the synchronous
model. It is also more general with respect to locally or-
dered asynchronous model. To see this, notice that the in-
put messages of the particular process are stored potentially



in several queues instead of only one. Therefore, the alpha-
bet of these queue is smaller, and more actions are fireable
(Theorem 1). This model is required for the composition
scenario described in Sect. 2.3.

We conclude this section with the overall hierarchy of the
models defined:

∆1
1 v ∆lo v ∆mo v ∆ .

We remark that the CSTS formalism allows for potentially
infinite number of models to be defined. The MG-model is
the upper bound of this construction and we use this fact in
the adequacy analysis presented below.

5. BUILDING AN ADEQUATE MODEL
We now present an approach for the analysis of compo-

sitions of Web services. In this approach, we incrementally
pass through the models starting from the synchronizable
until the least general adequate model is found for the given
composition scenario. As we will see in the Sect. 6, this
allows not only to find a proper model of communication for
the scenario but also to perform the analysis more efficiently.
Indeed, if the model is shown to be adequate for the given
composition, and the composition behaves correctly, then it
will be correct also under more general models.

The number of models that we could consider in our ap-
proach is potentially infinite. Here, we assume to have fixed
a finite set of models that we consider interesting for the
analysis (this could be for instance the sequence of models
we have introduced in the previous section). We assume
moreover that the simulation relation defines a total order
on these models, and that the MG-model belongs to the set
(and is hence its upper bound). More precisely, the algo-
rithm of the approach is as follows:

1. take a sequence of models ∆1, ∆2, . . . , ∆ such that
∆i v ∆i+1;

2. analyze the models until the adequate one is found:
Σ∆i

≈ Σ∆;

3. the composition is checked for completeness (i.e., the
queues are empty in the terminal states of the compo-
sition) and bounded growth.

When an adequate communication model is identified,
and the composition is shown to have queues with a bounded
growth, the obtained reachability graph may be used as a
basis for further verification tasks. Indeed, the graph is fi-
nite, and actual queue bounds may be extracted by analyz-
ing reachable states thus allowing for finite representation of
the composition model in the model checker specifications.

As we mentioned above, the results of the verification may
be affected by the data flow specified in the BPEL code. For
this reason the composition obtained after steps specified
above is equipped with data-related constructs, and the re-
sulting model is analyzed using model checking techniques.

5.1 Algorithm
The algorithm is used to give an answer for the following

questions: (i) the model under consideration is adequate for
the description of the given composition; (ii) the composi-
tion is complete and has queues with a bounded growth.

The algorithm is presented in Alg. 1. The outcome of the
algorithm is the constructed reachability graph representing

Algorithm 1 Composition adequacy check

1: States := nil; {Stack of states}
2: V isited := nil; {Set of visited states}
3: Transitions := nil; {Set of transitions}
4: IS := nil; {Set of incomplete states}
5: US := nil; {Set of unbounded states}
6: explore(gs0);
7: procedure explore(s)
8: push(s, States);
9: current := s;

10: Fireable := fireable(current); {fireable actions}
11: if Fireable 6= fireableMG(current) then terminate;
12: Transitions := Transitions ∪ Fireable;
13: if Fireable 6= ∅ then

14: forall transition ∈ Fireable do

15: s′ := transition.target;
16: if s′ 6∈ States ∪ V isited then

17: if ∃ ss ∈ States s.t. U(ss, s′) then

18: US := US ∪ {current};
19: else explore(s′);
20: else if ¬emptyChannels(current) then

21: IS := IS ∪ {current};
22: V isited := V isited ∪ {current};
23: pop(s, States);
24: end procedure

the composition, if the model is adequate, or the witness of
the fact that the model is not adequate. Whenever the state
with non-empty queue content is found s.t. it can be never
completed, it is added to the special container incomplete.

In order to terminate the search when the composition
has unbounded growth, we use the following relation U :

Definition 12. If s and s′ are two nodes of the reachability
tree labeled with global states gs and gs′ and such that

s
w

→∗ s′, where w is a sequence of actions.

U(s, s′)⇔ S(gs) = S(gs′) ∧ C(gs) � C(gs′)

Here we write C(gs) � C(gs′) if for any queue index i
there is a suffix w̄i such that w′

i = wi.w̄i. Thus two states
are in the relation iff the control state is the same and the
queue content increased. We write U 6=(s, s′) to denote that
U(s, s′) and C(gs) 6= C(gs′).

Theorem 3. Let s and s′ are two nodes of the reachabil-
ity tree for the composition under the MG-model RT (Σ∆).

If s
w

→∗ s′ and U 6=(s, s′) then the reachability graph RG(Σ∆)
is infinite.

The behavior of the algorithm is the following.

• A set of containers to store the reachability graph
structure and the “bad” states (i.e. unbounded or in-
complete) is defined (lines 1-5).

• The recursive procedure explore that implements a
DFS-algorithm is defined (lines 7-24) and called for
initial state (line 6).

• The current state is added to the stack and a set of
fireable actions from this set is extracted (line 10). If
this set is not equivalent to the set of actions fireable
under MG-model (firableMG), then the algorithm ter-
minates since the selected model is not adequate (11).



• If the set of actions is not empty, then we analyze the
target state s′ of each action (14-19).

• If the state is fresh then we check the unboundedness
by looking for a cycle that increments queue content
(17-18). If there is no such a cycle, we call explore
procedure recursively.

• If the set of fireable actions is empty then we reached
the leaf of the search tree and just check that all the
messages are consumed (20-21).

• The current state is thus explored; we add it to the set
of visited states, and remove from the stack.

5.2 Adding Data to the Composition Model
When the reachability graph that represents the behav-

ior of the composition is constructed, we enrich it with the
data-related part from the component processes. BPEL al-
lows for the description of the data flow in the processes
by defining variables of arbitrary types and operations on
them. In particular, one can assign a certain value to the
variable, use it as a parameter for the remote operation in-
vocation, or use its value in the conditions in if-then-else
constructs or loops. As a result, in the model with data the
executability of certain transitions depends on the values of
these variables, and the behavior of the composition may
change affecting the analysis results.

For this reason actual verification is performed on the
models equipped with data using model checking techniques.
In order to be able to apply them, such an extended model
has to be finite, and therefore the domains of the variables
should also be finite. Detailed description of the data-related
constructs translation and manipulation may be found at
http://www.astroproject.org/.

6. EXPERIMENTAL RESULTS
A prototype of a verification tool based on the parametric

communication model presented in this paper has been im-
plemented within the Astro toolkit and is available as part
of the project (http://www.astroproject.org).

We conducted series of experiments in order to evaluate
the presented approach. The aim of the evaluation was to
demonstrate that the less general model shown to be ade-
quate is more efficient for the analysis, and to see the over-
all performance of the composition verification based on the
presented approach.

In particular, we were interested in the performance and
in the memory usage of the composition analysis. In these
experiments we used variations of the VTA example, where
the number of the participating processes grows from two
up to seven processes. We remark that the VTA process
also grows since it interacts with increasing number of ser-
vices. The ranges of the domain types used in the messages
(e.g. Flight, Time) were set to three values for each type.
Although the examples described in the paper are relatively
simple, they still are considerably more complex with re-
spect to the samples presented in other tools (e.g., [7, 6]).

In order to compare the verification complexity on the
same scenarios under different communication models, we
have used domains where the synchronous model is ade-
quate. We used two properties in the experiments spec-
ified as Linear-time Temporal Logic (LTL) formula. The
first property (P1) requires that the user process terminates

successfully only if also the reservation services do. This
property is expected to be valid in the domain, i.e., to be
respected by all the executions of the Web service composi-
tion. The second property (P2) expresses the possibility for
the partners to terminate successfully. This property is ex-
pected to be satisfiable, i.e., there are some executions of the
composition where the property is true. Moreover, we ex-
pect that the verification task produces a trace correspond-
ing to one these executions, thus witnessing the validity of
this possibility.

The results of the verification of these properties are sum-
marized in Table 1. The verification was performed using
two state of the art model checkers, namely NuSMV [4]
and SPIN [9]. We tested the specifications of the composi-
tion under synchronous product (Sync), under locally order
model (LO) and under the most general model (UO). The
table contains information on the time used for the verifica-
tion and counterexample generation in seconds, and on the
size of the state vector in bytes. That is, if the state vector
size is 14 bytes, the state space is 28×14 states.

Some comments on the difference in the performance of
NuSMV between the two properties. This is due to the
fact that the second property requires the generation of a
witness scenario, and this takes a lot of time. The time
required by NuSMV to report that the second property can
be satisfied without extracting the witness trace is similar
to the time required to verify the first property. On the
contrary, the verification using SPIN model checker requires
much more time for the first property. Indeed, in this case all
the behaviors have to be considered to prove the correctness
of the property, while a single witness trace is sufficient for
the second property.

The presented results demonstrate the reduction of the
verification performance when more general communication
model is applied. This is explained by the fact that more
general model introduces more queue variables and there-
fore increases the state space size. This is particularly im-
portant for the NuSMV model checker, since the techniques
used there strictly depend on the number of variables, their
domains and relations.

7. RELATED WORK AND CONCLUSIONS
In this paper we presented a unified framework for the

analysis and verification of Web service compositions pro-
vided as BPEL specifications. The framework is based on
a definition of composition of BPEL processes that is para-
metric with respect to the communication model. The class
of compositions that we are able to model and analyze is
substantially larger than those covered by other verification
approaches. We also provide an algorithm that is able to
identify the simplest communication model that is adequate
for the composition, and to build the corresponding compo-
sition. Our experiments show that choosing the right model
can lead to a substantial improvement in the verification
performance.

In our earlier work [11], we made an initial attempt to de-
sign a framework suitable for representing different commu-
nication mechanism. The framework was based on a specific
form of composition, referred as extended parallel product,
and was not able to handle different models in a uniform
way and to define relations between them. As a result, that
approach lacks the completeness and expressiveness of the
formalism presented in this paper. Also the experimental



Table 1: Verification results
Property N NuSMV SPIN

Sync LO UO Sync LO UO

Time Size Time Size Time Size Time Size Time Size Time Size

P1 2 0.08 5 0.09 6 0.09 6 0.87 48 0.89 56 0.89 76
3 0.11 8 0.13 9 0.15 10 1.05 60 1.09 76 1.13 120
4 0.19 11 0.22 13 0.24 15 1.51 72 1.60 100 1.75 172
5 0.26 14 0.32 17 0.36 20 3.67 84 4.79 120 6.37 220
6 0.32 17 0.42 21 0.50 24 90 100 > 1Gb > 1Gb
7 0.44 20 0.64 24 3.75 27 > 1Gb > 1Gb > 1Gb

P2 2 0.01 5 0.02 6 0.02 6 0.87 48 0.89 56 0.92 76
3 0.33 8 0.48 9 0.52 10 1.05 60 1.09 76 1.13 120
4 1.14 11 2.28 13 8.35 15 1.38 72 1.46 100 1.52 172
5 20.1 14 36.8 17 69.0 20 1.85 84 1.85 120 1.95 220
6 114 17 221 21 469 24 2.31 100 2.33 140 2.46 272
7 771 20 1279 24 > 1 hour 2.89 112 2.98 160 3.27 320

evaluation in [11] is more limited and only considers the
NuSMV model checker.

In [7] an approach for the analysis of interacting BPEL
processes is presented. The approach allows performing a
synchronizability analysis of the composition, that is to ver-
ify that the synchronous composition may be applied for
further analysis without loosing behaviors. However, this
approach fails to determine an appropriate model if the com-
position does not pass that check. On the contrary, our
framework extends this approach by providing a complete
way to determine such a model and allows for defining of
wider class of verification properties.

In [6], process algebras are exploited to verify BPEL pro-
cesses. More precisely, that approach allows for the analysis
of basic properties of BPEL specifications, such as safety and
progress checks. The approach is based on the synchronous
communications model and therefore is very restrictive with
respect to the set of systems it is able to analyze correctly.

In general, the problem of analysis of communication sys-
tems with (potentially infinite) channels is widely studied in
literature. In spite of certain undecidability results [3], there
are a lot of works on restricted subclasses of such systems
for which some problems were shown to be decidable (see,
e.g., [1]), ranging from synchronous composition to Petri
Net-based approaches [16]. While these approaches are de-
voted to the analysis of a specific communication model in
a general setting, our goal is to provide a set of models that
allow for a parametric verification in the specific case of Web
service compositions.
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