
To Randomize or Not To Randomize:
Space Optimal Summaries for Hyperlink Analysis ∗

Tamás Sarlós1,2 András A. Benczúr1,2 Károly Csalogány1,2 Dániel Fogaras1,3 Balázs Rácz1,3

1 Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI)
2 Eötvös University, Budapest 3 Budapest University of Technology and Economics

{stamas,benczur,cskaresz,fd,bracz+ps72}@ilab.sztaki.hu

ABSTRACT

Personalized PageRank expresses link-based page quality around
user selected pages. The only previous personalized PageRank al-
gorithm that can serve on-line queries for an unrestricted choice of
pages on large graphs is our Monte Carlo algorithm [WAW 2004].
In this paper we achieve unrestricted personalization by combining
rounding and randomized sketching techniques in the dynamic pro-
gramming algorithm of Jeh and Widom [WWW 2003]. We eval-
uate the precision of approximation experimentally on large scale
real-world data and find significant improvement over previous re-
sults. As a key theoretical contribution we show that our algorithms
use an optimal amount of space by also improving earlier asymp-
totic worst-case lower bounds. Our lower bounds and algorithms
apply to SimRank as well; of independent interest is the reduction
of the SimRank computation to personalized PageRank.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; G.2.2 [Discrete Mathematics]: Graph Theory—
Graph algorithms; G.3 [Mathematics of Computing]: Probability
and Statistics—Probabilistic algorithms

General Terms

Algorithms, Theory, Experimentation

Keywords

link-analysis, similarity search, scalability, data streams

1. Introduction

The idea of using hyperlink mining algorithms in Web search en-
gines appears since the beginning of the success of Google’s Page-
Rank [24]. Hyperlink based methods are based on the assumption
that a hyperlinku→ v implies that pageu votes forv as a quality

∗This work was supported by the Mobile Innovation Center, Hun-
gary and Inter-University Center for Telecommunication and In-
formatics (ETIK). This is an abbreviated version of the full paper
available at http://www.ilab.sztaki.hu/websearch/Publications/.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

page. In this paper we address the computational issues [13, 17,
11, 12] of personalized PageRank [24] and SimRank [16].

Personalized PageRank(PPR) [24] enters user preferences by as-
signing more importance to the neighborhood of pages at the user’s
selection. Jeh and Widom [16] introducedSimRank, the multi-step
link-based similarity function with the recursive idea thattwo pages
are similar if pointed to by similar pages. Notice that both mea-
sures are hard to compute over massive graphs: naive personaliza-
tion would require on the fly power iteration over the entire graph
for a user query; naive SimRank computation would require power
iteration over all pairs of vertices.

We give algorithms with provable performance guarantees based
on computation with sketches [7] as well as simple deterministic
summaries; see Table 1 for a comparison of our methods with pre-
vious approaches. We may personalize to any single page from
which arbitrary page set personalization follows by linearity [13].
Similarly, by our SimRank algorithm we may compute the similar-
ity of any two pages or the similarity top list of any single page.
Motivated by search engine applications, we give two-phase algo-
rithms that first compute a compact database from which value or
top list queries can be answered with a low number of accesses.
Our key results are summarized as follows:

• We give practical methods for serving unrestricted on-line per-
sonalized PageRank (Section 2.1) as well as SimRank queries
with space a reasonable constant per vertex (Section 3). The
methods are based on deterministic rounding.

• We give a theoretically optimal algorithm for personalized Page-
Rank value queries (Section 2.2) based on randomized sketch-
ing. Given an additive errorε and the probabilityδ of an incor-
rect result, we improve the disk usage bound from
n logn log (1/δ) /ε2 [11, 12] ton log (1/δ) /ε.

• We give theoretically optimal algorithms for SimRank value and
top list queries (Section 3.1) by a nontrivial reduction of Sim-
Rank to personalized PageRank.

• We improve the communication complexity based lower
bounds of [11, 12] for the size of the database (Section 4); our
bounds are matched by our algorithms. Our sketch-based algo-
rithms use optimal space; surprisingly for top list queries deter-
ministic rounding is already optimal in itself.

• In Section 5 we experimentally analyze the precision of approx-
imation over the Stanford WebBase graph and conclude that our
summaries provide better approximation for the top personal-
ized PageRank scores than previous methods.

http://http://www.ilab.sztaki.hu/websearch/Publications/

Storage requirement Personalization

Topic sensitive [13] O(t · n) words t topics
δ = ε = 0

Hub decomposition Ω(h2),O(h·n) words h pages
[17] δ = ε = 0
Monte Carlo [11] O(n · logn · 1

ε2
· log 1

δ
)

bits
arbitrary

Rounding O(n · logn · 1
ε
) bits∗ arbitrary

δ = 0
Sketching O(n · log 1

δ
· 1

ε
) bits∗∗ arbitrary

∗ optimal for top queries
∗∗ optimal for value queries

Table 1: Comparison of personalized PageRank algorithms for
graphs ofn vertices, additive error ε and error probability δ.

1.1 Related Results

The scalable computation of personalized PageRank was addressed
by several papers [13, 18, 17] that gradually increase the choice for
personalization. By Haveliwala’s method [13] we may personalize
to the combination of 16 topics extracted from the Open Directory
Project. The BlockRank algorithm of Kamvar et al. [18] speeds up
personalization to the combination of hosts. The state of the art
Hub Decomposition algorithm of Jeh and Widom [17] computed
and encoded personalization vectors for approximately 100K per-
sonalization pages.

To the best of our knowledge, the only scalable personalized
PageRank algorithm that supports the unrestricted choice of the
teleportation vector is the Monte Carlo method of [11]. This algo-
rithm samples the personalized PageRank distribution of each page
simultaneously during the precomputation phase, and estimates the
personalized PageRank scores from the samples at query time. The
drawback of the sampling approach is that approximate scores are
returned, where the error of approximation depends on the ran-
dom choice. In addition the bounds involve the unknown vari-
ance, which can in theory be as large asΩ(1), and hence we need
Θ(1

ε2
log 1/δ) random samples. Indeed a matching sampling com-

plexity lower bound for telling binomial distributions with means
1/2 ± ε apart [1] indicates that one can not reduce the number of
samples when approximating personalized PageRank. Similar find-
ings of the superiority of summarization or sketching over sampling
is described in [5]. The algorithms presented in Section 2 outper-
form the Monte Carlo method by significantly reducing the error.

We also address the computational issues of SimRank, a link-
based similarity function introduced by Jeh and Widom [16]. The
power iteration SimRank algorithm of [16] is not scalable since it
iterates on a quadratic number of values, one for each pair of Web
pages; in [16] experiments on graphs with no more than 300K ver-
tices are reported. Analogously to personalized PageRank, the scal-
able computation of SimRank was first achieved by sampling [12].
Our new SimRank approximation algorithms presented in Section 3
improve the precision of computation.

The key idea of our algorithms is that we use lossy represen-
tation of large vectors either byroundingor sketching. Sketches
are compact randomized data structures that enable approximate
computation in low dimension. To be more precise, we adapt the
Count-Min Sketchof Cormode and Muthukrishnan [7], which was
primarily introduced for data stream computation. We use sketches
for small space computation; in the same spirit Palmer et al. [25]
apply probabilistic counting sketches to approximate the sizes of
neighborhoods of vertices in large graphs. Further sketching tech-

niques for data streams are surveyed in [23]. Lastly we mention
that Count-Min Sketch and the historically first sketch, the Bloom
filter [2] stem from the same idea; we refer to the detailed survey [4]
for further variations and applications.

Surprisingly, it turns out that sketches do not help if the topt
highest ranked or most similar nodes are queried; the determinis-
tic version of our algorithms show the same performance as the
randomized without even allowing a small probability of return-
ing a value beyond the error bound. Here the novelty is the op-
timal performance of the deterministic method; the topt problem
is known to cause difficulties in sketch-based methods and always
increases sketch sizes by a factor ofΩ(logn). By usingΩ(logn)
times larger space we may use a binary search structure or we may
usep sketches accessedn1/p times per query [7]. Note thatn1/p

queries require an error probability ofO(δ/np) that again increase
sketch sizes by a factor ofΩ(logn).

In Section 4 we show that our algorithms build optimal sized
databases. To obtain lower bounds on the database size, we apply
communication complexity techniques that are commonly used for
space lower bounds [21]. Our reductions are somewhat analogous
to those applied by Henzinger et al. [14] for space lower bounds on
stream graph computation.

1.2 Preliminaries

We briefly introduce notation, and recall definitions and basic
facts about PageRank, SimRank and the Count-Min sketch.

Personalized PageRank

Let us consider the web as a graph. Letn denote the number of
vertices andm the number edges. Letd+(v) andd−(v) denote the
number of edges leaving and enteringv, respectively. Details of
handling nodes withd+(v) = 0 andd−(v) = 0 are omitted.

In [24] thePageRankvectorp = (p(1), . . . ,p(n)) is defined as
the solution of the following equationp(u) = c · r(u) + (1 − c) ·P

v:(vu)∈E p(v)/d
+(v), wherer = (r(1), . . . , r(n)) is the tele-

portation vector andc is the teleportation probability with a typical
value ofc ≈ 0.15. If r is uniform, i.e.r(u) = 1/n for all u, then
p is the PageRank. For non-uniformr the solutionp is calledper-
sonalized PageRank; we denote it by PPRr. Since PPRr is linear
in r [13, 17], it can be computed by linear combination of person-
alization to single pointsv, i.e. to vectorsr = χv consisting of all
0 except for nodev whereχv(v) = 1. Let PPRv = PPRχv .

An alternative characterization of PPRu(v) [10, 17] is based on
the probability that a lengthk random walk starting at nodeu ends
in nodev. We obtain PPRu(v) by choosingk random according to
the geometric distribution:

PPR[k]
u (v) =

X
v0=u,v1,...,vk=v

1/(d+(v0) · · · d+(vk−1)); (1)

the summation is along walks starting atu and ending inv. Thus

PPRu(v) =

∞X
k′=0

c(1− c)k′PPR[k′]
u (v). (2)

Similarly we get PPR(k)
u if we sum up only tok instead of∞. An

equivalent reformulation of the path summing formula (2) is the
Decomposition Theorem proved by Jeh and Widom [17]:

PPRu = cχu + (1− c) ·
X

v:(uv)∈E

PPRv/d
+(u). (3)

The Decomposition Theorem immediately gives rise to the Dy-
namic Programming approach [17] to compute personalized Page-

Rank that performs iterations fork = 1, 2, . . . with PPR(0)u = c·χu:

PPR(k)
u = cχu + (1− c) ·

X
v:(uv)∈E

PPR(k−1)
v /d+(u). (4)

SimRank

Jeh and Widom [16] define SimRank by the following equation
very similar to the PageRank power iteration such that
Sim(0)(u1, u2) = χu1(u2) and

Sim(k)(u1, u2) =

(
(1− c) ·

P Sim(k−1)
(v1,v2)

d−(u1)·d−(u2)
if u1 6= u2

1 if u1 = u2.
(5)

where summation is forv1, v2 : (v1u1), (v2u2) ∈ E.

Count-Min Sketch

The Count-Min Sketch[7] is a compact randomized approximate
representation of non-negative vectorx = (x1, . . . ,xn) such that
a single valuexj can be queried with a fixed additive errorε > 0
and a probabilityδ > 0 of returning a value out of this bound. The
representation is a table ofdepthd = ln 1/δ andwidthw = e/ε.
One rowC of the table is computed with a random hash function
h : {1, . . . , n} → {1, . . . , w}. The ith entry of the rowC is de-
fined asCi =

P
j:h(j)=i xj . Then the Count-Min sketch table of

x consists ofd such rows with hash functions chosen uniformly at
random from a pairwise-independent family.

THEOREM 1 (CORMODE, MUTHUKRISHNAN [7]). Letx̂j =
minC{Ch(j)} where the minimum is taken over thed rows of the
table. Then̂xj ≥ xj and Prob(x̂j > xj + ε||x||1) ≤ δ hold.

Count-Min sketches are based on the principle that any random-
ized approximate computation with one sided error and biasε′ can
be turned into an algorithm that has guaranteed error at moste · ε′
with probability1− δ by runningln 1/δ parallel copies and taking
the minimum. The proof simply follows from Markov’s inequal-
ity and is described for the special cases of sketch value and inner
product in the proofs of Theorems 1 and 2 of [7], respectively.

2. Personalized PageRank

We give two efficient realizations of the dynamic programming
algorithm of Jeh and Widom [17]. Our algorithms are based on
the idea that if we use an approximation for the partial values in
certain iteration, the error will not aggregate when summing over
out-edges, instead the error of previous iterations will decay with
the power of1 − c. Our first algorithm in Section 2.1 uses certain
deterministic rounding optimized for smallest runtime for a given
error, while our second algorithm in Section 2.2 is based on Count-
Min sketches [7].

The original implementation of dynamic programming [17] re-
lies on the observation that in the firstk iterations of dynamic pro-
gramming only vertices within distancek have non-zero value.
However, the rapid expansion of thek-neighborhoods increases
disk requirement close ton2 after a few iterations, which limits
the usability of this approach1. Furthermore, an external memory
implementation would require significant additional disk space.

1Over the publicly available Stanford WebBase graph [15] we com-
puted an average over 1000 non-zeroes after 4 iterations; on aver-
age24% of all vertices are reached withink = 15 steps.

v1 v2 v4 v6v3

u

w

v5

Figure 1: A simple example showing the superiority of dynamic
programming over power iterations for small space computa-
tions.

We may justify why dynamic programming is the right choice for
small-space computation by comparing dynamic programming to
power iteration over the graph of Fig. 1. When computing PPRu(w),
power iteration moves top-down, starting atu, stepping into its
neighborsv1, v2, . . . and finally adding up all their values atw.
Hence when approximating, we accumulate all error when enter-
ing the large in-degree nodew and in particular we must compute
PPRu(vi) values fairly exact. Dynamic programming, in contrast,
moves bottom up by computing the trivial PPRw vector, then all
the PPRvi , then finally averages all of them into PPRu. Because of
averaging we do not amplify error at large in-degrees; even better
by looking at (4) we notice that the effect of earlier steps dimin-
ishes exponentially in(1− c). In particular even if there are edges
enteringu from further nodes, we may safely discard all the small
PPRu(vi) values for further computations, thus saving space over
power iteration where we require the majority of these values in
order to compute PPRu(w) with little error.

We measure the performance of our algorithms in the sense of
intermediate disk space usage. Notice that our algorithms aretwo-
phasein that they preprocess the graph to a compact database from
which value and top list queries can be served real-time; prepro-
cessing space and time is hence crucial for a search engine appli-
cation. Surprisingly, in this sense rounding in itself yields an opti-
mal algorithm for top list queries as shown by giving a matching
lower bound in Section 4. The sketching algorithm further im-
proves space usage by a factor oflogn and is hence optimal for
single value queries. For finding top lists, however, we need addi-
tional techniques such as binary searching as in [7] that loose the
logn factor gain and use asymptotically the same amount of space
as the deterministic algorithm. Since the deterministic rounding in-
volves no probability of giving an incorrect answer, that algorithm
is superior for top list queries.

The key to the efficiency of our algorithms is the use of small

size approximatedPPR
(k)

u (v) values obtained either by rounding
and handling sparse vectors or by computing over sketches. In or-
der to perform the update step of Algorithm 1 we must access alldPPRv vectors; the algorithm proceeds as if we were multiplying the
weighted adjacency matrixAuv = 1/d+(u) for (uv) ∈ E with the
vector{dPPRu(w) : u ∈ V } parallel for all values ofw. We may
use (semi)external memory algorithms [27]; efficiency will depend
on the size of the description of the vectors.

The original algorithm of Jeh and Widom defined by equation (4)
uses two vectors in the implementation. We remark that a single
vector suffices since by using updated values within an iteration
we only speed convergence up. A similar argument is given by
McSherry [22] for the power iteration, however there the resulting
sequential update procedure still requires two vectors.

Algorithm 1 PageRank by rounded Dynamic Programming
1: for each nodeu do
2: Initialize dPPRu byψ0(cχu)
3: for k := 1, . . . , kmax = 2 log1−c ε do

4: εk = ε · (1− c)−
kmax−k

2

5: Define functionψk that rounds down to multiple ofεk
6: for each nodeu do
7: dPPRu ← ψk

“
cχu + (1− c) ·

X
v:(uv)∈E

dPPRv/d
+(u)

”

2.1 Rounding

In Algorithm 1 we compute the steps of the dynamic program-
ming personalized PageRank algorithm (4) by rounding all values
down to a multiple of the prescribed error valueε. As the sum of
PPRu(v) for all v equals one, the rounded non-zeroes can be stored
in small space since there may be at most1/ε of them.

We improve on the trivial observation that there are at most1/ε
rounded non-zero values in two ways as described in the next two
theorems. First, we observe that the effect of early iterations decays
as the power of(1 − c) in the iterations, allowing us to similarly
increase the approximation errorεk for early iterationsk. We prove
correctness in Theorem 2; later in Theorem 4 it turns out that this
choice also weakens the dependency of the running time on the
number of iterations. Second, we show that the size of the non-
zeroes can be efficiently bit-encoded in small space; while this ob-
servation is less relevant for a practical implementation, this is key
in giving an algorithm that matches the lower bound of Section 4.

THEOREM 2. Algorithm 1 returns values between PPRu(v) −
2ε/c and PPRu(v).

PROOF. By induction on iterationk of Algorithm 1 we show a
bound that is tighter fork = kmax than that of the Theorem:

|PPRu(w)− dPPRu(w)| < 1

1−
√

1− c
εk.

By the choice ofε andkmax we haveε0 = 1, thus thek = 0 case
is immediate since0 ≤ PPRu(v) ≤ 1.

Since we use a single vector in the implementation, we may up-
date a value by values that have themselves already been updated
in iterationk. Nevertheless sinceεk =

√
1− c · εk−1 and hence

decreases ink, values that have earlier been updated in the current
iteration in fact incur an error smaller than required on the right
hand side of the update step of Algorithm 1. In order to distinguish
values before and after a single step of the update, let us usedPPR

′

to denote values on the right hand side. To prove, notice that by the
Decomposition Theorem (3)

PPRu(w)− cχu − (1− c) ·
X

v:(uv)∈E

dPPR
′
v(w)/d+(u)

= (1− c) ·
X

v:(uv)∈E

(PPRv(w)− dPPR
′
v(w))/d+(u)

Asψk introduces at mostεk error, by the triangle inequality

|PPRu(w)−dPPRu(w)|

≤ εk+(1−c)·
X

v:(uv)∈E

|PPRv(w)− dPPR
′
v(w)|/d+(u).

Using the inductive hypothesis this leads us to

|PPRu(w)−dPPRu(w)| < εk+
1− c

1−
√

1− c
·εk−1

= εk+
1− c

1−
√

1− c
· εk√

1− c
=

1

1−
√

1− c
·εk,

completing the proof.

Next we show that multiples ofε that sum up to 1 can be stored
in 1/ε bit space. For the exact result we need to select careful but
simple encoding methods given in the trivial lemma below.

LEMMA 3. Let z non-negative values be given, each a multi-
ple of ε that sum up to at most 1. If we unary encode the values
as multiples ofε and use a termination symbol, the encoding uses
space1

ε
+z bits. If we combine the same encoding with sparse vec-

tor storage by recording the position of non-zeroes inlog z space
each, we may encode the sequence by1

ε
· (1 + log z) bits. 2

THEOREM 4. Algorithm 1 runs in time ofO(m logn/(c · ε))
bit operations2 and builds a database of sizen · 2

ε
· logn bits. In

order to return the approximate value of PPRu(v) and the largestt
elements of PPRu(.), we may binary search and sequentially access
2
ε
· logn bits, respectively.

PROOF. We determine the running time by noticing that in each
iterationk for each edge we perform addition with the sparse vector
PPR(k). We may use a linked list of non-zeroes for performing
the addition, thus requiringO(logn) bit operations for each non-
zero of the vector. Since in iterationk we store all values of a
vector with norm at most one rounded down to a multiple ofεk, we
require2/εk space to store at most1/εk non-zeroes of PPR(k) by

Lemma 3. By
P

k≤kmax

√
1− ckmax−k

< 1
1−

√
1−c

< 2/c the
total running time becomesO(m logn/(ε · c)).

2.2 Sketching

Next we give a sketch version of Algorithm 1 that improves the
space requirement of the rounding based version by a factor of
logn, thus matches the lower bound of Section 4 for value queries.
First we give a basic algorithm that uses uniform error boundε in
all iterations and is not optimized for storage size in bits. Then we
show how to gradually decrease approximation error to speed up
earlier iterations with less effect on final error; finally we obtain
the space optimal algorithm by the bit encoding of Lemma 3.

The key idea is that we replace each PPR(k)
u vector with its con-

stant size Count-Min sketch in the dynamic programming iteration
(4). LetS denote the sketching operator that replaces a vector by
thed × w table as in Section 1.2 and let us perform the iterations
of (4) with SPPR(k)

u andS(c · χu). Since the sketching operator
is trivially linear, in iterationk we obtain the sketch of the next
temporary vector SPPR(k)

u from the sketches SPPR(k−1)
v .

To illustrate the main ingredients, we give the simplest form of a
sketch-based algorithm with error, space and time analysis. Let us
perform the iterations of (4) withe/ε wide andln 1

δ
deep sketches

k∗max = log1−c ε times; then by Theorem 1 and the linearity of

sketching we can estimate PPRu(v) for all u, v from SPPR
(k∗max)
u (v)

with additive error2ε and error probabilityδ. The personalized

PageRank database consists of sketch tables SPPR
(k∗max)
u for all u.

The data occupiesΘ(n
ε

log 1
δ
) machine words, since we have to

storen tables of reals. An update for nodeu takesO(d+(u)
ε

ln 1
δ
)

time by averagingd+(u) tables ofe
ε
×ln 1

δ
size and addingS(cχu),

each inO(ln 1
δ
) time. Altogether the requiredk∗max iterations run

in O(m
ε

ln 1
δ

log1−c ε) time.
2We measure time in bit operations in order to better compare with
bit optimal sketches as in Theorem 5.

Next we weaken the dependence of the running time on the num-
ber of iterations by gradually decreasing errorεk as in Section 2.1.
When decreasing the error in sketches, we face the problem of in-
creasing hash table sizes as the iterations proceed. Since there is
no way to efficiently rehash data into larger tables, we approximate
personalized PageRank slightly differently by representing the end
distribution of lengthk walks, PPR[k]

u , with their rounded sketches

ŜPPR
[k]

u in the path-summing formula (2):

dPPRu(v) = min
i=1... ln 1

δ

“ kmaxX
k=0

c(1− c)kŜPPR
[k]

u (i, hi
k(v))

”
(6)

wherehi
k denotes thei-th hash function of thek-th iteration. By (6)

we need to calculatêSPPR
[k]

u efficiently in small space. Notice that
unlike in the dynamic programming where we gradually increase

the precision ofdPPR
(k)

u ask grows, we may computêSPPR
[k]

u less
precise with growingk since its values are scaled down by(1 −
c)k. Hence we obtain our algorithm by usinge/ε̄k = e/εkmax−k

wide hash tables in thek-th iteration and replacing the last line of
Algorithm 1 with

ŜPPR
[k]

u ← ψkmax−k

“
φkmax−k

“ X
v:(uv)∈E

ŜPPR
[k−1]

v /d+(u)
””

(7)

whereφk is the recoding function shrinking hash tables from width
e/εk+1 to e/εk. To be more precise, we round the width of each
sketch up to the nearest power of two; thus we maintain the error
bound, increase space usage by less than a factor of two, and use
the recoding function that halves the table when necessary.

THEOREM 5. Let us run the sketch version of the dynamic pro-
gramming Algorithm 1 with sketching to widthe/ε̄k and rounding
all table entries to multiples of̄εk in iterationk. The algorithm runs
in timeO(m ln 1

δ
/(c·ε)); builds a database of sizeO(n ln 1

δ
/(c·ε))

bits; and returns a valuedPPRu(v) ≥ PPRu(v)− ε(1 + 2/c) such
that Prob(P̂PRu(v) > PPRu(v) + 2ε/c) ≤ δ.

PROOF. As
Pkmax

k=0 1/ε̄k < 2/(εc) still holds, along the same
lines as Theorem 4 we immediately get the running time; space
follows by Lemma 3.

We err for three reasons: we do not run the iteration infinitely;
in iterationk we round values down by at mostε̄k, causing a de-
terministic negative error; and finally the Count-Min Sketch uses
hashing, causing a random positive error. For bounding these er-
rors, imagine running iteration (7) without the rounding function
ψk but still with e/ε̄k wide andln 1/δ deep sketches and denote its
results by SPPR[k]

u and define

gPPRu(v) = min
i=1... ln 1

δ

“ kmaxX
k=0

c(1− c)kSPPR[k]
u (i, hi

k(v))
”
.

First we upper boundgPPR to obtain the last claim of the Theo-
rem. SincedPPRu(v) ≤ gPPRu(v), we need Prob(gPPRu(v) >
PPRu(v) + 2ε/c) ≤ δ. By the Count-Min principle it is suffi-
cient to show that for a fixed rowi∗, the expected overestimation
of

Pkmax
k=0 c(1 − c)kSPPR[k]

u (i∗, hi∗
k (v)) is not greater than2ε/c.

Since the bias of each sketch row SPPR[k]
u (i∗, .) is ε̄k, the bias of

their c(1− c)k exponentially weighted sum is bounded by2ε/c.
Finally we lower bounddPPR; the bound is deterministic. The

ε̄k loss due to rounding down in iterationk affects all subsequent
iterations, and hence

dPPRu(v) ≥ gPPRu(v)−
∞X

k=0

ε̄k · (1− c)k ≥ gPPRu(v)− 2ε/c.

And since we sum up tokmax instead of infinity,gPPRu(v) under-
estimates PPRu(v) by at mostε2 ≤ ε, proving the Theorem.

3. SimRank

In this section first we give a simpler algorithm for serving Sim-
Rank value and top-list queries that combines rounding with the
empirical fact that there are relatively few large values in the sim-
ilarity matrix. Then in Section 3.1 we give an algorithm for Sim-
Rank values that uses optimal storage in the sense of the lower
bounds of Section 4. Of independent interest is the main compo-
nent of the algorithm that reduces SimRank to the computation of
values similar to personalized PageRank.

SimRank and personalized PageRank are similar in that they
both fill ann× n matrix when the exact values are computed. An-
other similarity is that practical queries may ask for the maximal
elements within a row. Unlike personalized PageRank however,
when rows can be easily sketched and iteratively computed over
approximate values, then × n matrix structure is lost within the
iterations for Sim(v1, v2) as we may have to access values of arbi-
trary Sim(u1, u2). Even worse

P
u,v PPRu(v) = n while

M =
X

u1,u2

Sim(u1, u2)

can in theory be as large asΩ(n2); anO(n)-size sketch may hence
store relevant information about personalized PageRank but could
not even contain values below 1 for SimRank. An example of a
sparse graph withM = Ω(n2) is ann-node star where Sim(u, v) =
1− c for all pairs other than the center.

In practiceM is expected be a reasonable constant timesn.
Hence first we present a simple direct algorithm that finds the largest
values within the entire Sim(u1, u2) table. In order to give a rounded
implementation of the iterative SimRank equation (5), we need to
give an efficient algorithm to compute a single iteration. The naive
implementation requiresΩ(1) time for each edge pair with a com-
mon source vertex that may add up toΩ(n2). Instead foru1 6= u2

we will compute the next iteration with the help of an intermediate
step when edges out of only one of the two vertices are considered:

ASim(k)(u1, v2) =

√
1− c

d−(u1)

X
v1:(v1u1)∈E

Sim(k−1)(v1, v2) (8)

Sim(k)(u1, u2) =

√
1− c

d−(u2)

X
v2:(v2u2)∈E

ASim(k)(u1, v2) (9)

Along the same line as the proof of Theorems 2 we prove that (i)
by rounding values in iterations (8–9) we approximate values with
small additive error; (ii) the output of the algorithm occupies small
space; and (iii) approximate top lists can be efficiently answered
from the output. The proof is omitted due to space limitations. We
remark here that (8–9) can be implemented by 4 external memory
sorts per iteration, in two of which the internal space usage can in
theory grow arbitrary large even compared toM . This is due to
the fact that we may round only once after each iteration; hence if
for some large out-degree nodev a value Sim(k−1)(v, v2) is above
the rounding threshold or ASim(k)(u1, v) becomes positive, then
we have to temporarily store positive values for all out-neighbors,
most of which will be discarded when rounding.

THEOREM 6. Let us iterate (8–9)kmax = 4 log1−c ε times by
rounding values in iteration k down to multiples of

εk = ε · (1− c)−
kmax−k

4 for (9) andεk−1 + εk for (8).
(i) The algorithm returns approximate values foru 6= v with

Sim(u, v) ≥dSim(u, v) ≥ Sim(u, v)− 4ε/c.
(ii) The space used by thedSim(u, v) values isO(M · 2

ε
· logn) bits

whereM =
P

u,v Sim(u, v).
(iii) Top list queries can be answered after positivedSim(u, ·) val-

ues are sorted for eachu in O(M · 2
ε
· log2 n) time.

3.1 Reduction of SimRank to PPR

Now we describe a SimRank algorithm that uses a database of
size matching the corresponding lower bound of Section 4 by tak-
ing advantage of the fact that large values of similarity appear in
blocks of then × n similarity table. The blocking nature can be
captured by observing the similarity of Simv1,v2 to the product
PPRv1 · PPRv2 of vectors PPRv1 and PPRv2 .

We use the independent result of [10, 17, 16] that PageRank type
values can be expressed by summing over endpoints of walks as in
equation (1). First we express SimRank by walk pair sums, then we
show how SimRank can be reduced to personalized PageRank by
considering pairs of walks as products. Finally we give sketching
and rounding algorithms for value and top queries based on this
reduction.

In order to capture pairs of walks of equal length we define “re-
versed” PPR by using walks of length exactlyk by modifying (1):

RP[k]
v (u) =

X
v0=v,v1,...,vk=u

1/(d−(v1) · · · d−(vk)) (10)

wherev0, . . . , vk is a walk fromv to u on thetransposed graph.
Similarly [16] shows that Sim(k)

v1,v2 equals the total weight of pairs

v1 = w0, w1, . . . , wk′−1, wk′ = u

v2 = w′0, w
′
1, . . . , w

′
k′−1, w

′
k′ = u

with lengthk′ ≤ k that both end atu and one of them comes from
v1 while the other one fromv2. The weight of the pair of walks is
theexpected(1− c) meeting distanceas defined in [16]:

(1− c)k′/(d−(w1) · · · d−(wk′) · d−(w′1) · · · d−(w′k′)) (11)

Importantly the walks satisfy two properties: they have (i) equal
length and (ii) no common vertex at the same distance from start,
i.e. wi 6= w′i for i 6= k′. Except for the last two requirements
Sim(k)

v1,v2 has a form similar to the inner product of PPRv1 and
PPRv2 on the reversed graph by (1).

Next we formalize the relation and give an efficient algorithm
that reduces SimRank to PPR on the reversed graph. As a “step 0
try” we consider

Sim(0)
v1,v2 =

X
k>0

(1− c)k
X

u

RP[k]
v1 (u)RP[k]

v2 (u) (12)

with form similar to SimRank with exact lengthk walks except that
these walks may have common vertices unlike stated in (ii).

In order to exclude pairs of walks that meet before ending, we
use the principle of inclusion and exclusion. We count pairs of
walks that have at leasttmeeting points after start as follows. Since
after their first meeting pointv the walks proceed as if computing
the similarity ofv to itself, we introduce a self-similarity measure
by counting weighted pairs of walks that start atv and terminate at
the same vertexu by extending (12):

SSim(0)(v) =
X

u

X
k>0

(1− c)kRP[k]
v (u)RP[k]

v (u) (13)

Algorithm 2 SimRank by reduction to personalized PageRank.
The algorithm approximateŝSSim values; approximatedSimv1,v2

values are served by evaluating (17) at query time.
1: for k := 0, . . . , kmax = 2 log1−c ε do

2: εk = ε · (1− c)−
kmax−k

2

3: Define functionψk that rounds down to multiples ofεk
4: for each nodeu do
5: Initialize cRP

[0]
u byψkmax (χu) andŜSim

(−1)
(u) = ŜSim(u) by 1

6: for k := 1, . . . , kmax = 2 log1−c ε do
7: for each nodeu do
8: cRP

[k]
u ← ψkmax−k

“ P
v:(vu)∈E

cRP
[k−1]
v /d−(u)

”
9: for t := 0, . . . , tmax = log 1−c

c
ε do

10: for each nodev do
11: ŜSim

(t)
(v)=

P
u

P
k>0(1−c)k cRP

[k]
v (u)cRP

[k]
v (u)ŜSim

(t−1)
(u)

12: ŜSim(v) = ŜSim(v)− (−1)tŜSim
(t)

(v)
13: for each nodev do
14: RoundŜSim(v) to multiples ofε.

Now we may recursively define a value that counts all pairs of
walks with at leastt + 1 inner points where the walks meet; the
values below in fact count each pair

`
s

t+1

´
times that meet at ex-

actlys inner points. First we define self-similarity as

SSim(t+1)(v) =
X

u

X
k>0

(1− c)kRP[k]
v (u)RP[k]

v (u) · SSim(t)(u)

(14)
and then similarity with at leastt+ 1 inner meeting points as

Sim(t+1)
v1,v2 =

X
u

X
k>0

(1−c)kRP[k]
v1 (u)RP[k]

v2 (u) ·SSim(t)(u). (15)

By the principle of inclusion and exclusion

Sim(v1, v2) = Sim(0)
v1,v2 − Sim(1)

v1,v2 + Sim(2)
v1,v2 − . . . (16)

where Sim(0) is defined in (12) as the weighted number of walk
pairs that are unrestricted in the number of meeting times. Induc-
tion ont shows that Sim(t)v1,v2 ≤

`
1−c

c

´t+1
, thus the infinite series

(16) is (absolute) convergent if1−c
c
< 1. By changing the order of

summation (16) becomes

Sim(v1, v2) =
X
k>0

(1− c)k
X

u

RP[k]
v1 (u)RP[k]

v2 (u) · SSim(u), where

SSim(u) = 1−
X
t≥0

(−1)tSSim(t)(u). (17)

The proof of the main theorems below are omitted due to space
limitations.

THEOREM 7. If c > 1/2 Algorithm 2 usesn · 4
cε
· logn bits

to storecRP
[k]

and dSSim
(t)

values; thelogn factor can be replaced

bye log 1/δ by sketchingcRP
[k]

in widthe/εkmax−k. The algorithm
computes these values inO((m+n log 1−c

c
ε)/(cε)) time measured

in RAM operations and approximatesdSim(v1, v2) inO(logn/(cε))

bit operations time. For givenv1 the setS of non-negativedSim(v1, v2)
values can be computed in bit operations timeO(|S| logn/(cε)).

THEOREM 8. If c > 1/2 the above algorithm gives
|dSimv1,v2 − Simv1,v2 | = O(ε/(c − 1/2)2); when sketching RP,
this holds with probability at least1− δ.

4. Lower bounds

In this section we will prove lower bounds on the database size
of approximate PPR algorithms that achieve personalization over a
subset ofH vertices. More precisely we will considertwo-phase
algorithms: in the first phase the algorithm has access to the edge
set of the graph and has to compute a database; in the second
phase the algorithm gets a query and has to answer by accessing the
database, i.e. the algorithm cannot access the graph during query-
time. A b(H) worst case lower boundon the database size holds,
if for any two-phase algorithm there exists a personalization input
such that a database of sizeb(H) bits is built in the first phase.

We will consider the following queries for0 ≤ ε, δ, φ ≤ 1:

• ε–δ value approximation: given the verticesu, v approximate
PPRu(v) with dPPRu(v) such that

Prob{|PPRu(v)− dPPRu(v)| ≤ ε} ≥ 1− δ.

• φ− ε− δ top query: given the vertexu, with probability1− δ
compute the set of verticesW which have personalized PPR
values according to vertexu greater thanφ. Precisely we require
the following:

∀w ∈ V : PPRu(w) ≥ φ⇒ w ∈W
∀w ∈W : PPRu(w) ≥ φ− ε

As Theorem 6 of [11] shows, any two-phase PPR algorithm solv-
ing the exact (ε = 0) PPR value problem requires anΩ((1 −
2δ)|H| ·n) bit database. Our tool towards the lower bounds will be
the asymmetric communication complexity gamebit-vector prob-
ing [14]: there are two playersA andB; playerA has a vectorx of
m bits; playerB has a numbery ∈ {1, 2, . . . ,m}; and they have to
compute the functionf(x, y) = xy, i.e., the output is theyth bit of
the input vectorx. To compute the proper output they have to com-
municate, and communication is restricted in the directionA→ B.
Theone-way communication complexity[21] of this function is the
number of transferred bits in the worst case by the best protocol.

THEOREM 9 ([14]). Any protocol that outputs the correct an-
swer to the bit-vector probing problem with probability at least1+γ

2
must transmit at leastγm bits.

Now we are ready to state and prove our lower bounds, which
match the performance of the algorithms presented in Sections 2
and 3.1, hence showing that they are space optimal.

THEOREM 10. Any two-phaseε–δ PPR value approximation
algorithm withε, δ > 0 builds a database ofΩ(1

ε
· log 1

δ
· |H|) bits

in worst case, when the graph has at least|H|+ 1−c
8εδ

nodes.

PROOF. We prove the theorem by reducing the bit vector prob-
ing problem to theε–δ approximation. Given a vectorx of m =
Ω(1

ε
· log 1

δ
· |H|) bits, playerA will construct a graph and compute

a PPR database with the first phase of theε–δ approximation algo-
rithm. ThenA transmits this database toB. PlayerB will perform
a sequence of second-phase queries such that the required bitxy

will be computed with error probability1
4
. The above outlined pro-

tocol solves the bit vector probing with error probability1
4
. Thus

the database size that is equal to the number of transmitted bits is
Ω(m) = Ω(1

ε
· log 1

δ
· |H|) in worst case by Theorem 9. It remains

to show the details of the graph construction onA’s side and the
query algorithm onB’s side.

Given a vectorx ofm = 1−c
2ε
· log 1

4δ
· |H| bits,A constructs the

“bipartite” graph with vertex set{ui : i = 1, . . . , |H|} ∪ {vj,k :

j = 1, . . . , 1−c
2ε
, k = 1, . . . , 1

4δ
}. For the edge set,x is partitioned

into 1−c
2ε
· |H| blocks, where each blockbi,j containslog 1

4δ
bits

for i = 1, . . . , |H|, j = 1, . . . , 1−c
2ε

. Notice that eachbi,j can be
regarded as a binary encoded number with0 ≤ bi,j < 1

4δ
. To

encodex into the graph,A adds an edge(ui, vj,k) iff bi,j = k, and
also attaches a self-loop to eachvj,k. Thus the1−c

2ε
edges outgoing

from ui represent the blocksbi,1, . . . , bi,(1−c)/2ε.
After constructing the graphA computes anε–δ approximation

PPR database with personalization available onu1, . . . , u|H|, and
sends the database toB, who computes theyth bit xy as follows.
SinceB knows which of the blocks containsxy it is enough to com-
putebi,j for suitably choseni, j. The key property of the graph
construction is that PPRui(vj,k) = 1−c

d+(ui)
= 2ε iff bi,j = k

otherwise PPRui(vj,k) = 0. ThusB computesdPPRui(vj,k) for
k = 1, . . . , 1

4δ
by the second phase of theε–δ approximation al-

gorithm. If all dPPRui(vj,k) are computed with|PPRui(vj,k) −dPPRui(vj,k)| ≤ ε, thenbi,j containingxy will be calculated cor-
rectly. By the union bound the probability of miscalculating any ofdPPRui(vj,k) is at most 1

4δ
· δ = 1

4
.

THEOREM 11. Any two-phase PPR algorithm solving the top
query problem with parametersε > 0, δ ≥ 0 builds a database of
Ω(1−2δ

ε
|H| logn) bits in worst case, when the graph has

n ≥ 2|H|+
`

1−c
2ε

´2
nodes.

PROOF. We will proceed according to the proof of Theorem 10.
Let φ = 2ε andk = b 1−c

2ε
c and the graph have nodes{ui : i =

1, . . . , |H|} ∪ {vj : j = 1, . . . , n∗} (with n∗ = n− |H|). By the
assumptions on the vertex count,n∗ = Ω(n) and

√
n
∗ ≥ k.

Let the size of the bit-vector probing problem’s input bem =
|H| · k · logn∗/2. Assign each of thek · logn∗/2 sized blocks
to a vertexui and fix a code which encodes these bits intok-sized
subsets of the vertices{vj}. This is possible, as the number of
subsets is̀ n∗

k

´
> (n∗

k
)k ≥

√
n
∗k

. These mappings are known to
both partiesA andB. Note that due to the constraints onn∗, k, |H|
andn we havek · logn∗/2 = Ω(1

ε
logn).

Given an input bit-vector ofA, for each vertexui take its block
of bits and compute the corresponding subset of vertices{vj} ac-
cording to the fixed code. Letui have an arc into these vertices.
Let all verticesvj have a self-loop. NowA runs the first phase of
the PPR algorithm and transfers the resulting database toB.

Given a bit indexy, playerB determines its block, and issues
a top query on the representative vertex,ui. As each of the out-
neighborsw of ui has PPRui(w) = 1−c

d+(ui)
= 1−c

k
≥ φ, and all

other nodesw′ have PPRui(w
′) = 0, the resulting set will be the

set of out-neighbors ofui, with probability1 − δ. Applying the
inverse of the subset encoding, we get the bits of the original input
vector, thus the correct answer to the bit-vector probing problem.
Setting 1+γ

2
= 1 − δ we get that the number of bits transmitted,

thus the size of the database was at leastΩ(γ|H| · k · logn∗/2) =
Ω(1−2δ

ε
|H| logn).

We remark that using the graph construction in the full version
of [12] it is straightforward to modify Theorems 10 and 11 to obtain
the same space lower bounds for SimRank as well. Moreover, it is
easy to see that Theorem 11 holds for the analogous problem of
approximately reporting the topt = 1/φ number vertices with the
highest PageRank or SimRank scores respectively.

With the graph construction of Theorem 10 at hand, it is possible
to bypass the bit-vector probing problem and reduce the approxi-
mate personalized PageRank value query to similar lower bounds
for the Bloom filter [4] or to a weaker form for the Count-Min

sketch [8]. However, to the best of our knowledge, we are unaware
of previous results similar to Theorem 11 for the top query.

5. Experiments

This section presents our personalized PageRank experiments on
80M pages of the 2001 Stanford WebBase crawl [15]. The follow-
ing questions are addressed by our experiments:

• How does the rounding error affect the quality and running time
of the rounded dynamic programming algorithm? We confirm
that the maximum error drops linearly in the rounding errorε,
and find that running times increase sublinearly with1/ε, mak-
ing rounded dynamic programming particularly scalable.

• How do the qualities of the various algorithms relate to each
other? We conclude that rounded dynamic programming out-
performs all the other methods by a large margin.

5.1 Measuring the Quality of Approximate PageRank Scores

We compare our approximate PPR scores to exact PPR scores
computed by the personalized PageRank algorithm of Jeh and Widom
[17] with a precision of10−8 in L1 norm. In the experiments we
set teleportation constantc to its usual value0.15, and personalize
on a single pageu chosen uniformly at random from all vertices.
The experiments were carried out with 1000 independently chosen
personalization nodeu, and the results were averaged.

To compare the exact and approximate PPR scores personalized
to pageu, we measure the difference between top score lists of
exact PPRu and approximatedPPRu vectors. The lengtht of the
compared top lists is in the range 5 to 1000, which is the usual
maximum length of the results returned by search engines.

The comparison of top lists is key in measuring the goodness of
a ranking method [9, and the references therein] or the distortion of
a PageRank encoding [13]. LetTu

t denote the set of pages having
thet highest personalized PageRank values in the vector PPRu per-
sonalized to a single pageu. We approximate this set bycTu

t , the set
of pages having thet highest approximated scores in vectordPPRu.
We will apply the following three measures to compare the exact
and approximate rankings ofTu

t and cTu
t . The first two measures

will determine the overall quality of the approximated top-t setcTu
t ,

as they will be insensitive to the ranking of the elements withincTu
t .

Relative aggregated goodness[26] measures how well the ap-
proximate top-t set performs in finding a set of pages with high total
personalized PageRank. It calculates the sum of exact PPR values
in the approximate set compared to the maximum value achievable
(by using the exact top-t setTu

t):

RAG(t, u) =
X

v∈dT u
t

PPRu(v)/
X

v∈T u
t

PPRu(v)

We also measure theprecisionof returning the top-t set (note
that as the sizes of the sets are fixed, precision coincides withre-
call). If all exact PPR scores were different we could simply define

precision as|
dT u

t ∩T u
t |

t
. Treating nodes with equal exact PPR scores

in a more liberal way we define precision as

Prec(t, u) = |v ∈ cTu
t : PPRu(v) ≥ min

w∈T u
t

PPRu(w)|/t

The third measure,Kendall’sτ compares the exact ranking with
the approximate ranking in the top-t set. Note that the exact PPR
list of nodes with a small neighborhood or the tail of approximate
PPR ranking may contain a large number of ties (nodes with equal

scores) that may have a significant effect on rank comparison. Ver-
sions of Kendall’sτ with different tie breaking rules appear in the
literature, we use the original definition as e.g. in [19]. Ignoring ties
for the ease of presentation, the rank correlation Kendall’sτ com-
pares the number of pairs ordered the same way in both rankings
to the number of reversed pairs; its range is[−1,+1], where−1
expresses complete disagreement,+1 represents a perfect agree-
ment. To restrict the computation to the topt elements, we took
the union of the exact and approximated top-t setsTu

t ∪ cTu
t . For

each ordering, all nodes that were outside the orderings’ top-t set
were considered to be tied and ranked strictly smaller than any node
contained in its top-t set.

5.2 Breadth First Search Heuristic

One of our baselines in our experiments is a heuristically mod-
ified power iteration algorithm. While the example of Figure 1
shows that we may get large error even by discarding very small
intermediate values, a heuristic that delays the expansion of nodes
with small current PageRank values [17, 22, 6] still achieves good
results on real world data.

When personalizing to nodeu, let us start fromχu and keep
a dedicated list of the non-zero entries, which we expand breadth
first. This allows us to perform one iteration quickly as long as
these lists are not too long; we cease the expansion if we have
reached the valueS. Moreover we skip the expansion originat-
ing from a node if its current PageRank divided by the outdegree is
below a given thresholdE. Finally we never let the number of it-
eration exceed the predetermined valueK. We experimented with
a variant of McSherry’s state of the art update iteration [22], as
well as a scheme to reuse the previous node’s result, but neither of
them produced better approximation within the same running time,
hence we do not report these results.

5.3 Results

We conducted our experiments on a single AMD Opteron 2.0
GHz machine with 4 GB of RAM under Linux OS. We used a
semi-external memory implementation for rounded dynamic pro-

gramming, partitioning the intermediatedPPR
(k)

u (w) vectors along
the coordinatew. Using a single vector allowed us to halve the
memory requirements by storing the intermediate results in a FIFO

like large array, moving thedPPR
(k)

u being updated from the head
of the queue to its tail. We stored the PageRank values as multi-
ples of the rounding errorε using a simple but fast variable length

byte-level encoding. We did not partition the vectordPPR
(k)

u (w)
into predefined subsets ofw; instead as the algorithm ran out of
memory, it split the current set ofw and checkpointed one half to
disk. Once the calculation in the first half was finished, it resumed
in the second half, resulting in a Depth First Search like traversal
of subsets ofw. Since dynamic programming accesses the edges
of the graph sequentially, we could overlay the preloading of the
next batch of edges with the calculations in the current batch using
either asynchronous I/O or a preloader thread. This way we got the
graph I/O almost for free. It is conceivable that reiterations [22]
or the compression of vertex identifiers [3] could further speed up
the computation. For implementations on a larger scale one may
use external memory sorting with the two vector dynamic program-
ming variant. Or, in a distributed environment, we may partition the
graph vertices among the cluster nodes, run a semi-external mem-
ory implementation on each node and exchange the intermediate
results over the network as required. To minimize network load, a

partition that respects the locality of links (e.g. hostname based) is
advisable.

In our first experiment we demonstrate the convergence of rounded
dynamic programming measured by the maximum error as the num-
ber of iterations increases whilst keepingε fixed at a modest10−4

in all iterations. On Figure 2, left, it can be clearly seen that the
underlying exact dynamic programming converges in far fewer it-
erations than its worst case bound oflog1−c ε = 57 and that the
maximum error due to rounding is roughly one half of the bound
ε/c ≈ 7 · 10−4 provable for the simplified algorithm that rounds
to fixedε in all iterations. On Figure 2, right we see the goodness
of the approximate ranking improving the same way as maximum
error drops. This is theoretically clear since at maximum one-sided
error of ε′ we never swap pairs in the approximate rankings with
exact PageRank values at leastε′ apart. In the chart we set the top
set sizet to 200.

1e-04

0.001

0.01

0.1

5 10 15 20 25 30 35 40 45

M
ax

im
um

E
rr

or

Number of iterations

DP with rounding3

3

3

3

3

3
3

3
3 3 3 3 3

3

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

5 10 15 20 25 30 35 40 45

G
oo

dn
es

s
of

A
pp

ro
xi

m
at

io
n

Number of iterations

RAG

3

33 33 33 3 3 3 3 3 3

3

Prec

+

+

+
++ ++ + + + + + +

+
τ

2

2
2

22 22 2 2 2 2 2 2

2

Figure 2: Effect of the number of iterationskmax with ε = 10−4

rounding error.

Based on the experiences of Figure 2 we set the number of it-
erationskmax to a conservative35 and investigated the effects of
the errorε, using rounding to varyingεk as in Algorithm 1. The
straight line on Figure 3, left clearly indicates that rounding errors
do not accumulate and the maximum error decreases linearly with
the rounding error as in Theorem 2. Additionally the error is much
smaller than the worst case bound3, for example atε = 10−5 it is
3.5 ·10−5 vs. 20 ·10−5. The running time scales sublinearly in1/ε
(e.g. from 3.5 hours to 14 hours when moving fromε = 10−3 to
ε = 10−4) as it is governed by theactualaverage number of PPRu

entries being aboveε and not the worst case upper estimate1/ε.
The same observation applies to the database size, which requires
201 GB forε = 10−5. The right panel of Figure 3 demonstrates
that the approximate ranking improves accordingly as we move to
smaller and smallerε (we set the top set sizet to 100).

1e-05

1e-04

0.001

0.01

0.1

1

1e-051e-040.0010.01

M
ax

im
um

E
rr

or

Rounding errorε

DP with rounding

3
3

3

3
3

3
3

3

Worst case bound

+
+

+

+
+

+
+ +

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e-051e-040.0010.01

G
oo

dn
es

s
of

A
pp

ro
xi

m
at

io
n

Rounding errorε

RAG

3333
3

3

3

3

Prec

++
+

+

+

+
+

+
τ

222
2

2

2
2

2

Figure 3: Effect of the rounding error ε with kmax = 35 itera-
tions.

We now turn to the experimental comparison of personalized
PageRank approximation algorithms summarized in Table 2. For
3For the ease of presentation, we have ignored the issue of dangling
nodes, ie. nodes with zero out-degree, throughout this paper. In the
presence of dangling nodes the bound of Theorem 2 becomes3ε/c.

Algorithm Reference Running
time

Dynamic Programming withε = 2 ·
10−5 and ε = 10−5 rounding to
varyingεk

Section 2.1 1.5 and
2.25 days

Dynamic Programming withε = 6 ·
10−3, δ = 4 · 10−3 sketches

Section 2.2 6 days

Monte Carlo sampling withN =
10000 samples and path truncation
lengthL = 35

[12] 6 days

Breadth First Search heuristic with
parametersE = 10−5, S =
2000,K = 35

Section 5.2 3.5 days

Table 2: Summary of approximate personalized PageRank al-
gorithms and heuristics.

the BFS heuristic and the Monte Carlo method we used an ele-
mentary compression (much simpler and faster than [3]) to store
the Stanford WebBase graph in 1.6 GB of main memory, hence
the semi-external dynamic programming started with a handicap.
Finally we mention that we did not apply rounding to the sketches.

It is possible to enhance the precision of most of the above al-
gorithms by applying the neighbor averaging formula (4) over the
approximate values once at query time. We applied this trick to
all algorithms, except for the sketches (where it does not make a
difference), which resulted in slightly higher absolute numbers for
larger top lists at a price of a tiny drop for very short top lists, but
did not affect the shape or the ordering of the curves. Due to the
lack of space, we report neighbor averaged results only.

All three measures of Figure 4 indicate that as the top list size
increases, the task of approximating the top-t set becomes more
and more difficult. This is mainly due to the fact that among lower
ranked pages the personalized PageRank difference is smaller and
hence harder to capture using approximation methods. As expected,
RAG scores are the highest, and the strictest Kendall’sτ scores
are the smallest with precision values being somewhat higher than
Kendall’sτ .

Secondly, the ordering of the algorithms with respect to the qual-
ity of their approximate top lists is fairly consistent among Relative
Aggregated Goodness, Precision and Kendall’sτ . Rounded dy-
namic programming performs definitely the best, moreover its run-
ning times are the lowest among the candidates. The runner up
Breadth-First Search heuristic and Monte Carlo sampling seem to
perform similarly with respect to Relative Aggregated Goodness
with Monte Carlo sampling underperforming in the precision and
Kendall’sτ measures. Although sketching is quite accurate for sin-
gle value queries with an average additive error of5 · 10−4, its top
list curve drops sharply at sizet around50. This is due to the fact
thatδ � 1/n and hence a large number of significantly overesti-
mated vertices crowd out the true top list. Based on these find-
ings, for practical applications we recommend rounded dynamic
programming with neighbor averaging , which achieves solid pre-
cision and rank correlation (at or above0.95) over the top200−300
pages with reasonable resource consumption.

Lastly we remark that preliminary SimRank experiments over
the same WebBase graph indicate that Algorithm 2 outperforms
iterations (8–9) when using an equal amount of computation. Ad-
ditionally SimRank scores computed by Algorithm 2 achieve mar-
ginally weaker agreement (Kruskal-GoodmanΓ = 0.33) with the
Open Directory Project (http://dmoz.org) as Monte Carlo sampling
(Γ = 0.34) [12] but with higher recall.

http://http://dmoz.org

0.99

0.992

0.994

0.996

0.998

1

10 100 1000

R
el

at
iv

e
A

gg
re

ga
te

d
G

oo
dn

es
s

Size of top listt

Roundingε = 10−5

3 3 3 3 3 3 3 3 3 333 3 3 3 3 3 333
3

3

3

Roundingε = 2 · 10−5

+ + + + + + + + + +++ + + + + + +++

+

+

+

Sketch

2
2

2

2

2

2

2

2

Monte Carlo

× × × × × × × × ××××
×

×
×
×
×
×
××

×

×

×

BFS

4

4
4

4 4 4 4 44444
4

4 4 44444
4

4

4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 100 1000

P
re

ci
si

on

Size of top listt

Roundingε = 10−5

3 3 3 3 3 3 3 3 3 333
3

3
3

3

3
3

3
3

3

3

3

Roundingε = 2 · 10−5

+ + + + + + + + + +++

+

+

+

+

+

+

+

+

+

+

+

Sketch

2 2 2
2

2
2

2

2

2

2

2

2
2

Monte Carlo

×
× × × × × × × × ×××

×

×
×
×
×
×
×
×

×

×
×

BFS

4 4 4 4 4 4 4 4 4444
4

4
4
4
4
4
4
4

4

4

4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 100 1000

K
en

da
ll’

s
τ

Size of top listt

Roundingε = 10−5

3 3 3 3 3 3 3 3 3 333 3 3 3 3 3 333

3

3

3

Roundingε = 2 · 10−5

+ + + + + + + + + +++ + + +
+

+
+++

+

+

+

Sketch

2
2 2 2 2 2

2

2

2

2

2

2

2

Monte Carlo

×
×

× × × × × × × ×××
×

×
×
×
×
×
××

×

×

×

BFS

4
4 4 4 4 4 4 4 4444

4
4
4
44444

4
4

4

Figure 4: Empirical comparison of approximate personalized
PageRank algorithms with three measures of goodness and
varying top set sizet.

6. Conclusions and Future work

We presented algorithms for the personalized PageRank and Sim-
Rank problems that give provable guarantees of approximation and
build space optimal data structures to answer arbitrary on-line user
queries. Experiments over 80M pages showed that for the personal-
ized PageRank problem rounded dynamic programming performs
remarkably well in practice both in terms of precomputation time,
database size and the quality of approximation.

An interesting open question is whether our techniques can be
extended to approximate other properties of Markov chains over
massive graphs, e.g. the hitting time. Another important area of
future work is to thoroughly evaluate the quality of the SimRank

approximation algorithms. Finally we leave the existence of theo-
retically optimal algorithms for SimRank value and top list queries
with parameterc ≤ 1/2 open.

7. REFERENCES
[1] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Sampling algorithms:

Lower bounds and applications.Proc. of 33rd STOC, 2001.
[2] B. H. Bloom. Space/time trade-offs in hash coding with allowable

errors.Commun. ACM, 13(7):422–426, 1970.
[3] P. Boldi and S. Vigna. The webgraph framework I: Compression

techniques.Proc. of 13th WWW, pp. 595–602, 2004.
[4] A. Z. Broder and M. Mitzenmacher. Network applications of Bloom

filters: A survey.Internet Mathematics, 1(4):485–509, 2005.
[5] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items

in data streams.Proc. of 29th ICALP, pp. 693–703, 2002.
[6] Y.-Y. Chen, Q. Gan, and T. Suel. Local methods for estimating

PageRank values.Proc. of 12th CIKM, pp. 381–389, 2004.
[7] G. Cormode and S. Muthukrishnan. An improved data stream

summary: The Count-Min sketch and its applications.Journal of
Algorithms, 55(1):58–75, 2005.

[8] G. Cormode and S. Muthukrishnan. Summarizing and mining skewed
data streams.Proc. of 5th SIAM Intl. Conf. on Data Mining, 2005.

[9] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee.
Comparing and aggregating rankings with ties.Proc. of 23rd PODS,
2004.

[10] D. Fogaras. Where to start browsing the web?Proc. of 3rd I2CS,
Springer LNCS vol. 2877, pp. 65–79, 2003.

[11] D. Fogaras and B. Rácz. Towards scaling fully personalized
PageRank.Proc. of 3rd WAW, pp. 105–117, 2004. Full version to
appear in Internet Mathematics.

[12] D. Fogaras and B. Rácz. Scaling link-based similarity search.
Proc. of 14th WWW, pp. 641–650, 2005. Full version available at
www.ilab.sztaki.hu/websearch/Publications/ .

[13] T. H. Haveliwala. Topic-sensitive PageRank: A context-sensitive
ranking algorithm for web search.IEEE Transactions on Knowledge
and Data Engineering, 15(4):784–796, 2003.

[14] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on
data streams. InExternal Memory Algorithms, DIMACS Book Series
vol. 50., pp. 107–118. American Mathematical Society, 1999.

[15] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke. WebBase:
A repository of web pages.Proc. of 9th WWW, pp. 277–293, 2000.

[16] G. Jeh and J. Widom. SimRank: A measure of structural-context
similarity. Proc. of 8th SIGKDD, pp. 538–543, 2002.

[17] G. Jeh and J. Widom. Scaling personalized web search.Proc. of 12th
WWW, pp. 271–279, 2003.

[18] S. Kamvar, T. H. Haveliwala, C. Manning, and G. Golub. Exploiting
the block structure of the web for computing PageRank. Technical
Report 2003-17, Stanford University, 2003.

[19] M. G. Kendall.Rank Correlation Methods. Hafner Publishing Co.,
New York, 1955.

[20] J. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, 1999.

[21] E. Kushilevitz and N. Nisan.Communication Complexity. Cambridge
University Press, 1997.

[22] F. McSherry. A uniform approach to accelerated PageRank
computation.Proc. of 14th WWW, pp. 575–582, 2005.

[23] S. Muthukrishnan. Data streams: Algorithms and applications.
Foundations and Trends in Theoretical Comp. Sci., 1(2), 2005.

[24] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford University, 1998.

[25] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: A fast and
scalable tool for data mining in massive graphs.Proc. of 8th
SIGKDD, pp. 81–90, 2002.

[26] P. K. C. Singitham, M. S. Mahabhashyam, and P. Raghavan.
Efficiency-quality tradeoffs for vector score aggregation.Proc. of
30th VLDB, pp. 624–635, 2004.

[27] J. S. Vitter. External memory algorithms and data structures: Dealing
with massive data.ACM Computing Surveys, 33(2):209–271, 2001.

	Introduction
	Related Results
	Preliminaries

	Personalized PageRank
	Rounding
	Sketching

	SimRank
	Reduction of SimRank to PPR

	Lower bounds
	Experiments
	Measuring the Quality of Approximate PageRank Scores
	Breadth First Search Heuristic
	Results

	Conclusions and Future work
	REFERENCES -9pt

