
Supporting Online Problem-Solving Communities with the
Semantic Web

Anupriya Ankolekar
University of Karlsruhe

76131 Karlsruhe, Germany

anupriya@aifb.uni-
karlsruhe.de

Katia Sycara, James
Herbsleb, Robert Kraut
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

{katia, jdh,
kraut}@cs.cmu.edu

Chris Welty
IBM Watson Research Center

P.O. Box 704, Yorktown
Heights, N.Y. 10598, USA

welty@us.ibm.com

ABSTRACT
The Web plays a critical role in hosting Web communities,
their content and interactions. A prime example is the
open source software (OSS) community, whose members,
including software developers and users, interact almost ex-
clusively over the Web, constantly generating, sharing and
refining content in the form of software code through active
interaction over the Web on code design and bug resolu-
tion processes. The Semantic Web is an envisaged exten-
sion of the current Web, in which content is given a well-
defined meaning, through the specification of metadata and
ontologies, increasing the utility of the content and enabling
information from heterogeneous sources to be integrated.
We developed a prototype Semantic Web system for OSS
communities, Dhruv. Dhruv provides an enhanced seman-
tic interface to bug resolution messages and recommends
related software objects and artifacts. Dhruv uses an inte-
grated model of the OpenACS community, the software, and
the Web interactions, which is semi-automatically populated
from the existing artifacts of the community.

Categories and Subject Descriptors
H.5.3 [Information Systems]: Group and Organization
Interfaces; H.4.3 [Information Systems]: Communications
Applications; H.3.6 [Information Systems]: Library Au-
tomation

General Terms
Design

Keywords
human-computer interaction, computer-supported coopera-
tive work, open source software communities, semantic web
applications

1. INTRODUCTION
Online professional communities have flourished in con-

junction with the rise of the Web. Online professional com-

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

munities are communities of people, who organize them-
selves and interact primarily through the Web, for work
and knowledge sharing. Online professional communities
constantly generate, share and refine information through
active interaction over the Web as part of various com-
munity activities. Online professional communities can be
either discussion-oriented communities, which are formed
for knowledge sharing, such as Photo.net [24], or artifact-
oriented communities that come together to create artifacts,
such as online encyclopædias [26] and software programs
[21]. In the former, interactions lead to the implicit capture
of knowledge in the community Web discussion forums [14],
whereas in the latter, interactions consist of decentralized,
collaborative refinement of the artifacts being created. As
people interact with each other in the community, their con-
tributed information, knowledge and experiences get stored
in the online community archive. Similarly, collaboratively
built artifacts and the knowledge and experiences of the con-
struction process also become a part of the community’s
content. The archived content thus becomes a valuable re-
source for current and future members of the community, a
kind of collective good [20]. As the archive grows through
community interactions, it becomes increasingly valuable for
the community. For discussion-oriented communities, the
archive is in fact the primary product of the community.

The most prominent example of online professional com-
munities is probably open source software (OSS) commu-
nities, which form around the source code of a software
program. Despite the complex and interdependent nature
of software development [16], OSS communities have been
remarkably successful, with several OSS software projects
comparing very favorably with commercial offerings. Some
of the most prominent OSS communities are the Linux op-
erating system [18], the Apache software collection [1] and
recently, the Firefox web browser [10]. OSS communities dis-
play characteristics of both discussion-oriented and artifact-
creating communities, because the communities engage in a
complex creation activity which requires a fair amount of
coordination through discussion.

A major challenge for online professional communities is
that they generate vast amounts of information as a result
of their interactions, but that information is not well-linked
on the basis of the meaning of its content. Thus, community
members often find it difficult to coordinate and maintain
awareness of other members’ activities, leading to wasted



labor and reduced productivity.
The Semantic Web [2] has been proposed and promoted

as an enhancement to the current Web. The Semantic Web
vision adds a layer of machine-comprehensible meta-data
over information on the Web and defines ontologies that
describe the semantics of the meta-data. By thus enabling
Web information to be automatically processed based on
some representation of its content, Semantic Web technolo-
gies can make unstructured or semi-structured Web infor-
mation meaningful. In the context of online professional
communities, they facilitate the linking of community in-
formation and artifacts on the basis of their content and
interpretation. This allows for intelligent support of online
professional communities in terms of providing better aware-
ness of community interactions and activities.

We believe that providing increased semantic support will
be beneficial to online professional communities. By con-
structing a semantic model of the content, the interactions
and the structure of the community, the activities of an on-
line professional community can be supported. In this paper,
we describe Dhruv, a prototype demonstrating the feasibil-
ity and utility of transitioning existing online professional
communities to semantically-linked online professional com-
munities. In particular, Dhruv supports bug resolution in
open source software communities.

We first examine OSS communities and their three layers
of content, interactions and community in detail in Section
2. We then discuss bug resolution as an example of problem-
solving activities within OSS communites (Section 2.4) and
describe some of its challenges, noting that the related work
(Section 4) thus far in this area does not address the chal-
lenges for these communities. We then describe Dhruv as
a prototype system supporting bug resolution in OSS com-
munities (Section 3) and present an overview of its imple-
mentation (Section 5). Finally, we discuss some of the issues
that arise for transitioning existing Web communities into
the Semantic Web (Section 6) and end with a discussion of
future directions (Section 7).

2. OPEN SOURCE SOFTWARE COMMU-
NITIES

Open source software development typically consists of
a series of activities around the software code [22]. These
include the discovery that a bug exists or that new function-
ality is needed, determining who among the pool of active
developers will work on the issue, identifying a solution to
the issue, developing and testing the solution, (if needed)
presenting the code changes to the core committers for re-
view, and committing the code and documentation to the
repository. In fact, it has been suggested that most open
source software projects operate in what would convention-
ally be regarded as the software maintenance and evolution
phases of the software lifecycle [14]. The original code that
seeds an OSS community is typically developed by individu-
als or by commercial software development teams and then
contributed to the open source domain. It is rare for an OSS
community to form without any seed code.

OSS communities can be viewed as having three layers
(see Figure 1): a content layer of software code, bug reports,
documentation etc.; an interactions layer that builds on the
content, as people interact through bug tracking systems
and web forums to participate in activities around the code,

such as software development and bug resolution; and finally
a community layer that is formed through the interactions
that take place around the content. The community layer
contains people and their various, dynamic roles in the OSS
community.

Figure 1: The Three Layers of Community, Content
and Interactions in an OSS Community

In the following, we discuss each of the three layers of
community, content and interactions in detail.

2.1 Content
The primary content of an OSS community is its soft-

ware code. OSS communities typically form around an open
source software program, a software program whose source
code is publicly available. The communities’ activities and
interactions then revolve almost entirely around the pro-
gram code, working to develop the program further, to fix
bugs (defects in the software), to provide support on using
the program, discuss future evolution of the software and so
on. Essentially, the community performs the whole gamut
of software development activities. In addition to the soft-
ware code, OSS communities also create content in the form
of bug reports about the software code, documentation and
change logs.

2.2 Interactions
OSS communities are virtual communities and accord-

ingly, interact primarily through the Web. They use a vari-
ety of communication tools, including mailing lists for tech-
nical discussions and support, a bug tracking system for
monitoring and fixing bugs, a CVS code repository for stor-
ing a common version of the source code. In addition, com-
munities often use chat for more real-time communication.
Within the OSS community, there is a strong culture of
‘making it public’, i.e. conducting all community interac-
tions, such as answering questions, discussing plans and de-
sign details and reporting on project status, in public lo-
cations, such as the community mailing lists and other dis-
cussion forums [13]. Most such explicit interactions in an
OSS community are discussions about some bug or a design
detail or the best way to implement a new feature and any
person can freely participate in such discussions. Archives
of all past activity is usually available through the commu-
nity website and can be browsed. Thus, the OSS communi-



ties use the Web primarily as a communication and storage
medium.

2.3 Community
OSS communities typically bring together a loose collec-

tion of volunteers: the active developers of the software, the
end-users of the software, and anyone who has an interest
in the software. They organize themselves as a community,
creating roles for themselves (such as core developer, soft-
ware contributer, end-user, etc.) and performing adminis-
trative functions, such as voting, marketing, etc., in addi-
tion to the main software development activities, such as
source code design, code implementation, program mainte-
nance etc. Open source software communities face the chal-
lenge of maintaining awareness of other developers so that
they can coordinate their own work with others. Coordi-
nation becomes particularly important when developers are
to work together over a long term. An activity-centric view
then becomes crucial to providing adequate support, partic-
ularly since OSS communities have severely restricted com-
munication compared to co-located software development:
they communicate primarily through artifacts and email dis-
cussion.

2.4 Bug Resolution in Open Source Software
Communities

In order to participate effectively within the community,
OSS community members need group awareness [7], i.e. they
need to understand who is working on what in the commu-
nity and how their work affects other community members.
Such knowledge allows people to coordinate work effectively,
anticipate other members’ actions, discuss tasks and locate
help [12]. There are three primary ways that an OSS com-
munity maintains such group awareness [13]: reading devel-
oper mailing lists, reading real-time chat logs and watching
commits from the code repository.

The group awareness problem is most apparent during
bug resolution. Bug resolution is a very important activ-
ity for OSS communities since it determines the quality of
the code produce. It is often also a precursor to an official
release of the source code. Bugs and feature requests are
usually tracked by means of an issue tracking system such
as Bugzilla [4] or the OpenACS Bugtracker [23]. Bug fixes
or patches are sometimes also submitted through the bug
tracking system. The community is encouraged to use the
bug tracking systems, since it then becomes a single access-
point for all modifications to be made to the code. In most
OSS bug tracking tools, each such bug becomes a message
board centered on the issue [14]. However, bug fixing is not
as exciting as code design and development. Consequently,
it often tends to get neglected.

Part of the problem is that since the community has col-
lective responsibility for fixing bugs, no person is explicitly
assigned to any bug. Every now and then, for example,
before a software release, people will go through the bugs
posted on the bug tracking tool, looking for bugs they can
fix. This places the burden of finding bugs that can be fixed
squarely on the people who can fix them. Thus, there can
be a long delay before the bug gets to the attention of de-
velopers who can fix the bug. Of course, if a community
member is really keen to get a bug fixed, they can always
specially request help with the bug on the discussion forums.
Community members are generally quite responsive and try

to help out as far as possible.
The bugs that do get submitted to the bug tracking tool

may themselves not be genuine bugs. A common example
of an invalid bug is one that cannot be reproduced. Deter-
mining that such bugs are invalid wastes developer time and
clutters the bug tracking system.

Receiving duplicate or invalid bug reports is unfortunately
quite common. In the Apache project, a few dedicated de-
velopers would usually go through the bug reports, mark du-
plicate bugs, remove mistaken bugs, fix simple bugs quickly,
review and commit patches, and forwarding reports to the
developer mailing lists if the bugs are considered critical [22].
However, not all OSS projects can afford dedicated devel-
opers to triage the bug reports and sorting through the bug
reports remains a major problem.

The responsibility for fixing specific bugs can sometimes
bounce between several developers or groups of developers
before eventually being accepted. Sometimes developers will
themselves bring bug reports to the attention of people, who
can fix the bugs. Once the bug has been fixed or the en-
hancement developed, the bug tracking tool is searched for
similar reports, so that those can also be closed.

To support community members in the normal process of
bug resolution, the Semantic Web should support answering
the kinds of questions that normally arise in in the minds
of developers in the midst of bug resolution. Two kinds
of questions that often arise when developers attempt to
understand a program are ‘what’ and ‘why’ questions [17].
The ‘what’ question represents questions of the form ‘What
is this software object’ or ‘What does this software object
do?’. The ‘why’ question represents questions about the
purpose and rationale for sections of source code, such as
‘Why is this fragment of code implemented in this particu-
lar way?’. Dhruv can support both these kinds of questions
in the context of bug report comments. The former by pre-
senting the definition of the object and its cross-links. The
latter by providing cross-links to the discussions about the
software object.

Both ‘what’ and ‘why’ questions are posed as soon as
the unfamiliar software object is encountered [17]. Individ-
ual references to software objects in a bug report message
are captured as code terms, as described in Section 3. To
support the immediate answering of ‘what’ and ‘why’ ques-
tions, the extracted code terms and noun phrases themselves
should be immediately clickable to get more information.

During the course of normal activities and interactions
within the community, community members also tend to
refer to other artifacts that explain a point or provide back-
ground information for it. Such links should be captured by
Dhruv and presented meaningfully to community members.
Inter-artifact linkage takes many forms:

• CVS commit logs refer to the bug reports that the
commit fixes. They also often refer to a patch report
whose patch is being committed. Less often, they may
refer to forums discussions that contain the discussion
that prompted the commit.

• Bug reports in the OpenACS Bugtracker have a slot for
the patch reports that address the corresponding bugs.
In addition, bug reports may refer to other bug reports
that are either duplicates or report similar problems.
Bug reports also refer to forum discussions, for exam-
ple, when the bug was discussed on the forums prior to



Figure 2: A bug report in Dhruv, displaying the
highlighted links and artifact and people recommen-
dations for each bug report message.

filing an official bug report. Similarly, bug reports also
tend to refer to code files when describing the problem
experienced and the suspected offending files.

• Similarly, forum discussions may refer to files, bug and
patch reports, other forum discussions and CVS com-
mit logs, as the need arises.

• Patch reports and files have significantly less inter-
artifact linkage, but they may also link to files, bug
and patch reports, forum discussions and CVS com-
mit logs.

3. DHRUV
In this section, we describe the creation of the community

Semantic Web prototype, Dhruv. Dhruv performs two func-
tions with respect to OSS bug resolution. First, it provides
an enhanced semantic interface to messages posted during
bug resolution. The enhanced interface allows community
members to click on selected highlighted terms within the
message, taking them to a cross-links page, which furnishes
greater detail on the clicked term. The cross-links page pri-
marily presents semantically related information about the
term in the system and suggests related artifacts. Second,
Dhruv provides a number of message recommendations of
people, source code files, bug reports and discussions for
each bug report message. These recommendations are de-
termined by taking into account the semantic cross-links of
each of the highlighted terms in the message.

Dhruv has been constructed for the OpenACS/dotLRN
[23] OSS community. The OpenACS/dotLRN community
has formed around the open source OpenACS (Open Archi-
tecture Community System) toolkit, for building scalable,
community-oriented web applications. OpenACS provides
the foundation for many web applications, including the
open source dotLRN e-learning platform [6], and many web-
sites, including Greenpeace [11].

Figure 2 shows a bug report in the Dhruv system with

Figure 3: Cross-links page for a code term

highlighted terms in the text of a bug report message and
artifact and people recommendations for each bug report
message. The links highlighted gray-blue lead to more in-
formation on the highlighted text, namely the information
in the cross-links page for the selected term. The lightly col-
ored links indicate that this term is a special kind of link, so
that community members can click on it and delve deeper
into that concept if they wish to. However, the color is
muted, so that people reading the bug report may ignore
them and are not distracted by the links.

The cross-links page, as shown in Figure 3, lists various
kinds of information about a code term, ad_page_contract,
both the semantic in the knowledge base and the cross-
links of the term in the community semantic web. Since
there are two kinds of terms: code terms and noun phrases,
we have two separate kinds of pages for each. The noun
phrases capture technical keywords used by the community,
such as folder hierarchy, whereas the code terms capture
software object references, such as the software procedures
db_transaction and lang::util::localize. Figure 3 dis-
plays the cross- links page for a code term, where Figure 4
shows the cross-links page for a noun phrase. Other kinds
of extracted metadata, such as file names, which have cor-
responding semantic information in the knowledge base, are
treated in the same way as code terms.

Structured metadata drawn from the knowledge base is
displayed in the left column, while the right column displays
related artifacts of various kinds. The related artifacts are
categorized into different kinds of artifacts, such as code files



Figure 4: Cross-links for a noun phrase

and bug reports, because different artifacts carry different
kinds of information about a given code term that a bug
fixer might need.

Together, the highlighted links and cross-links pages com-
prise an enhanced interface to Dhruv’s semantic data for in-
dividual terms. In addition, Dhruv also presents artifact
recommendations for each message. When a community
member comments on a bug report, Dhruv produces recom-
mendations of related artifacts for the comment and appends
them to the message, as depicted by Figure 2. Message rec-
ommendations represent key artifacts for the message as a
whole, based on the cross-links of individual terms. They
can represent a best guess for new developers, who are un-
sure where to start with the bug report. If a artifact is
clearly related to the entire message, then the message rec-
ommendations ought to capture it and present a short-cut
for developers looking at the bug report.

Figure 2 shows the message recommendations given by
Dhruv. These recommendations are classified into several
categories, just like the related artifacts for a term. The
rationale is the same: to let people easily get to the different
kinds of information represented by different artifacts.

4. RELATED WORK
One of the first systems to explore the idea of express-

ing additional semantics of software code to assist software
developers was the Software Information System (SIS), de-
veloped by Brachman et al. [3]. A SIS indexes the soft-
ware source code and stores relationships that are frequently
searched for by software developers during software mainte-
nance. Such a system, while useful, would be inadequate

in the context of OSS communities. Supporting bug resolu-
tion in OSS communities also requires a great understanding
of the semantics of the content of developer messages and
the context of the project and the actions of developers.
The community semantic web essentially performs the same
functions as an SIS, but is much broader in scope, encom-
passing a greater variety of information, such as bug reports
and discussion messages.

An example closer to the open source software develop-
ment context is Hipikat [5]. Hipikat is an Eclipse plug-in [9],
which builds a group memory from all the artifacts in an
open source project. Then, someone viewing the code or
bugs is presented with information considered similar using
information retrieval techniques. Hipikat differs from the
approach presented here in that it focusses on the single-
developer process of solving a bug. Our focus is on the
multi-developer bug resolution processes that take place be-
yond the actual fixing of the bug, in particular the coordi-
nation required of multiple developers to fix the bug.

From the Semantic Web research area, there are a few ap-
plications of the Semantic Web variously to email and per-
sonal information [19], personal information management
[25] and for browsing through marked-up Web content [8]
and e-learning. Haystack [25] is an end-to-end Semantic
Web application for personal information management. The
concept is similar to that of the community semantic web,
but it focusses on managing the personal information of a
single user. Magpie [8] is a browser that exposes the se-
mantic metadata of a Webpage to the end-user through
right-clicks. Mangrove [19] is a ‘semantic email system’.
By augmenting email with simple metadata (e.g. yes/no for
replies), an agent can process multiple emails and summa-
rize the replies. To our knowledge, there are no Semantic
Web applications that address problem-solving in Web com-
munities.

In addition, most of the above related work (save Haystack)
assumes the existence of domain ontologies and present tools
to process information on their basis. However, there is a
research gap in the application of Semantic Web to a specific
domain, especially a dynamic domain constantly changing
due to interactions of the Web community. Although indi-
vidual components of the Semantic Web are well-developed,
there is a need for more application knowledge of the Se-
mantic Web. How can the Semantic Web be used by a Web
community? What does it take to create a Semantic Web
for an existing community? How does the introduction of
the Semantic Web change the interactions of the commu-
nity? How do community interactions enrich the Semantic
Web itself? This paper attempts a first shot at addressing
some of these questions.

5. IMPLEMENTATION OF DHRUV
There are several requirements to realize the community

semantic web sketched thus far. To begin with, we need a
way to describe the semantics of information on the Web,
namely the bug reports, discussion messages, documenta-
tion, source code files and commit logs. This is achieved
by means of ontologies to describe community artifacts and
metadata to populate the ontology TBoxes. Given meta-
data about information in the OSS community artifacts, we
then need a way to relate metadata about different artifacts
to each other. In other words, the Semantic Web needs to
be able to express the relationships between various artifacts



through their metadata. By expressing metadata and their
relationships in a machine-processable manner, we enable
the automatic processing, classification and presentation of
the artifacts. In addition, in order to interpret the seman-
tics of community interactions, we require natural language
processing to process the communication artifacts of a com-
munity. Finally, we need information retrieval techniques to
retrieve communication artifacts when supporting bug res-
olution.

5.1 Ontologies
To begin with, Dhruv requires an ontology that describes

the structure of the project and provides a basis for deter-
mining how artifacts are related. We model all three layers
of content, interactions and community of OpenACS. The
content layer is modeled in two ontologies, the code ontol-
ogy and the bugs ontology. These ontologies enable us to
determine the location and context of given software objects
and related bug reports. Essentially, these ontologies help
identify the semantic context of a bug report message. The
interactions ontology describes the structure of interactions
around bug reports, files and discussions in an OSS com-
munity. Using the interactions ontology, Dhruv can iden-
tify people who are experts in the area of the bug. Finally,
the community ontology describes the various roles in the
community. Knowing the roles of people in the community,
Dhruv can recommend people appropriate to their roles in
the community. Thus, someone who has expertise in the
area of the bug, but has never modified a file or submit-
ted a patch, is likely to have the in-depth knowledge of the
code required for fixing a bug. In the following, we give an
overview of each of the ontologies. The complete ontologies
can be found at the indicated URL.

1. Code Ontology : The code ontology is the core compo-
nent of the OpenACS ontology and models the soft-
ware source code. Given that all activities within an
open source software community are primarily centred
around the software source code, the code ontology is
the most critical portion of the OpenACS ontology.
All bugs occur somewhere in the source code and the
ensuing discussion around the bug also takes place in
referential context of the source code. The code on-
tology is therefore key to interpreting the semantics of
other artifacts, especially message-based artifacts.

The code ontology1 models the software source code in
terms of the contained software objects, such as mod-
ules, packages, functions, namespaces, variables and
database objects. In addition, code packages and pro-
cedures are usually distributed across several files. In
order to connect commits performed on files, to actual
blocks of code, the ontology models storage structure
of the code, i.e. the file(s) in which a procedure (or
package) is located.

Many of the concepts, such as code:Function and
code:Table, do not model the real-world objects, such
as functions and tables, completely. For example, they
do not model columns of the table and return values
of functions. However, this is inconsequential, since
comprehensive modeling is not required by any of the
reasoning tasks and is in fact detrimental to efficient

1http://www.cs.cmu.edu/~anupriya/code.owl

use of the concepts. The purpose of the code ontology
is therefore primarily to model the location, type and
partof relations for significant code objects.

2. Bugs Ontology :

The bugs ontology2 is the other portion of the content
layer. The bugs ontology models the information in
the OpenACS Bugtracker: the bug reports, their at-
tributes and the discussions around them. The bugs
ontology is much simpler than the code ontology, con-
taining 11 concepts and 15 properties. The core classes
in the bugs ontology are bugs:Report and its two di-
rect subclasses are bugs:BugReport and bugs:Patch-
Report. These represent a bug report and a patch
report respectively, filed in the OpenACS Bugtracker.
Other classes model the various attributes of bug and
patch reports, such as status, priority, submitter and
so on.

3. Interactions Ontology : On top of the code ontology
and the bugs ontology, lies the interactions ontology3,
which models community interactions around artifacts.
The interactions ontology therefore models people’s
actions on bug reports and on discussion forums. In
the interactions ontology, interactions are modeled as
follows: individual artifacts or interaction items may
have interaction:Messages made by instances of the
class community:Person. Each message is differen-
tiated into several types, for example, the subclass
interactions:OpenMessage, which refers to the ac-
tion performed on the artifact by posting the message.

An interaction item represents an artifact, an instance
of community:Resource, around which an interaction
may take place. The class interactions:Interaction-
Item has three direct subclasses interactions:Disc-
Thread, bugs:Report and the class code:File. The
classes bugs:Report and code:File have been discuss-
ed previously and support interactions in the form of
discussions around bug reports and commit sequences
on files respectively. The class interactions:Disc-
Thread represents the set of all discussion threads in
the OpenACS Forums.

Bug report comments are modeled because they con-
tain valuable information that elaborates on the bug,
its symptoms, possible fixes and trade-offs. Such in-
formation is very useful, for example, to a developer
wishing to fix a similar bug. In addition, bug com-
ments indicate the people who participated in the res-
olution of the bug and are therefore likely to have some
expertise in the area of the bug. Similarly, comments
or messages posted on web-based discussion forums are
also modeled in the interactions ontology, since they
may contain information that a developer needs to be
aware of while fixing bugs.

4. Community Ontology : On top of the interactions on-
tology, lies the community ontology4, which models
the online community in terms of the people taking
part in the community interactions around artifacts

2http://www.cs.cmu.edu/~anupriya/bugs.owl
3http://www.cs.cmu.edu/~anupriya/interactions.owl
4http://www.cs.cmu.edu/~anupriya/community.owl



and their roles. The community ontology therefore
captures the semantics of the community layer. There
are three key classes in the community ontology: the
class community:Community, which contains numerous
community:Resources and a number of instances of
class community:Person.

The relatively simple structure and limited number of de-
fined classes is intentional. Initial versions of the ontolo-
gies were much richer and more fine-grained, but the large
number of instances that arise naturally from the modelling
details of the code structure and the numerous interactions
made reasoning computationally demanding. We therefore
adopted a simpler ontological structure in order to be able
to reason over the entire community corpus.

5.2 Generating Metadata
Having defined classes and roles in the OpenACS ontol-

ogy, namely the TBox, we can now consider how to de-
fine the instances that populate these classes, namely the
ABox. These instances are gathered from the artifacts,
namely source code files, CVS commit logs, bug and patch
reports and discussion threads. The defined ontologies now
need to be populated by metadata, for which Dhruv needs
to identify meaningful terms and concepts within the com-
munity artifacts, namely the source code and the interaction
messages of the community. There are two kinds of meta-
data: (a) references to code, files, packages, error traces,
other bug reports and discussions, and (b) semantic con-
cepts expressed as a technical vocabulary or jargon that is
meaningful to community members. These extracted terms
are highlighted by Dhruv within the message.

Community Artifacts

Structured Information Natural Language Text

RDF Extracted Terms

parsing

RDF Converter
Minorthird
Mixup Rules

Figure 5: An overview of the metadata generation
process

A schematic of the metadata generation process is shown
in Fig. 5. The metadata generation process uses a com-
bination of hand-written parsing rules and information ex-
traction patterns. We attempted to generate the instance
data automatically as far as possible. There are several rea-
sons for this. Firstly, it would be infeasible to define all the
instances in the ontology manually. This is true for any on-
tology that aims to capture any sizable domain. Although it
requires some upfront effort to teach a system like Dhruv to
acquire data automatically, once the system is functioning,
the incremental effort of data generation on the ontology
developers and users is negligible.

By restricting ourselves to automatic instance acquisition,
we also limit ourselves to capturing information that is high
in structural semantics, but may be relatively shallow in
its interpretational semantics. For the purposes of this ex-
ploratory study, though, this restriction is not severe. Im-
portant instances not captured automatically can always be
added manually to the ABox. Naturally, the decision to
acquire instances automatically has influenced the design of
the TBox to an extent, in that only those concepts and prop-
erties were retained, whose instances could be determined
automatically.

5.3 Cross-Links
Having generated metadata for various kinds of software

objects and community artifacts, Dhruv can now use the
ontology relations created in the first step to identify the
semantic context of the metadata generated in the previ-
ous step. This context consists of metadata from the on-
tologies and related artifacts as determined by text similar-
ity. We call the artifacts identified by the context of an ex-
tracted term the cross-links for the term. The cross-links for
each extracted term in the message is presented in a cross-
links page. The highlighted terms and cross-links pages to-
gether represent the enhanced semantic interface provided
by Dhruv. We used various heuristics for generating cross-
links for terms. In particular, we identified artifacts and
objects from noun phrases, from code terms and from ref-
erences to other artifacts using information extraction tech-
niques. A code term

Given a code term identified through information extrac-
tion, we build cross-linkages in two ways:

1. by identifying the type of software object it refers to
and

2. by treating it as a noun phrase and using textual sim-
ilarity to identify related resources.

An example of cross-linkages for a code term is shown in
Figure 3 and for a noun phrase in Figure 4. Different kinds of
cross-linkages are created for a code term depending on the
type of software object in question, using numerous heuris-
tics. We used heuristics such as the file a software object has
been found in is an important part of the context for that
software object; software objects that are semantically re-
lated are often given similar names; connecting namespaces
to the functions they contain and functions to the variables
they contains are valuable indicators of their function. For
example, the names of variables often provide more insight
into what a function does short of actually reading the def-
inition of the function.

In order to identify people with related expertise, we ex-
amine their co-authorship of artifacts. If people tend to par-
ticipate in the same bug reports and discussions and modify
the same code files, albeit across different periods of time,
then it is quite likely that they will have similar expertise.
Thus co-authorship of artifacts has implicit in it shared ex-
pertise. If we consider every two people who co-author an
artifact to have interacted, then the co-authorship heuristic
essentially determines the professional ‘social networks’ of
the community.

5.4 Recommendation Heuristics
Given the semantic context or cross-links for message terms,

Dhruv can now generate message recommendations. Dhruv



gathers all the cross-links for a message and then prunes
and ranks the list of artifacts using a number of heuristics.
Dhruv utilizes the cross-links determined in the previous
section to generate recommendations for each message in
a bug report. The recommendations for each message are
generated on the basis of the content of the message, i.e. its
extracted metadata, namely code terms, noun phrases and
artifact references. The artifacts referred to by the artifact
references and by cross-links from the extracted metadata
are accumulated and then pruned to generate the recom-
mendations. Each type of cross-link is given a recommen-
dation weight to reflect its importance in determining the
recommendations. Artifacts are weighted according to the
cross-link that picked them. Two different cross-links may
suggest the same artifact. In this case, the artifact weights
are summed up to give a new recommendation weight to the
artifact. Finally, the recommendations are ranked accord-
ing to descending weight and the top n recommendations
are finally presented to the user.

In addition to the cross-links determined in the previous
section, Dhruv uses a couple of heuristics specifically for gen-
erating bug report message recommendations. For example,
artifacts that are cross-linked to by metadata captured from
the bug report summary are given a higher recommendation
weight, since the summary of a bug report is often the most
informative text in the bug report. Human-endorsed arti-
facts that appear within a bug report message itself, are
likely to be more reliable than the artifact references gen-
erated by Dhruv. Therefore, such within-message artifact
references are given a high recommendation weight. Each
bug report message adds a certain modicum of information
to the bug report. The semantics of the bug report can only
be determined by examining the entire bug report. Thus,
in order to give recommendations for the most recent bug
report message, Dhruv also utilizes the metadata of all pre-
vious messages in the bug report.

6. DISCUSSION
Dhruv is an initial prototype of a community semantic

web for OSS communities. The creation of Dhruv relied on
light-weight processes that parsed existing web content and
transformed it into semantic web content without interfering
with the natural activities of the community. Making the
transition from the Web to the Semantic Web as seamless
as possible is an important requirement for Semantic Web
applications.

A major obstacle in the creation of Dhruv is the large
amount of data that is generated by the OSS community.
The reasoners we tried to use within this work, namely Racer
and Pellet, were unable to reason efficiently for large data.
If the metadata input to the reasoners is inconsistent, then
identifying which statement in the hundreds of statements
caused an error to be flagged is itself an non-trivial task.
This points to a huge gap for the Semantic Web. Reason-
ing about information on the Web necessarily brings with
it the specter of huge data. Due to this, Dhruv could not
take advantage of the full expressivity of description logics
provided by OWL DL. Dhruv relied on cached information
to generate its pages.

There is one system that does address the problem of ef-
ficient reasoning for large numbers of individuals: instance
Store (iS) [15]. The iS system stores assertions about in-
dividuals and their types in a database, reducing reasoning

over individuals to terminological reasoning. However, the
current version of iS is limited to role-free reasoning of in-
dividuals, i.e. the ABox may have no axioms asserting role
relationships between individuals. During the creation of
Dhruv, this was deemed to be a major limitation. How-
ever, ultimately the primary use of ontologies in Dhruv is
for the description, annotation and retrieval of large num-
bers of individuals. In hindsight, iS was probably the most
appropriate system to use in Dhruv.

Dhruv does not make use of the open world assumption
nor does it make use of ontologies distributed over multi-
ple sites. As a small, self-contained community semantic
web, Dhruv does not require them. It is simpler to im-
plement Dhruv as a closed world with stable ontologies for
individual communities. This also simplifies the ontology
descriptions and reasoning. An ontology language like OWL
then becomes primarily useful in linking up the ontologies of
individual communities and enabling interoperation among
them.

Within the current implementation of Dhruv, the infer-
encing and classification capabilities of the Semantic Web
are underutilised. This is purely because current reason-
ers do not scale well to the numbers of objects dealt with
by Dhruv. There are several possible uses for classification
within Dhruv. A prime example is using inference to clas-
sify people into roles, such as bug fixer or core developer.
The people recommendations can then use this role infor-
mation to suggest appropriate people. For example, inac-
tive members or people who have never participated in a
bug resolution are unhelpful people recommendations for a
bug report.

Inter-artifact links provide surprisingly useful information
to Dhruv. Inter-artifact links are formed when the commu-
nity explicitly links various artifacts together during the nat-
ural course of their interactions. These semantic cross-links
are also rich enough to be useful in predicting the artifacts
that are likely to be useful for a bug report. Inter-artifact
links can be easily captured and represented by the Seman-
tic Web beyond OSS communities, such as in discussion-
oriented online communities. Exposing semantic informa-
tion to people such that they can browse the semantic links
between artifacts is likely to be meaningful to people, rather
than merely using the semantic information to compute re-
lated artifacts. The strength of the Semantic Web is its
power to provide explanations for why certain artifacts are
related or recommended. Within collaborative work con-
texts, such explanations can be as useful as the final answer.

A key feature of the Dhruv community semantic web pro-
totype is that it is built from the ’outside’. In other words,
it represents a way to take an existing online OSS com-
munity and transform it into a semantic community. This
contributes to the ease of deployment for the Semantic Web
and reduces the adoption barrier for online communities.

The ontologies in Dhruv are fairly general and domain-
independent. They can be used for a community semantic
web by any OSS community built around an OpenACS web-
site. Modeling other OSS communities will require some
modification of Dhruv, primarily in the processes used to
gather semantic metadata in OpenACS. Various components
of Dhruv, such as the metadata extraction and the heuristics
for determining cross-links are independent modules that
can be extended depending on the need. The recommenda-
tions of Dhruv can potentially be improved by plugging in



state-of-the-art tools and techniques for these modules.
The current version of Dhruv represents a initial step in

the realization of a community semantic web. By model-
ing individual communities and community processes more
closely and by developing more specific ontologies, we can
improve on the current version to provide comprehensive
and tailored support to online professional communities.

6.1 Lessons Learnt
The most important lesson learnt as a result of this work is

that the Semantic Web needs ways to handle large amounts
of data. The Semantic Web reasoning infrastructure will
need to deal with significant amounts of data on the Web
and current reasoners for OWL are easily overwhelmed with
data. For this reason, we were not able to make full use of
the semantic inferencing possibilities offered by the Semantic
Web. Instead, we opted for a simpler, less expressive set of
ontologies for modeling the OpenACS community. The fact
that this simpler modeling also proved to be so valuable to
the OpenACS community attests to the value of semantics
and the lack thereof in current systems.

The Semantic Web also needs more domain-specific on-
tologies. Although there has been an effort to develop up-
per ontologies for several domains, these need to be linked
to more specific ontologies or categories that are used within
actual work domains. Thus, for Dhruv, we could not make
use of any existing ontology. Instead, we needed to con-
struct specialized ontologies for use in the context of the
community work artifacts.

Contact with the OpenACS community members suggested
they were keen on being involved in the improvement and
extension of Dhruv. The community is technically sophisti-
cated enough to understand how Dhruv works and to han-
dle and maintain the explicit semantics used within Dhruv.
This is an audience unlike that of typical ontology-based sys-
tems, where there is a sharp distinction between the users
of the system and the knowledge engineers who design the
system. Furthermore, systems that do not require devel-
opers to change their system or ways of working are well-
regarded. The community appreciated the lightweight and
non-intrusive nature of Dhruv in comparison to other knowl-
edge management systems, citing it as a major factor in their
enthusiasm for Dhruv.

7. CONCLUSIONS AND FUTURE WORK
The primary contribution of this research work has been

to demonstrate the feasibility of capturing the semantics of
a comprehensive set of artifacts to support bug resolution
in OSS communities. In particular, we developed:

1. A model and knowledge base for the OpenACS com-
munity, their software content and interactions. The
model can be generalized to any OSS community and
to other online professional communities.

2. Tools and techniques to automatically extract and an-
notate Web information with respect to the ontolo-
gies mentioned above. In addition, we developed rules
and heuristics to generate cross-links between OSS ar-
tifacts.

3. A framework for the use of the Semantic Web in the
context of OSS development and more generally, for

collaboration in web communities as well as in soft-
ware development. We demonstrated the potential of
a community Semantic Web for OSS communities.

With respect to research in the Semantic Web community,
our work is the first to focus on supporting problem-solving
in Web communities. Given that thriving Web communities
have been integral to the success of the Web, it is impera-
tive that the evolution of Semantic Web communities from
Web communities be explored. However, this area of re-
search has remain essentially unexplored until now. In this
work, we demonstrated the transition of the content of an
existing Web community, OpenACS, to Semantic Web con-
tent. In addition, we explored how the Semantic Web can
support problem-solving interactions within Web communi-
ties by providing supporting information from the existing
archive of the community.

Another contribution of this research in the Semantic Web
area is to develop several domain-specific ontologies to model
OSS communities. The ontologies describe various inter-
action artifacts of OSS development, such as bug reports,
discussion threads and commit log information, and associ-
ated web community processes. The code ontology describes
OpenACS code and can be used with slight modifications for
other OSS community websites.

The primary next step for this work is performing a rig-
orous evaluation of Dhruv. There are several components
to this: an evaluation of the metadata generation methods,
of the recommendation heuristics and an evaluation of the
functionality in the context of the OpenACS community.
The most promising direction of future work is actual de-
ployment of Dhruv in the OpenACS community. Initial con-
tact with the community revealed that they are highly en-
thusiastic about Dhruv and ready to help to bring about the
eventual use of Dhruv in the community. Deploying Dhruv
in the OpenACS community will allow the community to
get involved in the use, maintenance and future evolution of
Dhruv.

Real-world deployment will also give us the opportunity
to improve individual components of Dhruv. In this work,
we focused on simple techniques to demonstrate a proof-
of- concept. To take the prototype and transform it into a
working system, we need to use more sophisticated state-of-
the-art techniques for various components of Dhruv, such as
metadata extraction and the generation of cross-links.

Dhruv is likely to be particularly useful for novice de-
velopers, who wish to participate more substantially in the
community. By making it easier for newcomers to under-
stand the context of a bug report and to explore the source
code related to the bug report, Dhruv helps newcomers to
participate in bug resolution more effectively and perhaps
even develop fixes for the bug. This is likely to help attract
new developers to the community and help compensate for
the typical lack of documentation in OSS communities that
turns away novice developers from a community and a code
base. Future work to extend Dhruv to support newcomers
more thoroughly and explicitly can have significant effect on
OSS communities.

The concept underlying Dhruv is fairly simple and gen-
eral: identify a structured portion of the semantics of in-
teractions and attempt to support interactions by making
the semantics explicit. There is huge scope for applying
this concept to other contexts beyond bug resolution in OSS
communities. The enhanced semantic interface provided by



Dhruv is likely to be directly useful in the task of code com-
prehension, which is a pre-requisite for bug resolution. The
task of trying to understand the code is less tightly focused
than bug resolution and involves a high degree of exploration
of the links between software objects. Dhruvs enhanced se-
mantic interface supports precisely this type of exploration
and is therefore likely to be useful for code comprehension
too.

Beyond OSS communities, there are other online profes-
sional communities that have a core of relatively structured
content which is high in semantics. Obvious examples are
educational communities and communities conducting sci-
entific research. Both types of communities are likely to
benefit from a system that supports current interactions in
the community by making the interaction history of the com-
munity more transparent. By extending Dhruv to support
both these types of communities, we can demonstrate the
generality of the concept underlying Dhruv as well as make
Dhruv itself more domain-independent.

8. REFERENCES
[1] Apache software foundation.

http://www.apache.org/.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, May 2001.

[3] R. J. Brachman, P. Devanbu, P. G. Selfridge,
D. Belanger, and Y. Chen. Toward a software
information system. AT&T Technical Journal,
69(2):22–41, 1990.

[4] The bugzilla bug tracking system.
http://bugzilla.mozilla.org/.

[5] D. Cubranic and G. C. Murphy. Hipikat:
Recommending pertinent software development
artifacts. In Proceedings, International Conference on
Software Engineering, pages 408–418, Portland, OR,
May 2003.

[6] dotLRN. http://openacs.org/projects/dotlrn/.

[7] P. Dourish and V. Bellotti. Awareness and
coordination in shared workspaces. In Proceedings of
the ACM Conference on Computer-Supported
Cooperative Work (CSCW), pages 107–114. ACM
Press, 1992.

[8] M. Dzbor, J. Domingue, and E. Motta. Magpie –
Towards a semantic web browser. In K. S.
Dieter Fensel and J. Mylopoulos, editors, Proceedings
of the Second International Semantic Web Conference
(ISWC), volume 2870 of Lecture Notes in Computer
Science, pages 738–753, Sanibel Island, FL, USA,
October 2003. Springer Verlag.

[9] Eclipse.org. http://www.eclipse.org.

[10] The firefox web browser.
http://firefox.mozilla.org/.

[11] http://www.greenpeace.org/international/

footer/software-copyright.

[12] C. Gutwin and S. Greenberg. A descriptive framework
of workspace awareness for real-time groupware.
Journal of Computer-Supported Cooperative Work
(JCSCW), 3-4:411–446, 2002.

[13] C. Gutwin, R. Penner, and K. Schneider. Group
awareness in distributed software development. In
Proceedings of the Computer Supported Cooperative
Work (CSCW), Chicago, Illinois, USA, November
2004.

[14] T. J. Halloran and W. L. Scherlis. High quality and
open source software practices. In Meeting Challenges
and Surviving Success: 2nd Workshop on Open Source
Software Engineering, International Conference on
Software Engineering, Orlando, FL, May 2002.

[15] I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The
instance store: DL reasoning with large numbers of
individuals. In Proceedings of the 2004 Description
Logic Workshop (DL 2004), pages 31–40, 2004.

[16] R. Kraut and L. Streeter. Coordination in software
development. Communications of the ACM, pages
69–81, 1995.

[17] S. Letovsky. Cognitive processes in program
comprehension. In E. Soloway and S. Iyengar, editors,
Proceedings of the First Workshop on Empirical
Studies of Programmers, pages 58–79, Washington,
DC, USA, June 1986. Ablex Publishing Corporation.

[18] The linux operating system. http://linux.org/.

[19] L. McDowell, O. Etzioni, S. Gribble, A. Halevy,
H. Levy, W. Pentney, D. Verma, and S. Vlasseva.
Mangrove: Enticing ordinary people onto the semantic
web via instant gratification. In K. S. Dieter Fensel
and J. Mylopoulos, editors, Proceedings of the Second
International Semantic Web Conference (ISWC),
volume 2870 of Lecture Notes in Computer Science,
pages 754–770, Sanibel Island, FL, USA, October
2003. Springer Verlag.

[20] D. R. Millen. Community portals and collective goods:
Conversation archives as an information resource. In
Proceedings of the 33rd Annual Hawaii International
Conference on Systems Sciences (HICSS), Maui,
Hawaii, USA, January 4-7 2000.

[21] A. Mockus, R. T. Fielding, and J. Herbsleb. A case
study of open source software development: the
apache server. In ICSE ’00: Proceedings of the 22nd
International Conference on Software Engineering,
pages 263–272, New York, NY, USA, 2000. ACM
Press.

[22] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3), July 2002.

[23] OpenACS: Open architecture community system.
http://openacs.org/.

[24] Photo.net. http://www.photo.net/.

[25] D. Quan, D. Huynh, and D. R. Karger. Haystack: A
platform for authoring end user semantic web
applications. In K. S. Dieter Fensel and
J. Mylopoulos, editors, Proceedings of the Second
International Semantic Web Conference (ISWC),
volume 2870 of Lecture Notes in Computer Science,
pages 738–753, Sanibel Island, FL, USA, October
2003. Springer Verlag.

[26] Wikipedia. http://wikipedia.org.


