
ASDL: A Wide Spectrum Language For
Designing Web Services

Monika Solanki
Software Technology
Research Laboratory
De Montfort University

Leicester, LE1 9BH, UK

monika@dmu.ac.uk

Antonio Cau
Software Technology
Research Laboratory
De Montfort University

Leicester, LE1 9BH, UK

acau@dmu.ac.uk

Hussein Zedan
Software Technology
Research Laboratory
De Montfort University

Leicester, LE1 9BH, UK

zedan@dmu.ac.uk

ABSTRACT
A Service oriented system emerges from composition of ser-
vices. Dynamically composed reactive Web services form a
special class of service oriented system, where the delays as-
sociated with communication, unreliability and unavailabil-
ity of services, and competition for resources from multiple
service requesters are dominant concerns. As complexity of
services increase, an abstract design language for the speci-
fication of services and interaction between them is desired.
In this paper, we present ASDL (Abstract Service Design
Language), a wide spectrum language for modelling Web
services. We initially provide an informal description of our
computational model for service oriented systems. We then
present ASDL along with its specification oriented semantics
defined in Interval Temporal Logic (ITL): a sound formal-
ism for specifying and reasoning about temporal properties
of systems. The objective of ASDL is to provide a nota-
tion for the design of service composition and interaction
protocols at an abstract level.

Categories and Subject Descriptors
F.4.3 [Mathematical Logic and Formal Languages]:
Formal Languages; F.3.2 [Logics and Meaning of Pro-
grams]: Specifying and Verifying and Reasoning about Pro-
grams; F.1.1 [Computation By Abstract Devices]: Mod-
els of Computation

General Terms
Design, Languages, Theory

Keywords
Abstract, Wide spectrum, Computational model, Web ser-
vices, ASDL

1. INTRODUCTION
The Internet with its heterogeneous collection of infra-

structures, has established itself as the largest universal source
of information dissemination. Central to the different archi-
tectures and computing environments prevalent on the In-
ternet, is the notion of a “Service”. The umbrella term “Ser-

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

vice” encapsulates software, smart devices and sensors net-
worked with one another, each responsible to achieve some
portion of the entire goal. The proliferation of services avail-
able on the web coupled with robust networking protocols
means that distributed systems are increasingly being de-
signed as compositions of services.

Web services are prominently reactive systems, that re-
peatedly act and react in interaction with their environment
without necessarily terminating. Dynamically composed re-
active services form a special class of service oriented sys-
tem, where the delays associated with communication, un-
reliability and unavailability of services, and competition
for resources from multiple service requesters are dominant
concerns. As complexity of services increase, an abstract
design language for the specification of services and inter-
action between them is desired, before the behaviour can
be mapped to constructs in XML-based languages such as
WSDL [7], WSBPEL [39], WSCDL [27] and OWL-S [38],
or implemented using frameworks such as J2EE or .Net as
illustrated in Figure 1. The development of such a lan-

Figure 1: Various Levels of Representing Service
Behaviour

guage should be based on a formal model of computation.
The language should have sound formal semantics, an as-
sociated proof system and should be expressive enough to
specify all possible behaviours. Current Standards (XML
based/Ontologies) for specifying behavioural semantics of
services consider only transformational aspects of service be-
haviour. They are based on an adhoc and informal model
of computation. The semantics are buried in the execution
engines that are bundled with distinctly different reference
implementations of the language.

We consider the quintessential problem of how to char-

acterise formally, the global behaviours generated by a dy-
namic Web service composition, as well as how to reason
about their correctness. Before addressing these issues, we
need to precisely define a computational model which de-
scribes the underlying abstract architecture upon which ser-
vice oriented systems will execute. The behaviour generated
within a service oriented system, due to interactions among
services, with regards to the exchange of messages and the
sequence in which they are transmitted and received forms
the basis of our model.

In this paper, we initially provide an informal description
of our computational model for service oriented systems.
We then present a design language “ASDL” along with its
specification oriented semantics in Interval Temporal Logic
(ITL), our underlying logical framework for reasoning about
service behaviour over periods of time. Our objective is to
develop a methodology for the design of service oriented sys-
tems, based on a sound model of computation and a compo-
sitional technique, that allows specification and validation
within a unified semantic model. ASDL complements our
computational model and provides a framework complete
with algebraic rules for establishing useful properties about
service composition.

The paper is organised as follows: Section 2 presents our
computational model. Section 3 briefly discusses our un-
derlying formalism ITL. Section 4 presents ASDL: Abstract
Service Design Language for Web services. Section 5 dis-
cusses related work and Section 6 presents conclusions and
directions for future work.

2. COMPUTATIONAL MODEL
A service oriented system is a collection of possibly con-

currently executing services, which communicate asynchronously
via message passing, using shared bounded buffers [6] called
“channels”. Service oriented systems can themselves be
viewed as single services and composed into larger systems.
The first class citizens within a service oriented system are
a finite set of “services”, “channels” and an infinite set of
“messages”. The restriction of having a finite number of
services and channels is intuitive with respect to service ori-
ented systems. The system state is defined by the values
(messages) in the channels and the values in the local vari-
ables of the service. Behaviour in our model is defined as a
sequence of system states. Computation is defined as any
process that results in a change of system state.

2.1 Service
A service is a black box, in terms of representation of its

internal behaviour. A service is described by a computa-
tion which may transform a local data space and may read
and write messages during execution. Computation may be
nondeterministic with timing restrictions. A service can be
viewed as a computational entity that decides, based on the
messages received, and the messages already sent, if a new
message needs to be sent, to which services in the system the
message needs to be sent or if the service session needs to ter-
minate. An observable behaviour of a service is a sequence
of message exchanges in which the service has engaged up to
a particular moment in time. At the lowest level of granu-
larity, we have services that undertake activities like “send”
and “receive”. These are termed as “Primitive” services. A
service can be composed of several such activities, in which
case they are termed as “Composite”.

2.2 Communication

Figure 2: Channel configuration in a Service-
oriented system

A service-oriented system, is built on the message-oriented-
model (MOM) of communication. Message-oriented behaviour
modeling is not only intuitive for services, but more impor-
tantly, it requires Web services to reveal the least amount of
information that is necessary to make meaningful composi-
tions. Thus complex internal states can be hidden. Services
communicate using asynchronous message passing via first-
in-first-out (FIFO), error-free channels as illustrated in Fig-
ure 2. Channels are uni-directional and can be used both to
read and write messages. Every system has a finite number
of channels, shared between exactly two distinct services.
A channel is a bounded buffer where a message can be in-
serted at one end and retrieved sequentially at the other.
Sending a message is equivalent to appending it to the tail
of the sequence; receiving a message, to removing the head
of the sequence. Sending is allowed only if there are empty
places available in the buffer. A service cannot send a mes-
sage back to itself, as it is counter-intuitive to do so.

Every send activity propagates the message to the last
empty position in the sequence. Receiving is destructive,
as it removes an element from the head of the buffer. The
message to be sent through the channel is modelled as a
triple. The elements of the triple are the message identifier,
the data to be transmitted and the time-stamp, specifying
the time of message transmission with reference to a global
clock. Messages are tagged with unique identifiers for cor-
relating between the sent and received messages. Identifiers
are unique across complete transactions between services.
At an abstract level, message identifiers are modelled using
natural numbers. At an implementation level, identifiers can
be modelled as sets of data having multiple types. We do
not distinguish between input, output and fault messages in
our model i.e. all messages are treated at a uniform level of
abstraction.

2.3 Time
Service-oriented systems have timing constraints imposed

at three different levels, system-wide communication dead-
lines, service deadlines (both on the service computation
and communication) and sub-computation deadlines (within
the computation of an individual service). A computation
has a set of execution time constraints, maximum and mini-
mum execution time for a computation may be chosen from
this set at implementation level or at runtime. For a com-
posed system of services, the configuration is fixed at any
point of time. This does not imply that the topology cannot

change. It simply means that for a snapshot of the compo-
sition, the topology is fixed. Dynamic reconfiguration of the
service topology can be realised if some services terminate,
fail or new services are added to the system. Time is dis-
crete, linear and modelled naturally by positive integers. To
avoid the overhead of synchronisation between local clocks
of the services in the system, we assume the existence of a
utility service called “Clock” . It provides a single, global
and logical [18] clock for all the services in the composed
system. “Clock” provides a function that generates a lin-
ear sequence of integers corresponding to the sequence of
ticks in a physical clock. As the integers are generated they
are broadcasted to all the services in the system as shown
in Figure 3. Each service runs a daemon “updateClock”

Figure 3: Broadcast of logical clock values

that receives the broadcasted value to the service. “update-
Clock” is referenced by each service while sending messages
to peers or receiving messages from peers. There is a lo-
cal variable “clock”, associated with every service, which
is updated by “updateClock” with every broadcast of the
clock values. There is a unique ‘first time’ instant set by
“Clock”, as shown in Figure 4 from which we assume a ser-
vice oriented systems will measure the message sending and
receiving times for all services. A physical local clock may be
internally referenced by a service for functional computation
that cause local state changes.

Figure 4: Clock values referenced by the services in
the composition

2.4 Failure
Failure of a service oriented system is defined as the un-

resolved failure of one or more services in the system. A
service is said to have failed if

• There are communication problems i.e. breaking of
channels.

• It does not return the results of an invocation within
a predefined, stipulated period of time.

• If it returns an error message. Services may return
error messages due to several reasons e.g. the host
server being down, maintenance work being carried out
on the service amongst others.

Failure of a crucial service may need to be compensated
before deciding on the rollback of the overall service com-
position. As shown in Figures 5 and 6, failure support for a
service oriented system can be provided by,

• invoking alternative services for the same computation
in parallel. Results returned first are used to carry on
further computations, while others are discarded.

• waiting for an invoked service to return for a prede-
fined interval of time and then invoking one or more
alternative service.

• rolling back the entire composition.

Figure 5: Failure Support in service oriented sys-
tems (01)

Figure 6: Failure Support in service oriented sys-
tems (02)

3. INTERVAL TEMPORAL LOGIC
We base our work on Interval Temporal Logic (ITL) [26,

25, 5]. Our selection of ITL is based on a number of points.
It is a flexible notation for both propositional and first-order
reasoning about periods of time. Unlike most temporal log-
ics, ITL can handle both sequential and parallel compo-
sition and offers powerful and extensible specification and
proof techniques for reasoning about properties involving
safety, liveness and projected time. Timing constraints are
expressible and furthermore most imperative programming
constructs can be viewed as formulae in a slightly modi-
fied version of ITL. Tempura: an executable subset of ITL,
provides a framework for developing, analysing and experi-
menting with suitable ITL specifications.

3.1 ITL: Syntax and Semantics
An interval is considered to be a (in)finite sequence of

states, where a state is a mapping from variables to their
values. An Interval σ in general has a length |σ| ≥ 0 and
a nonempty sequence of |σ| + 1 states σ0 . . . σ|σ|. Thus the
smallest intervals have length 0 and one state.

The syntax of ITL is defined in Figure 7. µ is an integer
value, a is a static variable (doesn’t change within an inter-
val), A is a state variable (can change within an interval), v

a static or state variable, g is a function symbol and p is a
predicate symbol.

Expressions
e ::= µ | a | A | g(exp1, . . . , expn) | ıa : f

Formulae
f ::= p(e1, . . . , en) | ¬f | f1 ∧ f2 |

∀v q f | skip | f1 ; f2 | f∗

Figure 7: Syntax of ITL

ITL contains conventional propositional operators such as
∧, ¬ and first order ones such as ∀ and =. There are tempo-
ral operators like “; (chop)”, “* (chopstar)” and “skip”. Ad-
ditionally in ITL, there are temporal operators like ©(next)
and 2(always). Expressions and Formulae are evaluated rel-
ative to the beginning of an interval.

The informal semantics of the most interesting constructs
are as follows:

• ıa: f : the value of a such that f holds. If there is no
such an a then ıa: f takes an arbitrary value from a’s
range.

• skip : unit interval (length 1).

• f1; f2 : holds if the interval can be chopped into a
prefix and a suffix interval such that f1 holds over the
prefix and f2 over the suffix.

• f∗ : holds if the interval is decomposable into a number
of intervals such that for each of them f holds.

The formula skip has no operands and is true on an interval
iff the interval has length 1 (i.e. exactly two states). Both
chop and chopstar permit evaluation over various subinter-
vals. A formula S; T is true on an interval σ with states
σ0 . . . σ|σ| iff the interval can be chopped into two sequen-
tial parts sharing a single state σk for some k ≤ |σ| and
in which the subformula S is true on the left part σ0 . . . σk

and the subformula T is true on the right part σk . . . σ|σ|.
An example temporal formula is skip ; (J = I + 1). This
formula is true over an interval σ iff σ has two states σ0,σ1

and J = I + 1 is true in the second one i.e σ1. A formula
S∗ is true over an interval iff the interval can be chopped
into zero or more sequential parts and the subformula S is
true on each. Figure 8 pictorially represents the semantics
of skip, chop and chopstar. Some ITL formula together with
intervals which satisfy them are shown in Figure 9.
Derived constructs: Following is a list of some derived
constructs which are useful for the specification of systems:

• ©f b= skip ; f : next f , f holds in the next state. Ex-
ample: ©X = 1 b= skip ;X = 1: Any interval such that
the value of X in the second state is 1 and the length
of that interval is at least 1.

Figure 8: Informal illustration of ITL semantics

Figure 9: Some sample ITL formulae and satisfying
intervals

• more b= ©true: non-empty interval, i.e., any interval
of length at least one.

• empty b= ¬more: empty interval, i.e., any interval of
length zero (just one state).

• inf b= true ; false: infinite interval, i.e., any interval of
infinite length.

• finite b= ¬inf: finite interval, i.e., any interval of finite
length.

• 3f b= finite ; f : sometimes f , i.e., any interval such
that f holds over a suffix of that interval. Example:
3X 6= 1 b= finite ; X 6= 1: Any interval such that there
exists a state in which X is not equal to 1.

• 2f b= ¬3¬f : always f , i.e., any interval such that f

for all suffixes of that interval. Example: 2X = 1 b=
¬(finite ; X 6= 1): Any interval such that the value of
X is equal to 1 in all states of that interval.

• fin f b= 2(empty ⊃ f): final state, i.e., any interval
such that f holds in the final state of that interval.

• ©exp b= ıa : ©(exp = a): next value, i.e., the value of
exp in the next state of the interval.

• fin exp b= ıa : fin (exp = a): end value, i.e., the value
of exp in the last state of the interval.

3.2 Types in ITL
There are two basic inbuilt types in ITL. These are inte-

gers N and Boolean (true and false). In addition the exe-
cutable subset of ITL (tempura) has basic types: integer,
character, boolean, list and arrays. Further types can be

built from these by means of X and the power set opera-
tor P (in a similar fashion as adopted in the specification
language Z [16]). For example the following introduces a
variable x of type T .

(∃x : T).f
def
= ∃x.type(x,T) ∧ f

Here type(x,T) denotes a formula that describes x to be of
type T . Although this might seem to be a rather inexpres-
sive type system, richer types can be added following that
of Spivey [36].

4. ASDL: ABSTRACT SERVICE DESIGN
LANGUAGE

ASDL is a wide spectrum [2] language for,

• the behavioural specification of a service.

• the specification of service composition.

• design of interaction protocols for services.

ASDL abstracts from providing the commonly found XML-
based dialects for service description and focuses instead
on providing a minimalistic syntax with specification ori-
ented semantics for describing services and their composi-
tions. ASDL provides a convenient model for the verifica-
tion of properties of services. Being wide spectrum, ASDL
provides capabilities of modelling service oriented systems
and specification of their desired properties, while remaining
within a unified logical and semantic framework of ITL. As
illustrated in Figure 10, compositions modelled using ASDL
can be checked for conformance to desired properties spec-
ified in ITL, by reasoning about them at the same level of
semantic abstraction and without the need for any external
mappings, as commonly observed in other design notations
for behavioural specification of services. ASDL assumes the

Figure 10: Semantic Unification in ASDL

existence of a registry, using which “named” services can
be discovered for service composition. The computational
model presented in Section 2 represents the abstract archi-
tecture for the execution of services designed using this lan-
guage. During the design of the language we have striven
to find a minimum set of operators and constructs from
which more complex and specialised services can be com-
posed. Although abstract and focusing primarily on the
global sequence of message exchange between services, the
language can be easily mapped to some of the most common

constructs for services provided by XML-based description
languages such as WSDL [7, 27], industrial specifications
e.g. WSBPEL [39], Microsoft’s .Net, Java Message Service
as well as academic research in service composition such as
[38, 24]. It is hoped that the minimum set provided here will
form a rich enough basis to undertake the development of
service oriented systems at an abstract level and upon which
users can define their own, specifically needed operators.

4.1 On the choice of constructs in ASDL
ASDL builds upon a choreography [28] based approach to

specifying interaction protocols for services, although map-
ping to orchestration languages such as WSBPEL is equally
intuitive as shown in [35]. The objective is to specify the
mutually visible message exchange behaviour between ser-
vices, without revealing their internal behaviour. Interac-
tions between services are considered to be asynchronous,
long-lived and stateful. Along with providing the most com-
monly found constructs for structured composition of pro-
cesses, any notation for describing interaction protocols for
such scenarios should enable:

• Representation of time, as an explicit identifier of the
time at which messages are sent: Since communication
is asynchronous, it is not known how long the message
takes to arrive from the sender to the receiver, in the
absence of such a parameter.

• Correlation between sent and received messages.

• Representation of wait, timeouts, interrupts and con-
ditionals: service behaviour is invariably data-dependent.
A service may choose to timeout if data expected is not
received within a stipulated time frame. Services may
interrupt other services, if data-dependent conditions
are not satisfied.

• Specifying all possible behaviours: service composition
does not always lead to desirable service behaviour.
In some cases, the behaviour may be completely un-
known.

• Guarded choices with priority: Most specification lan-
guages provide capabilities to specify non-deterministic
choice. However for a composition, services need the
capability to prioritise and conditionally choose from
a set of services, rather than making a random choice
at runtime.

Another motivating factor in making a choice of constructs
for ASDL, is the relationship it defines with current XML-
based industry specification standards like BPEL4WS and
WS-CDL and with academic initiatives such as OWL-S and
WSMO. A service specified in ASDL at the abstract level,
should be capable of being represented in any of the XML-
based representation formats.

In the following sections, we present the syntax of ASDL
along with its informal and formal semantics. An e-shopping
service is used as an example to explain certain constructs
in the language. Due to space restrictions, we provide expla-
nation for limited constructs however the complete example
and algebraic rules for reasoning about useful properties of
service composition designed using ASDL can be found in
[35].

Figure 11: An e-shopping Service

4.2 An e-shopping service
Figure 11 shows a service composition that consists of five

services: an e-buyer agent, an e-shop for made-to-specification
goods, suppliers that stock/manufacture goods to be sold
through the e-shop, shipping agency that ships the ordered
goods to the e-buyer and a payment validation service. In
the most typical (simplified) scenario, the e-buyer sends de-
tails of its requirements for a particular product to the e-
shop. The e-shop provides a list of suppliers that can pos-
sibly meet those requirements and for which it works as a
price - negotiating agent. The e-buyer forwards the prod-
uct specification to the chosen supplier(s), who confirm if
it is possible to supply the product. The suppliers forward
the costing of the order to the e-shop. The e-buyer nego-
tiates the price with the e-shop and places the order. The
supplier contacts a shipping agency about delivering the or-
der. The shipping agency replies with the pickup date. Fi-
nally the shipping agency informs the e-shop and the e-buyer
about the delivery date. The e-buyer sends a confirmation
on receiving the placed order. Since the goods are made-to-
specification, cancellation of an order is allowed only within
24 hrs of placing the order.

4.3 Syntax
The modular abstraction mechanism in ASDL is the “Ser-

vice” whose syntax can be defined recursively using con-
structs defined in Table 1, where S, S1, S2... refer to names
of services.

PS ::= send(id, y,S1,S2) | receive(id, x, t,S1,S2) | ∆t |

x := e | empty | skip | STOP | MAGIC

CS ::= PS | var x : T in CS | [t1, t2 . . . tn]CS |
CS1 ; CS2 | CS1 ‖ CS2 | CSn |

CS1 �
c
t CS2 |

F
m∈I

< pm >: Gm → CSm

Table 1: Syntax: Design notation

Table 2 lists the names of some of the services in the e-
shopping example.

• PS denotes a primitive service.

Service Service Name
e-Buyer eBuyer
e-Shop eShop

Supplier supplier

Table 2: Name declaration for the e-shopping ser-
vice

• CS denotes a composite service.

• var x : T in S defines a variable within S of type
T. Table 3 defines some of the variables used by the
services in the e-Shopping Service.

var x : T in S
var orderRequest : String in eBuyer

var decisionAndPrice : Object in supplier
var pricingInfo : Object in eShop

var noCancellation : String in eShop

var clock : integer in eShop
var clock : integer in supplier

Table 3: Variable declaration for the e-shopping ser-
vice

• t is a time instant, modelled as t ∈ N . Note that clock
is a special case of t, as clock denotes the value of t at
exactly that instant.

• send(id, y, S1,S2) writes the message “y” with an iden-
tifier, “id” to be sent from service S1 to service S2, over
a channel, time-stamping it with the time of the write
i.e. the value of clock at that instant.

The e-buyer sends his request of ordering a
product to the e-shop

send(i, orderRequest, eBuyer, eShop)

• receive(id, x, t, S1,S2) performs an input to receive the
message triple, (id, x, t) sent by service S1 to service
S2, where i is the message identifier, x is the message
content and t is the time, the message was sent.

The supplier receives product specification from
the e-buyer

receive(id, productSpec, tsend, eBuyer, supplier)

• ∆t waits for t time units.

The e-buyer waits for tSPEC time units for any
of the suppliers from the e-shop to confirm his
order specification, before he investigates a com-
petitor e-shop.

∆tSPEC

• x := e evaluates the expression e, and assigns it to
x. A special case can be defined as x := y which is
analogous to “copy” and assigns the value in y to x.

• skip denotes a service with a unit interval.

• empty defines a primitive service that does nothing.

• STOP denotes failure of a service.

• MAGIC denotes the most nondeterministic of all ser-
vices. The behaviour of MAGIC is defined by the set
of all possible behaviours. It is the least predictable
service. MAGIC can be considered analogous to
CHAOS in CSP [13].

• [t1, t2, . . . ti, . . . tn]S gives S a duration ti from the set,
{ti | i ∈ [0, 1, 2 . . . n]}. if the service terminates before
ti seconds have elapsed then it idles away to fill the
interval. If the service does not terminate within ti

seconds, then it is considered to have failed.

• S1 ; S2 denotes a sequential composition of S1 and S2.
S1 † S2 denotes a special case of sequential composi-
tion, where execution of the services is unordered.

The e-buyer receives the name of a supplier
from the e-shop and then sends detailed speci-
fication of the requirements to the supplier.

receive(i, supplierName, tsend, eBuyer, eShop);

send(j, productSpec, eBuyer, supplierName)

• S1 ‖ S2 denotes the parallel composition of S1 and
S2, terminating when both the services terminate (dis-
tributed termination). The service terminating first

idles away for the remaining time units.
n

‖ S is a spe-

Figure 12: Distributed termination S1 ‖ S2

cial case that represents an n copies of S in parallel.
∗

‖ S represents an (in)finite number of copies of S in
parallel.

On receiving a product specification from the
e-buyer, the supplier makes a decision on sup-
plying the product. It informs the e-shop of
the decision along with the price, and informs
the e-buyer about the decision to supply.

receive(i, productSpec, tsend, supplier, eBuyer);

(send(j, decisionAndPrice, supplier, eBuyer) ‖

send(j, decision, supplier, eShop))

• Sn executes S iteratively for “n” number of times,
where n is an integer (n ∈ N). while G do S and
repeat S until G are special cases of Sn true.

The e-buyer receives the list of suppliers from
the e-shop and then sends detailed specification
of the requirements to each of the suppliers.

receive(i, supplierList, tsend, eBuyer, eShop);

while (noOfSuppliers < 0) do

send(j, productSpec, eBuyer, supplierList)

• S1 �
c
t S2 executes S1 till the condition “c” is true. If

c holds after exactly t time units, it interrupts S1 and
starts executing S2. If “c” is not true after exactly t
time units, it continues to execute S1.

Figure 13: Interrupt: S1 �
c
t S2

The e-buyer sends product specification to each
of the suppliers from the list of suppliers re-
ceived from the e-shop. While sending the mes-
sages, if the one of the suppliers confirms the
order, the e-buyer interrupts the sending oper-
ation and starts negotiating the price with the
e-shop.

while (noOfSuppliers < 0) do

send(j, productSpec, eBuyer,next(supplierList))�c
t

send(i, supplierDetails, eBuyer, eShop)

where, c = confirmOrder(supplier)

•
F

m∈I

< pm >: gm → Sm evaluates the guards (gm) in

decreasing order of priority (pm) and executes a ser-
vice corresponding to a true guard. We define guards
(g) to be state formula. Priority of a guard is defined
as p ∈ N , increasing progressively as the priority in-
creases. If all the guards evaluate to false then the
service terminates.

If a set of services has the same priority and all guards
evaluate to true, the choice is made non-deterministically,
i.e. S1 u S2 makes a non-deterministic choice between
S1 and S2. “if G then S1 else S2” is a special case.

On receiving a message to cancel an order, the
e-shop checks the time when the order was placed
(torder) and compares it with the current time
to send the appropriate message to the e-buyer

if (clock − torder) < 24 then

send(j, cancellation, eShop, eBuyer) else

send(j, noCancellation, eShop, eBuyer)

4.4 Specification Oriented Semantics of ASDL

In this section, we define an ITL based, specification ori-
ented semantics for various constructs of ASDL. The seman-
tics of chop (;), skip and empty are as defined in ITL.

The semantics of receive and send are defined with ref-
erence to Figure 14. A channel running from service Si to
Sj , Cij , is said to be directed from Si to Sj . The channel is
defined as an l place bounded buffer. The channel is divided
into two parts, “head” and “tail”, with head at the 0 th po-
sition in the buffer. The head is defined as a single position
at the directed end of the channel. The tail is defined as the
rest of the channel i.e. a buffer with l − 1 places. At any
time, the number of empty places in the buffer is denoted
by |Cij |. Sending of a message is allowed only if there is an
empty position in the channel. In order to send a message,

the operator ⊕ appends the message to the last empty posi-
tion in the channel. A pointer keeps track of the last empty
position in the buffer where the message is to be appended.
We define the set of all messages, M as,

M = [N × V × T ime]

where V is an infinite set of message values and T ime is
an infinite set of time stamps. A message, m ∈ M that is
sent from service Si to Sj , is a triple (id, x, t), where id ∈ N
is a unique message identifier for correlating between the
messages sent and received between Si and Sj , and x is the
message content i.e. data content that is sent or received.
The time-stamp, t of message transmission is passed along
with the message. We define a projection function, Πk on
the head of the channel Cij which for k=1 gives id, for k=2
gives x and for k=3 gives t, the time-stamp.

• ∆t b= fin (clock) = clock + t

• x := e b= ©x = e

• STOP b= false

• MAGIC b= true

• var x : T in S b= ∃x.type(x,T) ∧ S

• receive(id, x, t,S1,S2) b=

skip ∧ if |C12| > 0

then(id = Π1(head(C12)) ∧ x = Π2(head(C12))∧

t = Π3(head(C12)) ∧ ©(C12) = tail(C12))

Figure 14: Channel C12 from service S1 to S2

• send(id, y,S1,S2) b= skip ∧ if |C12| < l then(©C12 =
C12 ⊕ < id, y, (clock) >)

• [t1, t2, . . . tn]S b= for some ti ∈ {t1, t2, . . . tn}, (∆ti ∧
(S ; true)

• S1 † S2 b= S1 ; S2 ∨ S2 ; S1

• S1 ‖ S2 b= ((S1 ; true) ∧ S2) ∨ (S1 ∧ (S2 ; true))

•
∗

‖ S b= ∃n.
n

‖ S,
0

‖ S b= empty,
1

‖ S b= S

• S1 u S2 b= S1 ∨ S2

• Sn b= Sn

• while G do S b= (G ∧ S)∗ ∧ fin ¬G

• repeat S until G b= S ; (while ¬G do S)

• S1 �
c
t S2 b=

S1∧(fin (c)∧2(more ⊃ ¬c)∧(fin (clock) = clock+t);S2)∨

(S1 ∧ 2(¬c) ∧ ∆t) ; S2

•
F

m∈I

<pm >: Gm → Sm b=

_

m∈I

((Gm ∧ Sm) ∧ pm = max(P))∨

(
^

m∈I

¬Gm∧empty) where P = {pm|m ∈ I∧pm ∈ N}

• if G then S1 else S2 b= (G ∧ S1) ∨ (¬G ∧ S2)

5. RELATED WORK
In approaches such as Interface Automata [10], IO Au-

tomata [20], CCS [21] and CSP [12] the communication be-
tween the receive and send processes is synchronous, while
in our model, the messages are stored in a bounded FIFO
buffer. We believe that modelling using synchronous com-
munication does not capture the realistic scenario of com-
position, because of the inherent distributed nature of Web
services. Formalisms such as π-calculus and the approach
used in Microsoft’s Behave! project [30] use asynchronous
message passing for modelling distributed and concurrently
executing systems. Our model differs from Communicating
Finite State machines [3], as it uses an unbounded buffer
whereas the buffers in our model are bounded FIFOs. Our
model is close to the physical implementation, where all
buffers are bounded, however large the bound maybe. In
Single Link Communicating Finite State machines [29], in-
coming messages from several processes to a single process
come from a single FIFO, in our model, incoming messages
to a single service from different services, come from separate
FIFO channels. A crucial difference between CSFMs and
our model is that in the former, time aspects are ignored.
Messages sent out by the sending process are assumed to
reach the receiving process instantly. In our model, sending
and receiving of messages, takes at least one unit (i.e.skip) of
time. Further, timeouts are not handled explicitly in CSFMs
as in our model. In Kahn’s Process networks [17, 37] the un-
bounded FIFO buffers are one way, i.e., they can be used
only for receiving or sending, which is similar to our model.
In the Temporal Agent Model (TAM) [19, 34] communica-
tion is asynchronous via time - stamped shared area called
shunts.

The model proposed in [40] assumes a virtual watcher as
an abstract entity which records the sequence of message as
they are sent to peers, each peer is further modelled as a
standard finite state automaton. Communication is similar
to our model, i.e., over asynchronous - FIFO buffers, how-
ever the model does not specify if the buffers are bounded.
Further the model describes a closed system where peer im-
plementations are known a priori. This simplifies the mod-
elling of peers considerably. A similar approach to closed
systems can be found in [15]. The model assumes one mes-
sage queue per peer and peer implementations are modelled
as Mealy machines [14]. The model we propose describes
an open system and encapsulates a black box view of ser-
vice. An XML based notation with formal semantics in π
-calculus, to model service composition is described in [32].
Although the prime objective here is an orderly sequencing

of messages, the notation does not provide any primitives
for modelling services such as “timeout”. Misra et al. [31,
24, 23] present a model “Orc” based on transactions. In this
model a service is represented by a “Site”. The model does
not include features for time-out, synchronization, commu-
nication and the like. There is no notion of messages be-
ing passed or variables being shared. A Site call is analo-
gous to calling a function. This view is analogous to legacy
distributed computing paradigms such as CORBA [11] and
DCOM [8]. Orc provides a design notation with operational
semantics, analogous to ASDL with specification oriented
semantics in our model. An interesting algebra for services
is present by Cardeli and Davies et al. in [4] where the no-
tion of a service is that of a HTTP information provider
wrapped in error detecting and handling code. The idea is
to provide service combinators that simulate the process of
manual browsing on the web. Combinators, are defined to
enable sequence, repetition and time out constructs amongst
others.

ASDL can be considered as an algebra for services, quite
analogous to widely known and fundamental process alge-
bra models such as Hoare’s Communicating Sequential pro-
cesses (CSP) [21], Milner’s Calculus of Communicating Sys-
tems and ACP [1]. These process algebras have been widely
extended to include variations such as Timed CSP [9], pi-
calculus [22, 33] and LOTOS amongst others. ASDL is
however more expressive as it is enriched with explicit tim-
ing related constructs which is needed in order to reason
about services communicating asynchronously. A “Process”
in CSP is analogous to a “Service” in ASDL. The most sig-
nificant difference between CSP and ASDL, is the notion of
an “event”in CSP. ASDL does not define “event” explicitly,
as when a service is viewed from a “Black box” perspec-
tive, the only visible events are the sending and receiving of
messages between services, which we consider as primitive
services in our model. Similarly with CCS, the notion of
“action” is analogous to our primitives, send, receive and
empty. An interesting comparison arises with π-calculus
and the notion of “mobility”. The primitive entities in π-
calculus are processes, channels 1 and names where a name is
used to refer to a channel. Processes are independent entities
that are connected by channels. The idea of mobility with
respect to services in a composition is that channel names
can be passed between services. This allows the modeling
of both static and dynamic services within a composition.
For example, a buyer could specify channel information to be
used for sending delivery information. The buyer could then
send the channel information to the seller who then forwards
it to the shipper. The shipper could then send delivery infor-
mation directly to the buyer using the channel information
originally supplied by the buyer. It is worth noting that in
our computational model, mobility is not required as every
service in a network is connected to every other service via a
channel as illustrated in Figure 2. Further, services in ASDL
are named services. Dynamic configuration in our model is
simply achieved by sending a message along the channel,
connecting the desired service. The significant advantages
that ASDL offers over algebraic techniques of composition is
the complete axiomatic system of ITL, which can be used to
reason about system models designed using ASDL and their
associated properties, and a unified semantic framework for

1Also referred to as links.

reasoning about models of services and their properties, as
mentioned earlier.

6. CONCLUSIONS AND FUTURE WORK
A sound computational model and an underlying wide

spectrum design language are crucial artifacts in the de-
sign of service composition and interaction protocols at an
abstract level and then reasoning about properties of the
composition.

In this paper, we have presented a computational model
for the design of service oriented systems and developed a
wide spectrum language that provides us with capabilities
to design service composition and model their interactions
at an abstract level. We base our model on asynchronous
communication of messages between services via channels.
We have proposed a design language, “ASDL”, for the spec-
ification and validation of reactive Web services, based on
our rigorous computational model. The language is rich in
expressiveness and abstracts from several details found in
high level specification languages.

At the theoretical level, we would like to extend the com-
putational model and ASDL with “fairness”. Fairness is
especially desired when a composing agent has to make a
non-deterministic choice from the same set of services, when
it executes recursively i.e.

(S1 u S2 u S3)
∗

In such situations, it might be the case that service S1 is
invoked for every iteration. We would like to extend ASDL
with a fairness operator that allows a fair selection between
services of similar capabilities i.e.

(S1 uf S2 uf S3)
∗

We would also like to extend the model and ASDL to
provide explicit transactional support that allows compensa-
tion, negotiation of commitments, relaxation of ACID prop-
erties, exception handling and enforcement of security poli-
cies.

7. REFERENCES
[1] J. C. M. Baeten and C. Verhoef. Concrete Process

Algebra, pages 149–268. Oxford University Press,
Oxford, UK, 1995.

[2] F. L. Bauer, M. Broy, R. Gnatz, W. Hesse,
B. Krieg-Bruckner, H. Partsch, P. Pepper, and
H. Wossner. Towards a wide spectrum language to
support program specification and program
development. SIGPLAN Not., 13(12):15–24, 1978.

[3] D. Brand and P. Zafiropulo. On communicating
finite-state machines. J. ACM, 30(2):323–342, 1983.

[4] L. Cardelli and R. Davies. Service combinators for
web computing. IEEE Trans. Softw. Eng.,
25(3):309–316, 1999.

[5] A. Cau. ITL and (Ana)Tempura Home page on the
web.
http://www.cse.dmu.ac.uk/STRL/ITL/.

[6] K. M. Chandy and J. Misra. Parallel Program Design:
A Foundation. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1988.

[7] R. Chinnic, H. Haas, A. Lewis, J. J. Moreau,
D. Orchard, and S. Weerawarana. Web services

description language (wsdl) version 2.0 part 1: Core
language w3c working draft 3 august 2005, 2005.
http://www.w3.org/TR/2005/WD-wsdl20-20050803/.

[8] M. Corporation. The Component Object Model
Specification, October 1995. Draft Version 0.9.

[9] J. Davies and S. Schneider. An Introduction to Timed
CSP. Technical report, Oxford University, August
1989.

[10] L. de Alfaro and T. A. Henzinger. Interface automata.
In ESEC/FSE-9: Proceedings of the 8th European
Software Engineering Conference held jointly with 9th
ACM SIGSOFT international symposium on
Foundations of Software Engineering, pages 109–120,
New York, NY, USA, 2001. ACM Press.

[11] O. M. Group(OMG). The common object request
broker: Architecture and specification(corba)rev 3.0.2.
omg technical document, 2004.

[12] C. A. R. Hoare. Communicating sequential processes.
Commun. ACM, 21(8):666–677, 1978.

[13] C. A. R. Hoare. Communicating sequential processes.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1985.

[14] J. E. Hopcroft and J. D. Ullman. Introduction To
Automata Theory, Languages, And Computation.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1990.

[15] R. Hull, M. Benedikt, V. Christophides, and J. Su.
E-services: a look behind the curtain. In Proceedings
of the Twenty-Second ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 1–14. ACM Press, 2003.

[16] M. Imperato. An Introduction to Z. Chartwell-Bratt,
1991.

[17] G. Kahn. The Semantics of a Simple Language for
Parallel Programming. Proc Information Processing,
North Holland, 1974.

[18] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[19] Lowe and H. Zedan. Refinement of complex systems:
a case study. The Computer Journal, 38(10), 1995.

[20] N. Lynch and M. Tuttle. Hierarchical correctness
proofs for distributed algorithms. In Proc. 6th ACM
Symp. on Principles of Distributed Computing, pages
137–151, 1987.

[21] R. Milner. Communication and Concurrency.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1989.

[22] R. Milner. Communicating and Mobile Systems: the
Pi-Calculus. Cambridge University Press, New York,
NY, USA, 1999.

[23] J. Misra. Computation orchestration: A basis for
wide-area computing. Lecture Notes for NATO
summer school, 2004.

[24] J. Misra. A programming model for the orchestration
of web services. In SEFM, pages 2–11, 2004.

[25] B. Moszkowski. Executing Temporal Logic Programs.
Cambridge University Press, Cambridge, England,
1986.

[26] B. Moszkowski. Programming Concepts, Methods and
Calculi, IFIP Transactions, A-56., chapter Some Very
Compositional Temporal Properties, pages 307–326.
Elsevier Science B. V., North-Holland, 1994.

[27] Nickolas Kavantzas, David Burdett, Gregory
Ritzinger, Tony Fletcher, Yves Lafon. Web Services
Choreography Description Language Version 1.0:
W3C Working Draft 17 December 2004 , 2004.

[28] C. Peltz. Web services orchestration and choreography.
IEEE: Computer, 36(10):46–52, October 2003.

[29] W. Peng. Single-link and time communicating finite
state machines. In Proc. of 1994 International
Conference on Network Protocol, pages 126–133,
Boston, October 1994.

[30] S. K. Rajamani and J. Rehof. A behavioral module
system for the pi-calculus. In SAS ’01: Proceedings of
the 8th International Symposium on Static Analysis,
pages 375–394, London, UK, 2001. Springer-Verlag.

[31] Y. ri Choi, A. Garg, S. Rai, J. Misra, and H. M. Vin.
Orchestrating computations on the world-wide web. In
Euro-Par ’02: Proceedings of the 8th International
Euro-Par Conference on Parallel Processing, pages
1–20, London, UK, 2002. Springer-Verlag.

[32] S. J. Woodman, D. J. Palmerand S. K. Shrivastava,
and S. M. Wheater. Notations for the specification
and verification of composite web services. In
Enterprise Distributed Object Computing Conference,
Eighth IEEE International (EDOC’04), September 20
- 24, 2004.

[33] D. Sangiorgi and D. Walker. PI-Calculus: A Theory of
Mobile Processes. Cambridge University Press, New
York, NY, USA, 2001.

[34] D. Scholefield. A Refinement Calculus for Real Time
Systems. PhD thesis, University of York, 1992.

[35] M. Solanki. A Compositional Framework for the
Specification, Verification and Runtime Validation of
Reactive Web Service. PhD thesis, De Montfort
University, Leicester, UK, October 2005.

[36] J. M. Spivey. Richer types for z. Formal Asp.
Comput., 8(5):565–584, 1996.

[37] K. Stølen, F. Dederichs, and R. Weber.
Assumption/commitment rules for networks of
asynchronously communicating agents. Technical
Report TUM-I9303, Technische Univerität München,
1993.

[38] The OWL-S Coalition. OWL-S 1.1 Release., 2004.
http://www.daml.org/services/owl-s/1.0/.

[39] Tony Andrews et al. Business Process Execution
Language for Web Services, Version 1.1, 2003.
http://www-106.ibm.com/developerworks/library/ws-
bpel/.

[40] X. Fu T. Bultan and J. Su. Conversation Protocols: A
Formalism for Specification and Verification of
Reactive Electronic Services. In Proceedings of the 8th
International Conference on Implementation and
Application of Automata (CIAA), pages 188–200,
Santa Barbara, CA, USA, 2003.

