To Randomize or Not To Randomize:
Space Optimal Summaries for Hyperlink Analysis

*

Tamas Sarlés'? Andras A. Benczur> Karoly Csalogany'?> Daniel Fogaras'® Balazs Racz'?

! Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI)
2 EOtvOs University, Budapest * Budapest University of Technology and Economics
{stamas,benczur,cskaresz,fd,bracz+ps72}@ilab.sztaki.hu

ABSTRACT page. In this paper we address the computational issues [13, 17,
11,[12] of personalized PageRahk|[24] and SimRéank [16].
Personalized PageRank expresses link-based page quality around Personalized PageRaifRPR)[24] enters user preferences by as-
user selected pages. The only previous personalized PageRank alkigning more importance to the neighborhood of pages at the user’s
gorithm that can serve on-line queries for an unrestricted choice of selection. Jeh and Widor [116] introducgiinRankthe multi-step
pages on large graphs is our Monte Carlo algorithm [WAW 2004]. link-based similarity function with the recursive idea thab pages
In this paper we achieve unrestricted personalization by combining are similar if pointed to by similar pagesNotice that both mea-
rounding and randomized sketching techniques in the dynamic pro- sures are hard to compute over massive graphs: naive personaliza-
gramming algorithm of Jeh and Widom [WWW 2003]. We eval- tion would require on the fly power iteration over the entire graph
uate the precision of approximation experimentally on large scale for a user query; naive SimRank computation would require power
real-world data and find significant improvement over previous re- iteration over all pairs of vertices.
sults. As a key theoretical contribution we show that our algorithms We give algorithms with provable performance guarantees based
use an optimal amount of space by also improving earlier asymp- on computation with sketches|[7] as well as simple deterministic
totic worst-case lower bounds. Our lower bounds and algorithms summaries; see Taljl¢ 1 for a comparison of our methods with pre-
apply to SimRank as well; of independent interest is the reduction vious approaches. We may personalize to any single page from

of the SimRank computation to personalized PageRank. which arbitrary page set personalization follows by lineafity [13].
. . . Similarly, by our SimRank algorithm we may compute the similar-
Categories and Subject Descriptors ity of any two pages or the similarity top list of any single page.

.) . Motivated by search engine applications, we give two-phase algo-
H.3.3 [Information Storage and Retrieval]: Information Search jthms that first compute a compact database from which value or
and Retrieval; G.2.20iscrete Mathematic§: Graph Theory— o jist queries can be answered with a low number of accesses.
Graph algorithmsG.3 [Mathematics of Computing]: Probability Our key results are summarized as follows:
and Statistics—-RProbabilistic algorithms

e \We give practical methods for serving unrestricted on-line per-

General Terms sonalized PageRank (Sectjon]2.1) as well as SimRank queries
])] with space a reasonable constant per vertex (Seftion 3). The
Algorithms, Theory, Experimentation methods are based on deterministic rounding.
Keywords e \We give a theoretically optimal algorithm for personalized Page-
Rank value queries (Sectipn P.2) based on randomized sketch-
link-analysis, similarity search, scalability, data streams ing. Given an additive errorand the probabilitys of an incor-

rect result, we improve the disk usage bound from
nlognlog (1/9) /e [11},/12] tonlog (1/6) /e.
e \We give theoretically optimal algorithms for SimRank value and
The idea of using hyperlink mining algorithms in Web search en- 1P list queries (Section 3.1) by a nontrivial reduction of Sim-

gines appears since the beginning of the success of Google's Page- Rank to personalized PageRank.
Rank [24]. Hyperlink based methods are based on the assumptione We improve the communication complexity based lower

1. Introduction

that a hyperlinku — v implies that page: votes forv as a quality bounds of[[11} 12] for the size of the database (Se¢fjon 4); our
—)) bounds are matched by our algorithms. Our sketch-based algo-
This work was supported by the Mobile Innovation Center, Hun- rithms use optimal space; surprisingly for top list queries deter-

gary and Inter-University Center for Telecommunication and In-
formatics (ETIK). This is an abbreviated version of the full paper
available at http://www.ilab.sztaki.hu/websearch/Publications/. e In Sectior] we experimentally analyze the precision of approx-

Copyright is held by the International World Wide Web Conference Com- imation over the Stanford WebBase graph and conclude that our

mittee (IW3C2). Distribution of these papers is limited to classroom use, ~ summaries provide better approximation for the top personal-
and personal use by others. ized PageRank scores than previous methods.

WWW 2006May 23-26, 2006, Edinburgh, Scotland.

ACM 1-59593-323-9/06/0005.

ministic rounding is already optimal in itself.

http://http://www.ilab.sztaki.hu/websearch/Publications/

Storage requirement | Personalization niques for data streams are surveyed in [23]. Lastly we mention
Topic sensitive|[13] | O(t - n) words t topics that Count-Min Sketch and the historically first sketch, the Bloom
d=¢e¢=0 filter [2] stem from the same idea; we refer to the detailed sufvey [4]
Hub decomposition | Q (%), O(h-n) words | h pages for further variations and applications.
[17] S=¢=0 Surprisingly, it turns out that sketches do not help if the top
| Monte Carlo|[11] O(n-logn- %2 log %) arbitrary highest ranked or most similar nodes are queried; the determinis-
bits) tic version of our algorithms show the same performance as the
Rounding O(n-logn - I) bits™ | arbitrary randomized without even allowing a small probability of return-
§=0 ing a value beyond the error bound. Here the novelty is the op-
Sketching O(n-log L - 1) bits™ | arbitrary timal performance of the deterministic method; the tqgoblem

is known to cause difficulties in sketch-based methods and always
increases sketch sizes by a factoftfog n). By usingQ2(logn)
times larger space we may use a binary search structure or we may
usep sketches accessed’” times per queny [7]. Note that!/?
queries require an error probability 6f 6 /n?) that again increase
sketch sizes by a factor 6f(logn).

In Section[# we show that our algorithms build optimal sized
databases. To obtain lower bounds on the database size, we apply
1.1 Related Results communication complexity techniques that are commonly used for

. , ETh ;

The scalable computation of personalized PageRank was addres§s§(?hcoesg)\ger“t;%ugd Lg_nlz]inogrr éteilu(ﬁZ]nfSo?;e zggjlivv\\l/ré?tbi:ilgggﬂs

by several papers [183, 18,/17] that gradually increase the choice for pp y ZIng = P
P J \ - . stream graph computation.

personalization. By Haveliwala’s methdd [13] we may personalize
to the combination of 16 topics extracted from the Open Directory o
Project. The BlockRank algorithm of Kamvar et &1.[18] speeds up 1.2 Preliminaries
personalization to the combination of hosts. The state of the art we briefly introduce notation, and recall definitions and basic

Hub Decomposition algorithm of Jeh and Widom|[17] computed facts about PageRank, SimRank and the Count-Min sketch.
and encoded personalization vectors for approximately 100K per-

sonalization pages.

To the best of our knowledge, the only scalable personalized
PageRank algorithm that supports the unrestricted choice of thelet us consider the web as a graph. ketlenote the number of
teleportation vector is the Monte Carlo method[of|[11]. This algo- Vvertices andn the number edges. Lét" (v) andd™ (v) denote the
rithm samples the personalized PageRank distribution of each pagenumber of edges leaving and enteringrespectively. Details of
simultaneously during the precomputation phase, and estimates thehandling nodes witd* (v) = 0 andd™ (v) = 0 are omitted.
personalized PageRank scores from the samples at query time. The In [24] thePageRankectorp = (p(1), ...,p(n)) is defined as
drawback of the sampling approach is that approximate scores arethe solution of the following equatiop(u) = ¢ - r(u) + (1 —¢) -
returned, where the error of approximation depends on the ran- ZU:(WEEp(v)/d*(v), wherer = (r(1), ..., r(n)) is the tele-
dom choice. In addition the bounds involve the unknown vari- portation vector and is the teleportation probability with a typical
ance, which can in theory be as largef¥d), and hence we need value ofc ~ 0.15. If r is uniform, i.e.r(u) = 1/n for all u, then
©(Z; log 1/6) random samples. Indeed a matching sampling com- p is the PageRank. For non-uniforrithe solutionp is calledper-
plexity lower bound for telling binomial distributions with means sonalized PageRankve denote it by PPR Since PPRis linear
1/2 + € apart [1] indicates that one can not reduce the number of in r [13,[17], it can be computed by linear combination of person-
samples when approximating personalized PageRank. Similar find-alization to single points, i.e. to vectors: = x,, consisting of all
ings of the superiority of summarization or sketching over sampling O except for node wherey. (v) = 1. Let PPR = PPR,, .
is described in[[5]. The algorithms presented in Sedfjon 2 outper- An alternative characterization of PRR) [10,|17] is based on
form the Monte Carlo method by significantly reducing the error. the probability that a length random walk starting at nodeends

We also address the computational issues of SimRank, a link- in nodev. We obtain PPR(v) by choosingt random according to
based similarity function introduced by Jeh and Widém [16]. The the geometric distribution:
power iteration SimRank algorithm df [[L6] is not scalable since it

x optimal for top queries
x+ optimal for value queries

Table 1: Comparison of personalized PageRank algorithms for
graphs of n vertices, additive error e and error probability ¢.

Personalized PageRank

iterates on a quadratic number of values, one for each pair of Web PPR(v) = Z 1/(d" (vo) -+ d¥ (ve—1)); - (1)
pages; in|[15] experiments on graphs with no more than 300K ver- YOTH UL U Y

tices are reported. Analogously to personalized PageRank, the scalthe summation is along walks startinguaand ending irv. Thus
able computation of SimRank was first achieved by sampling [12]. .

Our new SimRank approximation algorithms presented in S¢ction 3 PPR,(v) = Z e(1— C)k’ ppF{k/] (v).)
improve the precision of computation. 5—0

The key idea of our algorithms is that we use lossy represen-
tation of large vectors either lpundingor sketching Sketches Similarly we get PP’ if we sum up only tok instead ofxo. An
are compact randomized data structures that enable approximateéquivalent reformulation of the path summing formdla (2) is the
computation in low dimension. To be more precise, we adapt the Decomposition Theorem proved by Jeh and Widpnj [17]:
Count-Min Sketclof Cormode and Muthukrishnah|[7], which was
primarily introduced for data stream computation. We use sketches PPR. = cxu +(1—¢)- Z PPR,/d" (u). ®)
for small space computation; in the same spirit Palmer ef al. [25] vi(uv)el
apply probabilistic counting sketches to approximate the sizes of The Decomposition Theorem immediately gives rise to the Dy-
neighborhoods of vertices in large graphs. Further sketching tech-namic Programming approach [17] to compute personalized Page-

Rank that performs iterations far= 1, 2, . .. with PPI%@ = C'Xu:

PPRY =cxu+(1—c)- > PPR*V/dt (). (4)

V1 V2 U3 V4
vi(uv)EE \ /
SimRank
vl

Jeh and Widom| [16] define SimRank by the following equation
very similar to the PageRank power iteration such that
Sim<°>(u1,u2) = Xu, (u2) and

Us Ve

Figure 1: A simple example showing the superiority of dynamic
programming over power iterations for small space computa-
oy 2SIm* Y) 0) tions.
Sim(k)(U1,U2) = 1-¢ d=(u1)-d~ (uz) if ur 7 ua
1 if w1 = us.
®)
where summation is for, v2 : (viui), (v2uz) € E.
We may justify why dynamic programming is the right choice for
Count-Min Sketch small-space computation by comparing dynamic programming to
power iteration over the graph of F[g. 1. When computing PRR,
The Count-Min Sketclf7] is a compact randomized approximate power iteration moves top-down, starting «t stepping into its

representation of non-negative vector= (z1, ..., zn) suchthat neighborsu,, vs, ... and finally adding up all their values at.

a single valuer; can be queried with a fixed additive error> 0 Hence when approximating, we accumulate all error when enter-
and a probabilityy > 0 of returning a value out of this bound. The ing the large in-degree node and in particular we must compute
representation is a table dépthd = In1/6 andwidthw = e/e. PPR, (v;) values fairly exact. Dynamic programming, in contrast,
One rowC of the table is computed with a random hash function moves bottom up by computing the trivial PRRector, then all
h:{l,...,n} — {1,...,w}. Thei" entry of the rowC is de- the PPR,, then finally averages all of them into PPRBecause of

fined asCi = 3., (;)=; ©;- Then the Count-Min sketch table of averaging we do not amplify error at large in-degrees; even better
z consists off such rows with hash functions chosen uniformly at by looking at () we notice that the effect of earlier steps dimin-

random from a pairwise-independent family. ishes exponentially il — ¢). In particular even if there are edges
enteringu from further nodes, we may safely discard all the small
THEOREM1 (CORMODE, MUTHUKRISHNAN [7]). Letz; = PPR. (v;) values for further computations, thus saving space over
minc{Ch ;) } where the minimum is taken over tdgows of the power iteration where we require the majority of these values in
table. Thenz; > x; and Prol(z; > x; + €||||1) < 4 hold. order to compute PPRw) with little error.

) o We measure the performance of our algorithms in the sense of
~ Count-Min sketches are based on the principle that any random-jntermediate disk space usage. Notice that our algorithmtare
ized approximate computation with one sided error and iaan phasein that they preprocess the graph to a compact database from
be turned into an algorithm that has guaranteed error at enast which value and top list queries can be served real-time; prepro-
with probability 1 — & by runningln 1/4 parallel copies and taking ¢essing space and time is hence crucial for a search engine appli-
the minimum. The proof simply follows from Markov's inequal- cation. Surprisingly, in this sense rounding in itself yields an opti-
ity and is described for the special cases of sketch value and innerpg) algorithm for top list queries as shown by giving a matching
product in the proofs of Theorems 1 and 2[cf [7], respectively. lower bound in Sectiofi]4. The sketching algorithm further im-
proves space usage by a factorleg n and is hence optimal for
2. Personalized PageRank ;ingle value_ queries. For fin_ding top Iists_, hOV\{e_ver, we need addi-
tional techniques such as binary searching a5s|in [7] that loose the
We give two efficient realizations of the dynamic programming 10g 7 factor gain and use asymptotically the same amount of space
algorithm of Jeh and Widoni [17]. Our algorithms are based on @ the deterministic algorithm. Since the deterministic rounding in-
the idea that if we use an approximation for the partial values in VoIves no probability of giving an incorrect answer, that algorithm
certain iteration, the error will not aggregate when summing over IS Superior for top list queries. _ _
out-edges, instead the error of previous iterations will decay with ~ The key to the efflcliency of our algorithms is the use of small
the power ofl — c. Our first algorithm in Sectign 2.1 uses certain size approximatet{P\F{)(v) values obtained either by rounding
deterministic rounding optimized for smallest runtime for a given and handling sparse vectors or by computing over sketches. In or-
error, while our second algorithm in Sect[on|2.2 is based on Count- der to perform the update step of Algoritfifh 1 we must access all
Min sketches[[[7]. PPR, vectors; the algorithm proceeds as if we were multiplying the
_ The original implementation of dynamic programmig][17] re- weighted adjacency matrit,., = 1/d* (x) for (uv) € E with the
lies on the observation that in the filsiterations of dynamic pro- vector {PPR, (w) : u € V} parallel for all values ofv. We may
gramming only vertices within distande have non-zero value. e (semi)external memory algorithifis|[27]; efficiency will depend
However, the rapid expansion of thieneighborhoods increases g, the size of the description of the vectors.
disk requirement close ta” after a few iterations, which limits The original algorithm of Jeh and Widom defined by equafion (4)
the usability of this approach Furthermore, an external memory ges two vectors in the implementation. We remark that a single
implementation would require significant additional disk space. yector suffices since by using updated values within an iteration
10ver the publicly available Stanford WebBase graph [15] we com- We only speed convergence up. A similar argument is given by
puted an average over 1000 non-zeroes after 4 iterations; on averMcSherry [22] for the power iteration, however there the resulting
age24% of all vertices are reached within= 15 steps. sequential update procedure still requires two vectors.

Algorithm 1 PageRank by rounded Dynamic Programming
1: for each node: do

2: Initialize PPR, by vo(cxu)

3: for k := 1, ey Kkmax = 210g1—c6 do

4: e =€¢-(1—c — fmag=t

5: Define functiomy,, that rounds down to multiple ef;

6: for each node: do

7: PPR, — uy (ch +1-o- 3 Ppa/d+(u))
vi(uv)eE

2.1 Rounding

In Algorithm[1] we compute the steps of the dynamic program-
ming personalized PageRank algoritji (4) by rounding all values
down to a multiple of the prescribed error valueAs the sum of

PPR, (v) for all v equals one, the rounded non-zeroes can be stored bit

in small space since there may be at migstof them.
We improve on the trivial observation that there are at mgst

rounded non-zero values in two ways as described in the next two

1—c¢ €k 1
= e+ : = €k,
oV I—cVi-e 1-Vi-c¢ "

completing the proof. [

Next we show that multiples afthat sum up to 1 can be stored
in 1/e bit space. For the exact result we need to select careful but
simple encoding methods given in the trivial lemma below.

LEMMA 3. Let z non-negative values be given, each a multi-
ple of e that sum up to at most 1. If we unary encode the values
as multiples ot and use a termination symbol, the encoding uses
space% + z bits. If we combine the same encoding with sparse vec-
tor storage by recording the position of non-zeroeddg) = space
each, we may encode the sequencé byl + log z) bits. O

THEOREM 4. Algorithm[] runs in time o©)(mlogn/(c - €))
operationd and builds a database of size- % - logn bits. In
order to return the approximate value of PPR) and the largest
elements of PPRR.), we may binary search and sequentially access
2 . log n bits, respectively.

theorems. First, we observe that the effect of early iterations decays ©

as the power of1 — ¢) in the iterations, allowing us to similarly
increase the approximation errgrfor early iterationg:. We prove
correctness in Theorehi 2; later in Theolgm 4 it turns out that this

PROOF We determine the running time by noticing that in each
iterationk for each edge we perform addition with the sparse vector
PPR®). We may use a linked list of non-zeroes for performing

choice also weakens the dependency of the running time on thethe addition, thus requirin@(logn) bit operations for each non-

number of iterations. Second, we show that the size of the non-
zeroes can be efficiently bit-encoded in small space; while this ob-

servation is less relevant for a practical implementation, this is key
in giving an algorithm that matches the lower bound of Segfjon 4.

THEOREM 2. Algorithm[] returns values between PRR) —
2¢/c and PPR,(v).

PROOF. By induction on iteratiork of Algorithm[T] we show a
bound that is tighter fok = kmax than that of the Theorem:
1
T-Vi-c®
By the choice ok andkmax We haveey = 1, thus thek = 0 case

is immediate sinc® < PPR,(v) < 1.
Since we use a single vector in the implementation, we may up-

IPPR, (w) — PPR, (w)| <

zero of the vector. Since in iteratiodn we store all values of a
vector with norm at most one rounded down to a multiple;ofwe
require:éek space to store at mosy e, non-zeroes of PPR by

Lemma 3. By >°, _, VI—dmah o ——= < 2/cthe
total running time becoma3(mlogn/(e-c)). [

max

2.2 Sketching

Next we give a sketch version of Algoritm 1 that improves the
space requirement of the rounding based version by a factor of
log n, thus matches the lower bound of Secfipn 4 for value queries.
First we give a basic algorithm that uses uniform error bouind
all iterations and is not optimized for storage size in bits. Then we
show how to gradually decrease approximation error to speed up
earlier iterations with less effect on final error; finally we obtain

date a value by values that have themselves already been updatethe space optimal algorithm by the bit encoding of Lenfijna 3.

in iterationk. Nevertheless since. = /1 — ¢ - ex_1 and hence

The key idea is that we replace each BBRector with its con-

decreases iR, values that have earlier been updated in the current stant size Count-Min sketch in the dynamic programming iteration
iteration in fact incur an error smaller than required on the right (). Let.S denote the sketching operator that replaces a vector by
hand side of the update step of Algoritfiln 1. In order to distinguish thed x w table as in Sectiop 1.2 and let us perform the iterations

values before and after a single step of the update, let uBPBe

of (4) with SPPR® and S(c - x.). Since the sketching operator

to denote values on the right hand side. To prove, notice that by theis trivially linear, in iterationk we obtain the sketch of the next

Decomposition Theorerfi}(3)
PPR.(w) —cxu — (1—¢)- > PPR(w)/d" (u)

vi(uv)EE
=(1=0)- > (PPR(w) - PPR (w))/d" (u)
vi(uv)EE
As 1. introduces at most;, error, by the triangle inequality
IPPR, (w)—PPR, (w)|
< et(1—c) Y |PPR,(w) — PPR,(w)|/d" (u).
vi(uv)€EE
Using the inductive hypothesis this leads us to

_— 1—
IPPR.(1w)—PPRu(w)] < ert— e

temporary vector SPRR from the sketches SPER .

To illustrate the main ingredients, we give the simplest form of a
sketch-based algorithm with error, space and time analysis. Let us
perform the iterations 0ﬂ4) with/e wide andln % deep sketches
kmax = log,__ € times; then by Theorelﬁ] 1 and the linearity of
sketching we can estimate PPR) for all u, v from SPPRmax) (v)
with additive error2e and error probabilityy. The personalized
PageRank database consists of sketch tables gppﬁifor all u.

The data occupie® (2 log +) machine words, since we have to
storen tables of reals. An update for nodetakesO(@ In})
time by averaging " (u) tables of¢ xIn } size and adding (cxu),
each inO(In %) time. Altogether the required;, .. iterations run
in O(™ In 3 log, _, €) time.

2\We measure time in bit operations in order to better compare with
bit optimal sketches as in Theoréin 5.

Next we weaken the dependence of the running time on the num-
ber of iterations by gradually decreasing erpias in Sectiofi 2]1.
When decreasing the error in sketches, we face the problem of in-
creasing hash table sizes as the iterations proceed. Since there i
no way to efficiently rehash data into larger tables, we approximate
personalized PageRank slightly differently by representing the end

distribution of lengthk walks, PPE, with their rounded sketches
S/PBI%] in the path-summing formulg(Z):

kmax

(> e~)" SPPR (i

k=0

= min
i=1...1n %

PPR,(v)

h(v) (©)

whereh!, denotes the-th hash function of thé-th iteration. By[@)

— [k
we need to caIcuIatSPPFi] efficiently in small space. Notice that
unlike in the dynamic programming where we gradually increase

the precision oFTFTR(Lk) ask grows, we may computﬁ/PFFgc] less
precise with growingk since its values are scaled down fy—
¢)*. Hence we obtain our algorithm by usiege, = e/ex,... &
wide hash tables in the-th iteration and replacing the last line of
Algorithm[T] with

SPPR Gty (D (S SPPR /" (w))) ()

vi(uv)EE

wheregy, is the recoding function shrinking hash tables from width
e/ex+1 t0 e/e,. To be more precise, we round the width of each
sketch up to the nearest power of two; thus we maintain the error
bound, increase space usage by less than a factor of two, and us
the recoding function that halves the table when necessary.

THEOREM 5. Let us run the sketch version of the dynamic pro-
gramming Algorithnﬂl with sketching to wid¢he;,, and rounding
all table entries to multiples @, in iteration k. The algorithm runs
intimeO(m In £ /(c-€)); builds a database of siz@(n In 5 /(c-))
bits; and returns a valu®PR, (v) > PPR, (v) — ¢(1 4 2/c) such
that Prob(PPR, (v) > PPR, (v) + 2¢/c) < 4.

PROOR As Yy™#x 1/g, < 2/(ec) still holds, along the same
lines as Theorerfl]4 we immediately get the running time; space
follows by Lemm4 B.

We err for three reasons: we do not run the iteration infinitely;
in iterationk we round values down by at most, causing a de-
terministic negative error; and finally the Count-Min Sketch uses
hashing, causing a random positive error. For bounding these er-
rors, imagine running iteratiof|(7) without the rounding function
1y, but still with e /€, wide andln 1/ deep sketches and denote its

results by SPPE%] and define

kmax

/(2

k=0

min
i=1...In

PPR, (v) (1 — ¢)*SPPRY (4, h};(v))).

First we upper boundPPR to obtain the last claim of the Theo-
rem. SincePPR,(v) < PPR,(v), we need ProfPPR,(v) >
PPR.(v) + 2¢/c) < 4. By the Count-Min principle it is suffi-
cient to show that for a fixed row’, the expected overestimation
of S-Fmax o1 — ¢)*SPPR(i*, hi (v)) is not greater thafie/c.
Since the bias of each sketch row Slﬂﬁ’ﬁ) is €, the bias of
theirc(1 — ¢)* exponentially weighted sum is boundedy/c.

Finally we lower boundPPR; the bound is deterministic. The
€ loss due to rounding down in iteratidnaffects all subsequent
iterations, and hence

PPR.(v) > PPR,(v) = Y & - (1—¢)* > PPR,(v) — 2¢/c.
k=0

And since we SUm up thax instead of infinity,PPR, (v) under-
estimates PPRv) by at mosi? < ¢, proving the Theorem. [

3. SimRank

In this section first we give a simpler algorithm for serving Sim-
Rank value and top-list queries that combines rounding with the
empirical fact that there are relatively few large values in the sim-
ilarity matrix. Then in Sectiof 3]1 we give an algorithm for Sim-
Rank values that uses optimal storage in the sense of the lower
bounds of Sectiop]4. Of independent interest is the main compo-
nent of the algorithm that reduces SimRank to the computation of
values similar to personalized PageRank.

SimRank and personalized PageRank are similar in that they
both fill ann x n matrix when the exact values are computed. An-
other similarity is that practical queries may ask for the maximal
elements within a row. Unlike personalized PageRank however,
when rows can be easily sketched and iteratively computed over
approximate values, the x n matrix structure is lost within the
iterations for Sinfv1, v2) as we may have to access values of arbi-
trary Sim(us, uz2). Evenworséy_,, , PPR,(v) = n while

M = Z Sim(U1,UQ)

ul,u2

@an in theory be as large &n?); anO(n)-size sketch may hence
store relevant information about personalized PageRank but could
not even contain values below 1 for SimRank. An example of a
sparse graph with/ = Q(n?) is ann-node star where Sifa, v) =

1 — cfor all pairs other than the center.

In practice M is expected be a reasonable constant times
Hence first we present a simple direct algorithm that finds the largest
values within the entire Sitw.1, u2) table. In order to give a rounded
implementation of the iterative SimRank equatiph (5), we need to
give an efficient algorithm to compute a single iteration. The naive
implementation require(1) time for each edge pair with a com-
mon source vertex that may add upgén?). Instead foru; # us
we will compute the next iteration with the help of an intermediate
step when edges out of only one of the two vertices are considered:

1—c

ASIM®) (uy, vy) = &= (aD) Sim* Y (v, v2) (8)
1 v1:(viuy)EE
. 1-— .
s (u,u) = TS S ASIm (i v) (@)

vo:(voug)EE

Along the same line as the proof of Theordrs 2 we prove that (i)
by rounding values in iterationg|(8-9) we approximate values with
small additive error; (ii) the output of the algorithm occupies small
space; and (iii) approximate top lists can be efficiently answered
from the output. The proof is omitted due to space limitations. We
remark here thaf[8}9) can be implemented by 4 external memory
sorts per iteration, in two of which the internal space usage can in
theory grow arbitrary large even comparedib This is due to
the fact that we may round only once after each iteration; hence if
for some large out-degree node value Sinf¥*~%) (v, v2) is above
the rounding threshold or ASi@’F?(uhv) becomes positive, then
we have to temporarily store positive values for all out-neighbors,
most of which will be discarded when rounding.

THEOREM 6. Let us iterate
rounding values in

}vmax

Jmax = 4log, . etimes by

iteration £ down to multiples of

er=€-(1—¢c)” * for andex—1 + € for

(i) The algorithm returns approximate values far # v with
Sim(u,v) > §iﬁ’(u,g)2 Sim(u, v) — 4e/c.

(i) The space used by ti8em(u, v) values isO (M
whereM =3 Sim(u,v).

(iii) Top list queries can be answered after posﬂﬁm(u -) val-
ues are sorted for eachin O(M - 2 - log® n) time.

2 .log n) bits

3.1 Reduction of SimRank to PPR

Now we describe a SimRank algorithm that uses a database o
size matching the corresponding lower bound of Se¢fjon 4 by tak- 10:

ing advantage of the fact that large values of similarity appear in
blocks of then x n similarity table. The blocking nature can be
captured by observing the similarity of Sim,, to the product
PPR,, - PPR,, of vectors PPR, and PPR,.

We use the independent result/of|[10}[17, 16] that PageRank type

Algorithm 2 SimRank by reduction to personalized PageRank.
The algorithm approximateSSim values; approximat8im,, .,
values are served by evaluatifg](17) at query time.
l:fork:=0,...
2. e=¢€¢-(1—0¢)
3: Define functiomy,, that rounds down to multiples ef,
4: for each node: do 1

y, kmax = 2log;_,edo

_ kmax—k
2

5. Initialize RP by y,._(xu)andSSim {u) = SSim(u) by 1
6: for k :=].7 . 7kmax - 210g1—(36 do
7. for eac]h node: do . 1]
8: RP’u — Uhmax—k (Zu (vu)€E P[)
fg: fort:=0,...,tmax =logi-¢ edo

c

for each node; do

11: SSlm ('U):Z > >0 (1—

12: SSIrT(U) = SSIrT(v) — (-1
13: for each node do
14: RoundSSimv) to multiples ofe.

o PRP () RPN (u

)tSS|m (v)

SSlm B (u)

values can be expressed by summing over endpoints of walks as in

equation[(lL). First we express SimRank by walk pair sums, then we
show how SimRank can be reduced to personalized PageRank b

considering pairs of walks as products. Finally we give sketching

and rounding algorithms for value and top queries based on this

reduction.
In order to capture pairs of walks of equal length we define “re-
versed” PPR by using walks of length exactypy modifying [3):

RP (u) = > 1/(d"(v1)---d " (ve)) (10)
VO=V,V],---,Vfg=U
whereuwo, ..., v is a walk fromv to u on thetransposed graph

Similarly |16] shows that Sn{ﬁ v €quals the total weight of pairs

u

V1 = Wo,W1y...,Wg'—1,WEr =

u

/ / / /
V2 = Wy, W1y ...y Wgr_1,Wgr =

with lengthk’ < k that both end at: and one of them comes from
v1 While the other one fromr;. The weight of the pair of walks is
theexpectedl — c) meeting distancas defined in [16]:

(1= J(d (wr) - d (wpr) -d~(wh) ---d " (wh)) (11)

Importantly the walks satisfy two properties: they have (i) equal
length and (||) no common vertex at the same distance from start,
ie. wZ #+ w, for i # k’. Except for the last two requirements
Slmul,v2 has a form similar to the inner product of PRRand
PPR,, on the reversed graph Hy] (1).

Next we formalize the relation and give an efficient algorithm

Now we may recursively define a value that counts all pairs of
Ywalks with at least + 1 inner points where the walks meet; the
values below in fact count each pE(ILI) times that meet at ex-
actly s inner points. First we define self-similarity as

SSimt*™™ (v Z Z o)"RPF)(

u k>0

w)RPY (u) - SSimt® ()

(14)
and then similarity with at leagt+ 1 inner meeting points as

=33 (1—o)* R

u k>0

(t+1) _
1,02

(w)RPE (u) - SSimt" (u). (15)

By the principle of inclusion and exclusion

(0)

(2)
My vy —

Sim(vy, v2) = Si Simit,, +sim?,, —... (16)
where Sin® is defined in[(1p) as the weighted number of walk
pairs that are unrestricted in the number of meeting times. Induc-
tion on¢ shows that Sirf) ., < (1=¢)"*", thus the infinite series

.) is (absolute) convergentif‘— < 1. By changing the order of
summation[(1J6) becomes

Sim(vi,v2) = > (1-¢) ZR w)RPY (u) - SSim(u), where
Ssimu) = 1-Y (-1)'ssinf”(u). 17)

that reduces SimRank to PPR on the reversed graph. As a “step 0

try” we consider

sim?,, =)RPE (u)

SR

with form similar to SimRank with exact lengthwalks except that
these walks may have common vertices unlike stated in (ii).
In order to exclude pairs of walks that meet before ending, we

(12)

use the principle of inclusion and exclusion. We count pairs of

walks that have at leastmeeting points after start as follows. Since
after their first meeting point the walks proceed as if computing
the similarity ofwv to itself, we introduce a self-similarity measure
by counting weighted pairs of walks that starvand terminate at
the same vertex by extending@):

ssim?(v) =>"% (1 -

u k>0

RPF (W)RPF (v) (13)

The proof of the main theorems below are omitted due to space
limitations.

THEOREM 7. If ¢ > 1/2 Algorithm(2 uses: - 2 - log n bits

to storeRP[] andSS|m values; thdog n factor can be replaced
byelog1/6 by sketching@’k] inwidthe/eg,,.. —x. The algorithm
computes these valuesi(m+nlogi-. €)/(ce)) time measured
in RAM operations and approximatgir\r(vl, v2) in O(logn/(ce))

bit operations time. For given; the setS of non-negativ&im(vi, v2)
values can be computed in bit operations ti®g.S| log n/(ce)).

THEOREM 8. If ¢ > 1/2 the above algorithm gives
|SiM,; 0, — SiMy, .0y| = O(e/(c — 1/2)?); when sketching RP,
this holds with probability at least — 6.

4. Lower bounds

. . . i
In this section we will prove lower bounds on the database size

of approximate PPR algorithms that achieve personalization over a
subset ofH vertices. More precisely we will considero-phase
algorithms in the first phase the algorithm has access to the edge
set of the graph and has to compute a database; in the secon
phase the algorithm gets a query and has to answer by accessing t
database, i.e. the algorithm cannot access the graph during query:
time. Ab(H) worst case lower boundn the database size holds,
if for any two-phase algorithm there exists a personalization input
such that a database of sizg?) bits is built in the first phase.

We will consider the following queries fdr < €, 4, ¢ < 1:

e 0 value approximation given the vertices:, v approximate
PPR, (v) with PPR,(v) such that

Prob{|PPR,(v) — PPR,(v)| < €} > 1 — .

e ¢ — ¢ — ¢ top query given the vertex:, with probability1 — ¢
compute the set of verticdd” which have personalized PPR
values according to vertexgreater thaw. Precisely we require
the following:

Yw eV
Ywe W

PPR,(w) > ¢p=>weW
PPR,(w) > ¢ — ¢

As Theorem 6 of [1[1] shows, any two-phase PPR algorithm solv-
ing the exact{ = 0) PPR value problem requires an((1 —
20)|H|-n) bit database. Our tool towards the lower bounds will be
the asymmetric communication complexity gabievector prob-
ing [14]]: there are two playerd and B; player A has a vector of
m bits; playerB has anumbey € {1,2,...,m},; and they have to
compute the functiorf (z,y) = z,, i.e., the output is thg™" bit of
the input vector:. To compute the proper output they have to com-
municate, and communication is restricted in the direcion> B.
Theone-way communication complexjd] of this function is the
number of transferred bits in the worst case by the best protocol.

THEOREM9 ([14]]). Any protocol that outputs the correct an-
swer to the bit-vector probing problem with probability at Ieégfi
must transmit at leastm bits.

Now we are ready to state and prove our lower bounds, which
match the performance of the algorithms presented in Secfipns 2
and[3.1, hence showing that they are space optimal.

THEOREM 10. Any two-phase—4 PPR value approximation
algorithm withe, § > 0 builds a database d®(* - log 1 - |H]|) bits

. 1—c
in worst case, when the graph has at legg{ + 45 nodes.

PrROOF We prove the theorem by reducing the bit vector prob-
ing problem to the—§ approximation. Given a vectar of m =
Q(L-log 5 -|H|) bits, playerA will construct a graph and compute
a PPR database with the first phase of¢h&approximation algo-
rithm. ThenA transmits this database . PlayerB will perform
a sequence of second-phase queries such that the requiregl bit
will be computed with error probabilit)}. The above outlined pro-
tocol solves the bit vector probing with error probabilify Thus

ji=1,...

i

1—c

s e,k =1,..., ﬁ}. For the edge sef; is partitioned
- |H| blocks, where each blodk ; containslog 75 bits

nto
fori =1,...,|H|,j = 1,..., <. Notice that each; ; can be
1
To

1—c

regarded as a binary encoded number Wit b; ; < 5.
encoder into the graphA adds an edgéu;, v, &) iff b; ; = k, and
Iso attaches a self-loop to eaghy.. Thus the12;5c edges outgoing
omu; represent the blocks 1, ...,b; (1—c) 2.

After constructing the grapA computes ar—0 approximation
PPR database with personalization availablewn . ., u g, and
sends the database & who computes thg™ bit =, as follows.
SinceB knows which of the blocks containg, it is enough to com-
puteb; ; for suitably chosen, j. The key property of the graph

construction is that PPR(v;) = ﬁ = 2¢iff bj; = k

otherwise PPR, (vjx) = 0. ThusB computesﬁP\R“ (vj,) for

k = 1,..., 45 by the second phase of thes approximation al-
gorithm. If all ISP\R” (vj,x) are computed WitHPPR,, (v;.x) —
F7P\R” (vs,k)] < €, thenb; ; containingz, will be calculated cor-
rectly. By the union bound the probability of miscalculating any of
PPR,, (v;) isatmostk -6 = 1. [

THEOREM 11. Any two-phase PPR algorithm solving the top
query problem with parametees> 0, 6 > 0 builds a database of
Q(%\m logn) bits in worst case, when the graph has

n>2/H|+ (4)2 nodes.

2e

ProOOF. We will proceed according to the proof of Theornj 10.

Let ¢ = 2¢ andk = | 1] and the graph have nod¢s; : i =
1,..,|H}U{v; : j=1,...,n"} (withn* =n — |H|). By the
assumptions on the vertex count, = Q(n) andy/n" > k.

Let the size of the bit-vector probing problem’s inputxe =
|H| - k - logn™/2. Assign each of thé& - logn™/2 sized blocks
to a vertexu; and fix a code which encodes these bits iktsized
subsets of the verticefv,;}. This is possible, as the number of
subsets if") > (%5)% > vn*". These mappings are known to
both partiesd and B. Note that due to the constraintsoh, k, | H|
andn we havek - logn*/2 = Q(% logn).

Given an input bit-vector ofi, for each vertex; take its block
of bits and compute the corresponding subset of verfee$ ac-
cording to the fixed code. Let;, have an arc into these vertices.
Let all verticesv; have a self-loop. NowA runs the first phase of
the PPR algorithm and transfers the resulting database to

Given a bit indexy, player B determines its block, and issues
a top query on the representative vertex, As each of the out-
neighborsw of u; has PPR, (w) = ;1755 = 43¢ > ¢, and all
other nodesv’ have PPR, (w’) = 0, the resulting set will be the
set of out-neighbors ofi;, with probability1 — §. Applying the
inverse of the subset encoding, we get the bits of the original input
vector, thus the correct answer to the bit-vector probing problem.
Setting““TV = 1 — 6 we get that the number of bits transmitted,
thus the size of the database was at I€5st| H| - k - logn™/2) =
Q(:=2|H|logn). O

We remark that using the graph construction in the full version
of [12] it is straightforward to modify Theorerfis|10 gnd 11 to obtain
the same space lower bounds for SimRank as well. Moreover, it is
easy to see that Theordm| 11 holds for the analogous problem of

the database size that is equal to the number of transmitted bits isapproximately reporting the tap= 1/¢ number vertices with the

Q(m) = Q(+ -log ;1 - |H|) in worst case by Theoren 9. It remains

to show the details of the graph construction 48 side and the

query algorithm onB’s side.
Given a vector of m = < -log 4 - |H| bits, A constructs the

“bipartite” graph with vertex sefu; : ¢ = 1,...,|H|} U {v; :

highest PageRank or SimRank scores respectively.

With the graph construction of Theorém 10 at hand, it is possible
to bypass the bit-vector probing problem and reduce the approxi-
mate personalized PageRank value query to similar lower bounds
for the Bloom filter [4] or to a weaker form for the Count-Min

sketch|[8]. However, to the best of our knowledge, we are unaware
of previous results similar to Theorgm]11 for the top query.

5. Experiments

This section presents our personalized PageRank experiments o
80M pages of the 2001 Stanford WebBase crawl [15]. The follow-
ing questions are addressed by our experiments:

e How does the rounding error affect the quality and running time
of the rounded dynamic programming algorithm? We confirm
that the maximum error drops linearly in the rounding ekror
and find that running times increase sublinearly wifla, mak-
ing rounded dynamic programming patrticularly scalable.

e How do the qualities of the various algorithms relate to each
other? We conclude that rounded dynamic programming out-
performs all the other methods by a large margin.

5.1 Measuring the Quality of Approximate PageRank Scores

scores) that may have a significant effect on rank comparison. Ver-
sions of Kendall'sr with different tie breaking rules appear in the
literature, we use the original definition as e.g/in [19]. Ignoring ties
for the ease of presentation, the rank correlation Kendal€em-
pares the number of pairs ordered the same way in both rankings

jo the number of reversed pairs; its rangg-d, +1], where—1

expresses complete disagreemepnt, represents a perfect agree-
ment. To restrict the computation to the toplements, we took

the union of the exact and approximated togets7}* U T;\L For
each ordering, all nodes that were outside the orderingst &mi-
were considered to be tied and ranked strictly smaller than any node
contained in its top-set.

5.2 Breadth First Search Heuristic

One of our baselines in our experiments is a heuristically mod-
ified power iteration algorithm. While the example of Fig{ife 1
shows that we may get large error even by discarding very small
intermediate values, a heuristic that delays the expansion of nodes
with small current PageRank valués|[1L7] 22, 6] still achieves good

We compare our approximate PPR scores to exact PPR scoresegyits on real world data.
computed by the personalized PageRank algorithm of Jeh and Widom \yhen personalizing to node, let us start fromy, and keep

[17] with a precision ofl0~® in L; norm. In the experiments we
set teleportation constaato its usual valué.15, and personalize

on a single page chosen uniformly at random from all vertices.
The experiments were carried out with 1000 independently chosen
personalization node, and the results were averaged.

a dedicated list of the non-zero entries, which we expand breadth
first. This allows us to perform one iteration quickly as long as
these lists are not too long; we cease the expansion if we have
reached the valug. Moreover we skip the expansion originat-
ing from a node if its current PageRank divided by the outdegree is

To compare the exact and approximate PPR scores personalizeghe|ow a given threshold. Finally we never let the number of it-

to pageu, we measure the difference between top score lists of
exact PPR and approximatéTP\RL vectors. The length of the
compared top lists is in the range 5 to 1000, which is the usual
maximum length of the results returned by search engines.
The comparison of top lists is key in measuring the goodness of
a ranking method [9, and the references therein] or the distortion of
a PageRank encoding [13]. L&t denote the set of pages having
thet highest personalized PageRank values in the vector, PR
sonalized to a single page We approximate this set @ the set
of pages having thehighest approximated scores in VEedRRR, .
We will apply the following three measures to compare the exact
and approximate rankings @i andf;\k The first two measures
will determine the overall quality of the approximated mtﬁ,
as they will be insensitive to the ranking of the elements wiﬁm
Relative aggregated goodnef5] measures how well the ap-
proximate topt set performs in finding a set of pages with high total

eration exceed the predetermined vaKie We experimented with

a variant of McSherry’s state of the art update iteration [22], as
well as a scheme to reuse the previous node’s result, but neither of
them produced better approximation within the same running time,
hence we do not report these results.

5.3 Results

We conducted our experiments on a single AMD Opteron 2.0
GHz machine with 4 GB of RAM under Linux OS. We used a
semi-external memory implementation for rounded dynamic pro-

gramming, partitioning the |ntermed|aRPF{)(w) vectors along
the coordinatav. Using a single vector allowed us to halve the
memory requirements by storing the intermediate results in a FIFO

like large array, moving th§P\l{k) being updated from the head
of the queue to its tail. We stored the PageRank values as multi-

personalized PageRank. It calculates the sum of exact PPR valueges of the rounding errar using a simple but fast variable length

in the approximate set compared to the maximum value achievable
(by using the exact topsetT}"):

RAG(t,u) = Y PPR.,(v)/ > PPR,(v)

veTy very

We also measure therecisionof returning the top- set (note
that as the sizes of the sets are fixed, precision coincidesr&yith
call). If all exact PPR scores were different we could simply define

.. TUATY . .
precision aé%t'. Treating nodes with equal exact PPR scores
in a more liberal way we define precision as

Prec(t,u) = [v € T{" : PPR,(v) > min PPR,(w)|/t
we tu

The third measurékendall’sT compares the exact ranking with
the approximate ranking in the tapset. Note that the exact PPR
list of nodes with a small neighborhood or the tail of approximate
PPR ranking may contain a large number of ties (hodes with equal

byte-level encoding. We did not partition the vect%ﬁ{k)(w)

into predefined subsets af; instead as the algorithm ran out of
memory, it split the current set @f and checkpointed one half to
disk. Once the calculation in the first half was finished, it resumed
in the second half, resulting in a Depth First Search like traversal
of subsets ofv. Since dynamic programming accesses the edges
of the graph sequentially, we could overlay the preloading of the
next batch of edges with the calculations in the current batch using
either asynchronous 1/O or a preloader thread. This way we got the
graph I/O almost for free. It is conceivable that reiterations [22]
or the compression of vertex identifiefs [3] could further speed up
the computation. For implementations on a larger scale one may
use external memory sorting with the two vector dynamic program-
ming variant. Or, in a distributed environment, we may partition the
graph vertices among the cluster nodes, run a semi-external mem-
ory implementation on each node and exchange the intermediate
results over the network as required. To minimize network load, a

partition that respects the locality of links (e.g. hostname based) is
advisable.

In our first experiment we demonstrate the convergence of rounde
dynamic programming measured by the maximum error as the num-
ber of iterations increases whilst keepinfixed at a modest0—*
in all iterations. On Figurg]2, left, it can be clearly seen that the
underlying exact dynamic programming converges in far fewer it-
erations than its worst case boundlog, . e = 57 and that the
maximum error due to rounding is roughly one half of the bound
e/c = 7-107* provable for the simplified algorithm that rounds
to fixede in all iterations. On Figurg]2, right we see the goodness
of the approximate ranking improving the same way as maximum
error drops. This is theoretically clear since at maximum one-sided
error of ¢ we never swap pairs in the approximate rankings with
exact PageRank values at ledsapart. In the chart we set the top
set sizef to 200.

Algorithm Reference | Running
time

dDynamic Programming wita = 2 - | Sectior) 2.l] 1.5 and

107° ande = 10~° rounding to 2.25days

varyingex

Dynamic Programming with = 6 - | Sectior} 2.P| 6 days

1073,5 = 4 - 1073 sketches

Monte Carlo sampling withV = | [12] 6 days

10000 samples and path truncatign

lengthL = 35

Breadth First Search heuristic withSectior) 5.p| 3.5 days

parametersE = 10758 =

2000, K = 35

Table 2: Summary of approximate personalized PageRank al-

gorithms and heuristics.

0.1

0.01

Maximum Error

0.001

le-04

T T T T T T 7§
DP with rounding—— 3

5 10 15 20 25 30 35 40 45
Number of iterations

Goodness of Approximation

0.95
0.9
0.85
0.8t
0.75
0.7
0.65
0.6
0.55

P

T v v v ¥

AR

R R

+
I O A R -

RAG ——
Prec- +
T ——
I Y Y R I S

5 10 15 20 25 30 35 40 45
Number of iterations

Figure 2: Effect of the number of iterations kmax With e = 10™*
rounding error.

Based on the experiences of Fig{ite 2 we set the number of it-
erationskmax t0 a conservativd5 and investigated the effects of
the errore, using rounding to varying;. as in Algorithm[]. The
straight line on FigurE]3, left clearly indicates that rounding errors
do not accumulate and the maximum error decreases linearly with
the rounding error as in Theore#g'l 2. Additionally the error is much
smaller than the worst case bodntbr example at = 107° itis
3.5-107° vs.20-10~°. The running time scales sublinearlylifie
(e.g. from 3.5 hours to 14 hours when moving frere= 1072 to
e = 107*) as it is governed by thactualaverage number of PRR
entries being above and not the worst case upper estimafe.

the BFS heuristic and the Monte Carlo method we used an ele-
mentary compression (much simpler and faster than [3]) to store
the Stanford WebBase graph in 1.6 GB of main memory, hence
the semi-external dynamic programming started with a handicap.
Finally we mention that we did not apply rounding to the sketches.

It is possible to enhance the precision of most of the above al-
gorithms by applying the neighbor averaging form{ila (4) over the
approximate values once at query time. We applied this trick to
all algorithms, except for the sketches (where it does not make a
difference), which resulted in slightly higher absolute numbers for
larger top lists at a price of a tiny drop for very short top lists, but
did not affect the shape or the ordering of the curves. Due to the
lack of space, we report neighbor averaged results only.

All three measures of Figufg 4 indicate that as the top list size
increases, the task of approximating the toget becomes more
and more difficult. This is mainly due to the fact that among lower
ranked pages the personalized PageRank difference is smaller and
hence harder to capture using approximation methods. As expected,
RAG scores are the highest, and the strictest Kendalkzores
are the smallest with precision values being somewhat higher than
Kendall'sT.

Secondly, the ordering of the algorithms with respect to the qual-

The same observation applies to the database size, which requiregy of their approximate top lists is fairly consistent among Relative

201 GB fore = 10~°. The right panel of FigurE]S demonstrates
that the approximate ranking improves accordingly as we move to
smaller and smaller (we set the top set sizeto 100).

1 g

4
0.1F

[
DP with rounding——
Worst case bound -+

0.01

0.001

Maximum Error

le-04

Goodness of Approximation

le-05
0.01

0.001 1le-04
Rounding errog

le-05

0.001
Rounding erroe

le-04

Figure 3: Effect of the rounding error e with km.x = 35 itera-
tions.

We now turn to the experimental comparison of personalized
PageRank approximation algorithms summarized in Table 2. For

Aggregated Goodness, Precision and Kendall'sRounded dy-
namic programming performs definitely the best, moreover its run-
ning times are the lowest among the candidates. The runner up
Breadth-First Search heuristic and Monte Carlo sampling seem to
perform similarly with respect to Relative Aggregated Goodness
with Monte Carlo sampling underperforming in the precision and
Kendall’sT measures. Although sketching is quite accurate for sin-
gle value queries with an average additive errof o 0%, its top

list curve drops sharply at sizearound50. This is due to the fact
thatd > 1/n and hence a large number of significantly overesti-
mated vertices crowd out the true top list. Based on these find-
ings, for practical applications we recommend rounded dynamic
programming with neighbor averaging , which achieves solid pre-
cision and rank correlation (at or abd¥®5) over the tof200—300
pages with reasonable resource consumption.

Lastly we remark that preliminary SimRank experiments over
the same WebBase graph indicate that Algorifim 2 outperforms
iterations [(BEP) when using an equal amount of computation. Ad-
ditionally SimRank scores computed by Algorithin 2 achieve mar-

3For the ease of presentation, we have ignored the issue of danglingdinally weaker agreement (Kruskal-Goodmian= 0.33) with the
nodes, ie. nodes with zero out-degree, throughout this paper. In theOpen Directory Project (http://dmoz.org) as Monte Carlo sampling

presence of dangling nodes the bound of The

¢rem 2 becaryies

(I" = 0.34) [12] but with higher recall.

http://http://dmoz.org

L
0.998

]

(]

[}

c

e}

o

o

O

e}

% 0.996

(o))

.

[*)]

D) 0994

<

()

=

=

% 0.992 Sketch—= 7

o Monte Carlo =
BFS—=

0.99 L I

Precision

1000

Kendall'st

Roundinge
Roundinge = 2

0.6

0.55

1000

) 100_
Size of top listt
Figure 4: Empirical comparison of approximate personalized

PageRank algorithms with three measures of goodness and
varying top set sizet.

6. Conclusions and Future work

We presented algorithms for the personalized PageRank and Sim-

Rank problems that give provable guarantees of approximation and
build space optimal data structures to answer arbitrary on-line user

queries. Experiments over 80M pages showed that for the personal-

ized PageRank problem rounded dynamic programming performs
remarkably well in practice both in terms of precomputation time,
database size and the quality of approximation.

An interesting open question is whether our techniques can be
extended to approximate other properties of Markov chains over
massive graphs, e.g. the hitting time. Another important area of
future work is to thoroughly evaluate the quality of the SimRank

approximation algorithms. Finally we leave the existence of theo-
retically optimal algorithms for SimRank value and top list queries
with parameter < 1/2 open.

7. REFERENCES

[1] Z.Bar-Yossef, R. Kumar, and D. Sivakumar. Sampling algorithms:

Lower bounds and applicationBroc. of 33rd STOC2001.

B. H. Bloom. Space/time trade-offs in hash coding with allowable

errors.Commun. ACM13(7):422-426, 1970.

P. Boldi and S. Vigna. The webgraph framework I: Compression

techniquesProc. of 13th WW\\pp. 595-602, 2004.

A. Z. Broder and M. Mitzenmacher. Network applications of Bloom

filters: A survey.nternet Mathematigsl(4):485-509, 2005.

M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items

in data streamdroc. of 29th ICALP pp. 693-703, 2002.

Y.-Y. Chen, Q. Gan, and T. Suel. Local methods for estimating

PageRank value®roc. of 12th CIKM pp. 381-389, 2004.

G. Cormode and S. Muthukrishnan. An improved data stream

summary: The Count-Min sketch and its applicatialwirnal of

Algorithms 55(1):58-75, 2005.

G. Cormode and S. Muthukrishnan. Summarizing and mining skewed

data streamd$roc. of 5th SIAM Intl. Conf. on Data Minin@005.

R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee.

Comparing and aggregating rankings with tiesoc. of 23rd POD$S

2004.

D. Fogaras. Where to start browsing the wéh8c. of 3rd 12C$

Springer LNCS vol. 2877, pp. 65-79, 2003.

D. Fogaras and B. Racz. Towards scaling fully personalized

PageRankProc. of 3rd WAWpp. 105-117, 2004. Full version to

appear in Internet Mathematics.

D. Fogaras and B. Racz. Scaling link-based similarity search.

Proc. of 14th WW\\pp. 641-650, 2005. Full version available at

www.ilab.sztaki.hu/websearch/Publications/ .

T. H. Haveliwala. Topic-sensitive PageRank: A context-sensitive

ranking algorithm for web searchEEE Transactions on Knowledge

and Data Engineeringl5(4):784-796, 2003.

[14] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on
data streams. |IExternal Memory Algorithms, DIMACS Book Series
vol. 50, pp. 107-118. American Mathematical Society, 1999.

[15] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke. WebBase:
A repository of web page®roc. of 9th WW\Wpp. 277-293, 2000.

[16] G.Jeh and J. Widom. SimRank: A measure of structural-context
similarity. Proc. of 8th SIGKDDpp. 538-543, 2002.

[17] G.Jehand J. Widom. Scaling personalized web se&cit. of 12th
WWW pp. 271-279, 2003.

[18] S. Kamvar, T. H. Haveliwala, C. Manning, and G. Golub. Exploiting

the block structure of the web for computing PageRank. Technical

Report 2003-17, Stanford University, 2003.

M. G. Kendall.Rank Correlation Method$Hafner Publishing Co.,

New York, 1955.

J. Kleinberg. Authoritative sources in a hyperlinked environment.

Journal of the ACM46(5):604-632, 1999.

E. Kushilevitz and N. NisatCommunication Complexitfambridge

University Press, 1997.

F. McSherry. A uniform approach to accelerated PageRank

computationProc. of 14th WW\Wpp. 575-582, 2005.

S. Muthukrishnan. Data streams: Algorithms and applications.

Foundations and Trends in Theoretical Comp. SK(2), 2005.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank

citation ranking: Bringing order to the web. Technical Report

1999-66, Stanford University, 1998.

C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: A fast and

scalable tool for data mining in massive grapPmc. of 8th

SIGKDD, pp. 81-90, 2002.

P. K. C. Singitham, M. S. Mahabhashyam, and P. Raghavan.

Efficiency-quality tradeoffs for vector score aggregatieroc. of

30th VLDB pp. 624-635, 2004.

[27] J. S. Vitter. External memory algorithms and data structures: Dealing
with massive dateACM Computing Survey83(2):209-271, 2001.

(2]
(3]
(4]
(5]
(6]
(7]

(8]
(9]

[20]

(11]

[12]

[13]

[19]
[20]
[21]
[22]
(23]

[24]
[25]

[26]

	Introduction
	Related Results
	Preliminaries

	Personalized PageRank
	Rounding
	Sketching

	SimRank
	Reduction of SimRank to PPR

	Lower bounds
	Experiments
	Measuring the Quality of Approximate PageRank Scores
	Breadth First Search Heuristic
	Results

	Conclusions and Future work
	REFERENCES -9pt

