
Searching with Context

Reiner Kraft Chi Chao Chang
Farzin Maghoul Ravi Kumar

Yahoo!, Inc.
Sunnyvale, CA 94089, USA

{reiner,chichao,fmaghoul,ravikumar}@yahoo-inc.com

ABSTRACT
Contextual search refers to proactively capturing the infor-
mation need of a user by automatically augmenting the user
query with information extracted from the search context;
for example, by using terms from the web page the user is
currently browsing or a file the user is currently editing.

We present three different algorithms to implement con-
textual search for the Web. The first, query rewriting (QR),
augments each query with appropriate terms from the search
context and uses an off-the-shelf web search engine to answer
this augmented query. The second, rank-biasing (RB), gen-
erates a representation of the context and answers queries
using a custom-built search engine that exploits this repre-
sentation. The third, iterative filtering meta-search (IFM),
generates multiple subqueries based on the user query and
appropriate terms from the search context, uses an off-the-
shelf search engine to answer these subqueries, and re-ranks
the results of the subqueries using rank aggregation meth-
ods.

We extensively evaluate the three methods using 200 con-
texts and over 24,000 human relevance judgments of search
results. We show that while QR works surprisingly well, the
relevance and recall can be improved using RB and substan-
tially more using IFM. Thus, QR, RB, and IFM represent a
cost-effective design spectrum for contextual search.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
Retrieval—Information Search and Retrieval

General Terms
Experimentation

Keywords
Contextual Search, Meta-search, Web Search, Specialized
Search Engines, Rank Aggregation

1. INTRODUCTION
Current keyword-based search engines have turned out to

be remarkably effective so far, especially given the gargan-
tuan Web and the barely cryptic expression of intent by

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

the user via a short web query. Maintaining this effective-
ness, however, will be increasingly challenging for two main
reasons: an unabated growth of the Web and an increas-
ing expectation placed by the user on the search engine to
anticipate and infer his/her information needs and provide
relevant results.

Owing to the inherent ambiguity and incompleteness of
queries, it is difficult for search engines to maintain high
relevance. Queries might be topic-wise ambiguous, as exem-
plified by “jaguar” or “Michael Jordan.” Queries might be
intent-wise ambiguous; for example, “stem cell” might con-
note either biology or ethics. Interestingly, disambiguation
is immediate if one pays attention to the context, for ex-
ample, that the user queried for “jaguar” while browsing an
automotive review site or queried for “stem cell” while read-
ing a US senate briefing. This is precisely the theme behind
contextual search. In a nutshell, contextual search refers
to proactively capturing the information need of a user by
automatically augmenting the user query with information
extracted from the search context; for example, by using
terms from the web page the user is currently browsing or a
file the user is currently editing.

The reason why contextual search can be very effective is
quite intuitive. Search queries are often formulated while the
user is engaged in some larger task. In these cases, the con-
text is bound to contain information that can help refine the
meaning of the user’s query. A contextual search engine—
such as Y!Q Contextual Search [18]—might take the con-
text as an additional input to disambiguate and augment
the user’s explicit query. Thus, in addition to disambiguat-
ing queries, context can help narrow searches and reveal
latent user intent. In fact, a study of query logs shows that
many users already do some form of contextual search, al-
beit manually [20]. They use additional words to refine and
reissue queries when the search results for the initial query
turn out to be unsatisfactory; these additional words are
often obtained from the browsing context. Unfortunately,
user-initiated contextual search in the form of query refine-
ment has its obvious limitations, necessitating an automatic
means for searching with context.

Implementing contextual search involves two tasks. The
first is the user interface, which has been extensively dis-
cussed within the context of Y!Q [18]. The second consists
of extracting and representing the context, and using the
context in conjunction with the query. This second task the
main focus of our paper.

We provide a spectrum of algorithms to perform auto-
matic contextual search and present three of them—query

rewriting, rank-biasing, and iterative filtering meta-search—
that address a variety of engineering and relevance needs,
from the most efficient to the most effective.

The first algorithm, query rewriting (QR), augments each
query with appropriate terms from the search context and
uses an off-the-shelf web search engine to answer this aug-
mented query. The second algorithm, rank-biasing (RB),
generates a representation of the context and answers queries
using a custom-built search engine that exploits this rep-
resentation. The third algorithm, iterative filtering meta-
search (IFM), generates multiple subqueries based on the
user query and appropriate terms from the search context,
uses an off-the-shelf search engine to answer these subqueries,
and re-ranks the results of the subqueries using rank aggre-
gation methods.

QR is an attractive method because it fits naturally with
the “querybox” semantics offered by major search engines,
and as such can be implemented on top of them in a straight-
forward fashion. The semantic engine basically suggests
query terms to be added to the query box. Analogously,
most web search users typically add more query terms when
reformulating their queries in an attempt to get more rele-
vant results [20]. RB departs from this natural model and
takes advantage of a special feature—the ability to boost
results using contextual information that may or may not
be available in major search engines. IFM relies on meta-
search and rank aggregation in an all-out attempt to deliver
the most relevant results.

We then systematically study the three algorithms by us-
ing 24,566 judgments from 28 expert judges; these judg-
ments arose out of a benchmark of 200 contexts. Our find-
ings are summarized below:

• QR performs surprisingly well and has different op-
timal operating points depending on the web search
engine used. In particular, the operating points are a
function of the effective recall.

• RB and IFM mitigate the recall limitations encoun-
tered with QR. IFM is very effective and outperforms
the others both in recall and relevance.

• Human reformulations are very unlikely to achieve com-
parable relevance with respect to any of the three meth-
ods.

In Section 2, we review related work and provide more
background on contextual search, clarifying the terminology
used in the remainder of the paper. In Section 3, we present
the three different algorithms for contextual search. In Sec-
tion 4, we describe the experimental setup and metrics, and
present the evaluation results.

2. PRELIMINARIES
This section discusses related work and defines the termi-

nology we will use throughout the remainder of this paper.

2.1 Related Work
The majority of the contextual search work revolves around

learning user profiles based on previous searches, search re-
sults, and (recently) Web navigation patterns. The informa-
tion system uses this learning to represent the user interest
for the refinement of future searches. Another area of learn-
ing is focused on context learning (e.g., [15, 2]) based on

judged relevant documents, query terms, document vectors,
etc.

“Context as a query” (e.g., [16, 23, 6, 8, 4]) treats the
context as a background for topic specific search and ex-
tracts the query representing the context and therefore, the
task at hand. Some recent contextual search tools (e.g., Y!Q
[18] (http://yq.search.yahoo.com), Blinkx (http://www.
blinkx.com/), The Dashboard (http://nat.org/dashboard/),
IntelliZap [14]), and more general contextual ads (e.g., Google
AdSense (https://www.google.com/adsense/), Yahoo! Pub-
lisher Network (http://publisher.yahoo.com)) explore this
idea further. Lawrence [21] argues that next generation
search engines will increasingly make use of context infor-
mation.

The IFM approach can be used as a basis to build Web
carnivores. Etzioni coined this colorful phrase [10]. In this
analogy, web pages are at the bottom of the Web informa-
tion food chain. Search engines are the herbivores of the
food chain, grazing on web pages and regurgitating them
as searchable indices. Carnivores sit at the top of the food
chain, intelligently hunting and feasting on the herbivores.
The carnivore approach leverages the significant and contin-
uous effort required to maintain a world-class search engine
(crawling, scrubbing, de-spamming, parsing, indexing, and
ranking.) In a search context, the carnivore approach is
applicable when standard web search engines are known to
contain the documents of interest but do not return them in
response to simple queries.

2.2 Terminology
We stated earlier that the relevance of web search results

can be improved if context is used. Unfortunately the word
“context” is overloaded with many different meanings. We
therefore want to state more precisely what we mean by
context and give some related terminology.

Context, in its general form, refers to any additional infor-
mation associated with the query. In this paper we narrow
context to represent a piece of text (e.g., a few words, a sen-
tence, a paragraph, an article) that has been authored by
someone.

This naturally leads to a context term vector. This is
a dense representation of a context that can be obtained
using various text or entity recognition algorithms (e.g., [5,
3, 25]) and represented in the vector space model [26]. In this
model extracted terms are typically associated with weights
that represent the importance of a term within the context,
and/or additional meta-data. The terms of a context term
vector may represent (but are not limited to) a subset of the
words/phrases/entities in the content of the context. For
completeness we point out that there are contextual search
implementations (e.g., ConQuery1) that do not make use of
a context term vector, but rather use the selected context
itself as part of the query. There are relevancy problems
associated with such an implementation, since the selected
text may contain many noise terms, stop-words, and terms
that are not central to the gist of the context.

A search query that comprises a keyword query and a
context (represented by a context term vector) is called a
“contextual search query”. Notice that either of these com-
ponents can be empty. If the keyword query is empty, then
it is called “query-less.” Contextual search refers to a search
metaphor that is based on contextual search queries.

1http://conquery.mozdev.org/

We identify two families of queries. Simple queries (SQ)
are regular keyword based search queries, i.e., not contextual
search queries. They typically comprise a few keywords or
phrases, but no special or expensive operators (e.g., proxim-
ity operators.) Complex queries (CQ) are regular keyword
based search queries and typically consist of keywords or
phrases plus ranking operators; they are more expensive to
evaluate.

Standard search engine (Std. SE) refers to web search
engines like Yahoo! (http://search.yahoo.com) or Google
(http://www.google.com) that support simple queries. A
modified search engine (Mod. SE) refers to a web search
engine that has been modified to support complex search
queries using rank-biasing operators. Finally, a contextual
search engine (CSE) is an application front-end that sup-
ports contextual search queries.

In the remainder of the paper we use the term “query”
to refer to regular keyword search queries. If we refer to a
“contextual search query”, we will explicitly state so.

3. CONTEXTUAL SEARCH
As we pointed out earlier, there are different methods

to implement contextual search. Figure 1 illustrates these.
There are two dimensions that can characterize a particular
method. The first is the number of queries we send per con-
textual search query to the search engine, either sequentially
or in parallel. The second is the type of queries we send to
the search engine; we distinguish here between simple and
complex queries (see earlier definition.)

We can enumerate and name these methods as follows
(the numbering corresponds to Figure 1):

(1) Query Rewriting (QR): Send one simple query per
contextual search query to a standard search engine.

(2) Rank-Biasing (RB): Send one complex query per con-
textual search query to a modified search engine.

(3) Iterative, Filtering Meta-Search (IFM): Send mul-
tiple, simple queries per contextual search query to a
standard search engine.

For completeness we also mention the fourth method of
sending multiple, complex queries to a modified search en-
gine backend. However, we did not consider this case fur-
ther for the following reason. Within a search engine ar-
chitecture, given the limited resources, there are economic
decisions to make when trying to increase its scalability to
support more traffic. One way to increase scalability is to
improve the number of simple queries that can be handled
per second; this is the typical scenario. The other way is
to allow queries to be more complex, i.e., to put in more
logic into the ranking function. However, investing in both
scenarios is quite expensive from a practical standpoint.

3.1 Query Rewriting
In this scenario (Figure 1), for every contextual search

query, we send one, simple query to a standard search en-
gine backend. The query rewriting approach creates queries
composed of all query and context term vector terms to form
a—possibly rather long—query using AND semantics.

QR takes as a parameter the number of terms taken from
the context term vector that should be concatenated with

the query. In the experimental section (Section 4) we de-
scribe QR1 (that takes only the top ranked term from the
context term vector), QR2 (that takes the top two terms
from the context term vector), and so on up to QR5 (that
takes the top five terms from the context term vector.)

An example illustrates how QR generates queries. Con-
sider the query q and a context term vector comprising the
terms (a,b,c,d,e,f) ranked in decreasing order of their
weight. Based on this input QR1 will construct the query q

a, QR2 will construct q a b, and QR5 construct will con-
struct q a b c d e.

The major advantage of this approach is simplicity, espe-
cially since conjunctive semantics is supported in all major
search engines. The disadvantages are:

• The more terms are added in a conjunctive way, the
more restricted the query is, and the less results it will
likely return, i.e., there is a danger of low recall.

• The query and context term vector together may com-
prise more terms than the search engine supports for
evaluation.

3.2 Rank-Biasing
This approach requires a modified search engine back-end

with rank-biasing operators and capabilities. This allows the
query generator component to generate and send a complex
query that contains ranking instructions to such a modified
search engine backend (see Figure 1). The main goal is to
have the same level of recall as if the query were issued
without a context.

Each query is made up of two parts, the selection part
effecting recall, and optional ranking terms only impacting
the score of the selected documents. For example,
<query> = <selection=cat> <optional=persian, 2.0>

This selects all documents containing the term “cat”. How-
ever, it boosts the score of those selected documents con-
taining the terms “persian” by a factor of 2.0. The weight
associated to each optional term determines how strong the
term should influence the overall ranking.

One approach for implementing contextual search using
the rank-biasing approach is to use the selection part for rep-
resenting the regular query, and the optional ranking terms
to represent extracted terms from the context.

RB takes as input the following parameters:

Number of selection terms to use: This parameter de-
termines the number of top ranked extracted terms
from the context term vector that are being used as
selection terms using conjunctive semantics.

Number of rank operators: RB requires support for a
special RANK operator that boosts the ranking of a doc-
ument that contains the desired term. This parameter
determines how many RANK operators should be used.
Those RANK operators are appended to the rewritten
query (after the selection terms that have been ap-
pended.)

Weight multiplier for each RANK operator: Recall that
a term within a context term vector has associated
weights. This parameter is a scaling parameter that
adjusts the weights of the terms in the context term
vector to match the scaling of the search engine’s rank-
ing internals.

Figure 1: Overview of the three methods for contextual search: query rewriting, rank-biasing, and IFM.

An example illustrates how RB generates queries. Con-
sider a query q and a context term vector comprising the
terms (a:100,b:90,c:80,d:70,e:60,f:50) ranked in de-
creasing order of their weight (now we have term-weight
pairs). Based on this input, an RB using 2 context terms as
selection terms, 2 RANK operators, and a weight multiplier of
0.1 constructs a query as follows:
q a b RANK(c,8.0) RANK(d,7.0)

Since we are using two rank operators in this example, we
refer to this configuration as RB2.

Our underlying assumption and motivation for this ap-
proach is to boost the ranking score of the matching doc-
uments that are related to the context. The main disad-
vantage of this method is the need for a specialized search
engine for back-end support.

3.3 Iterative Filtering Meta-search
Overall the IFM model (see Figure 1) is based on the con-

cept of meta-search. Meta-search engines were among the
first applications built on top of web search engines. They
distribute their queries to possibly multiple “real” search en-
gines and combine the results to the user. SavvySearch [17]
and MetaCrawler [24] were both launched in mid-1995 and
appear to have been invented independently. Since then, a
large literature has been written on the topic (see [22] for a
survey.)

There are two major components in the implementation
of IFM: query generation and ranking/filtering. The first
component deals with the generation of subqueries corre-
sponding to every contextual search and the second compo-
nent deals with aggregating the results of these subqueries.
In the following sections we describe these two components
in further detail.

Recall that the main idea in IFM is to explore the problem
domain in a systematic way by sending many appropriate
subqueries to the search engine. Each subquery can be seen
as a different strategy that should be explored. The task is
then to aggregate the results of the subqueries; this aggrega-

tion step will involve filtering and re-ranking of the results
of the subqueries.

3.3.1 Query Generation
For generating subqueries, we use the query template ap-

proach; this is similar to the one adopted in the buying guide
finder [19]. Templates specify what subqueries to construct
from the pool of terms. Given a query and a context, the
first step is use these to derive a candidate pool of terms
and a context term vector. The template is then applied to
this pool to generate many possible subqueries.

As an example, suppose we have a query q and a con-
text term vector (a,b,c,d), where the terms are ranked by
decreasing weight. A query template might suggest gener-
ating the following subqueries: q a, q b, q c, q d, q a

b, q b c ,q c d, q a b c, q a b d, and q a b c d.
Query templates thus represent a convenient means to

specify what type of subqueries to construct from the given
pool of terms, since it is often prohibitive to exhaustively
enumerate all possible subquery combinations; it suffices to
pick only those subqueries that are most viable to produce
good results.

For the purposes of this paper, we experimented with dif-
ferent query templates. A particularly interesting template
is a sliding window of different sizes over the terms in the
context term vector. In the above example, if the window
size is 2, the template would then be q a b, q b c, and q

c d. We exposed the size of the sliding window as a param-
eter. In the experimental section we introduce IFM-SW1
(uses a sliding window of size 1), IFM-SW2 (uses a sliding
window of size 2), up to IFM-SW4 (uses a sliding window
of size 4.)

We also considered a different template where the sub-
query is forced to contain the higher ranked terms in the
context along with the actual query, while the remainder of
the subquery is made up of the lower ranked terms from
the context, in different permutations. Again, in the above
example, if a and b are deemed to be of high rank, a real-

ization of this template might be of the form q a b c, q a

b d, and q a b c d.
As we will see later, our experiments indicate that a very

small and carefully chosen template is sufficient to produce
good results in practice.

3.3.2 Ranking and Filtering
At the end of the query generation phase, we issue the

k subqueries to the standard SE and obtain the results for
each of the k subqueries. The challenge now is how to com-
bine, re-rank, and filter the results of the subqueries in a
meaningful way.

At this point, we note that this phase was relatively easier
in the buying guide finder application [19]. There, a doc-
type classifier was available to label whether a document is
a buying guide or not—a simple binary value. Our present
setting is clearly more complicated since it is desirable that
the combining mechanism exploits the actual ranking of the
results. To accomplish this, we resort to the paradigm of
rank aggregation [24, 9], which is often used in meta-search
and meta-crawlers.

Rank aggregation is the problem of combining several
ranked lists in the best way possible into a single ranked list.
While there are many approaches to rank aggregation, a nat-
ural way is to cast it in a simple combinatorial optimization
framework; for the remainder of the discussion, we will take
this route. In the most idealized form, we are given a uni-
verse U and k ranked lists (i.e., permutations) π1, . . . , πk on
the elements of the universe. The goal is to combine these k

lists into a single ranked list π∗ such that
Pk

i=1
d(π∗, πi)

is minimized. Here, the distance function d(·, ·) can be
any metric on permutations. Popular choices include the
Spearman footrule metric F (π1, π2) =

P

u∈U
|π1(u)−π2(u)|,

which resembles the L1 distance and the Kendall tau metric
K(π1, π2) =

P

u,v∈U
[π1(u) > π1(v) ∧ π2(u) < π2(v)], which

counts pairwise disagreements. From a computational point
of view, the choice of the actual metric is critical. If d is
set to be the footrule metric, then the optimization prob-
lem can be solved exactly in polynomial time; this can be
done by minimum cost perfect matching algorithms. If d is
set to be the Kendall metric, then the optimization prob-
lem becomes NP-hard. However, very good approximation
algorithms exist for the problem. For a description of the
algorithms and some applications, the readers are referred
to [9] and [13, 12].

Rank aggregation is a natural candidate to use in our
setting because it is a principled approach to combine sev-
eral ranked lists where there is a clear notion of a defensi-
ble objective function and the aggregation methods work to
optimize the objective. There are two caveats using rank
aggregation, however. The first is that many rank aggrega-
tion methods operate in a “garbage-in-garbage-out” mode,
i.e., their results might not be impressive if the input lists
are highly non-overlapping. However, this is not a concern
for us since our query generation phase has a built-in ex-
pectation that there would be overlap among the results for
subqueries. The second caveat is the assumption that the
input lists are permutations; clearly this assumption does
not hold true in our setting since the top 100 results of the
subqueries need to be permutations of one another. For-
tunately, many of the rank aggregation algorithms can be
modified to handle this “partial list” case.

We experimented with two basic algorithms for rank ag-
gregation [9]. Recall that the input is k ranked lists, which
are the top few results of k subqueries. The first algorithm,
called rank averaging, works by assigning a score to every
position in a rank list, say, 1 for the first position, 2 for the
second position, and so on. Then, the score of a URL is the
average of the scores it obtains in each of the input lists. If
a URL is not present in a list, its score is size of the list plus
1. The final ordering of URLs is obtained by sorting them
according to their average scores; ties are broken arbitrar-
ily. This method is computationally very attractive and is
an adaptation of the popular voting method called Borda
method. Borda method is a constant-factor approximation
to finding the optimal ranking with respect to the Kendall
metric [11].

The second algorithm, called MC4, is more sophisticated,
computationally intensive, and is based on Markov chains.
The idea is to construct a Markov chain, where the states
of the chain are the URLs in the union of the k lists and
a transition is added from URL u to URL v if a weighted
majority of the input lists rank u above v. Notice that if a
URL is not present in the top results of a list, it is considered
to be ranked lower than all the URLs present in the list.
After making the Markov chain ergodic and aperiodic by
adding a small transition probability from every URL to
every other URL, we compute the stationary distribution
of the chain. The stationary probabilities then determine
the ranking of the URLs. It was shown experimentally that
MC4 performs extremely well in practice [9, 13].

4. EVALUATION AND RESULTS

4.1 Experimental Setup
We use a test benchmark of 200 contexts. The Y!Q Con-

textual Search interface [18] is instrumented to log the con-
texts selected or highlighted by users. These contexts are
mined out of the Y!Q web logs and sampled to arrive at
the final benchmark we used as a basis for our experiments.
The minimum length of a context in that benchmark was 19
words, the average was 338 words, and the maximum length
was 1991 words. The average context term vector size was
13 entries, the smallest was 1 entry and the largest was 15
entries. Six context term vectors out of 200 had fewer than
5 vector entries. Recall in Figure 1 contextual search could
take as input arguments a query and a context. In our ex-
periments we only use context (query is nil.)

We tested a total of 41 configurations:

• 15 configurations of QR. We used three different web
search engines—Yahoo, MSN, and Google—for each of
the five QR configurations as described in Section 3.1.

• 18 configurations of RB. We used 1 and 2 context terms
as part of the query; 2, 4, and 6 RANK operators; and
three different weight multipliers: 0.01, 0.1 and 0.5.
We use Yahoo as the web search engine. However, we
only report the two best RB configurations.

• 8 configurations of IFM. We experimented with rank
averaging and MC4 algorithms, using Yahoo as the
web search engine as well. For each algorithm, we
tried sliding window sizes of 1, 2, 3, and 4.

Table 1 presents a summary of the 25 configurations re-
ported in this paper. Notice that as the number of context

Configuration Description Web Search Engines
QR1 average of 2.25 terms Yahoo, MSN, Google
QR2 average of 4.14 terms Yahoo, MSN, Google
QR3 average of 5.73 terms Yahoo, MSN, Google
QR4 average of 7.30 terms Yahoo, MSN, Google
QR5 average of 8.61 terms Yahoo, MSN, Google
RB2 2 rank operators, weight multiplier= 0.1 Yahoo

1 context terms in query
RB6 6 rank operators, weight multiplier= 0.01 Yahoo

2 context terms in query
IFM RA IFM using rank averaging Yahoo, 4 sizes of sliding window (SW)
IFM MC4 IFM using MC4 Yahoo, 4 sizes of sliding window (SW)

Table 1: Summary of the 25 configurations reported.

vector entries increases, the average number of query terms
in QR increases from 2.25 terms (QR1) to 8.61 terms (QR5).
Meanwhile, the average query length of reformulated queries
(obtained from Yahoo logs in January of 2005) is 2.922 words
(95 % confidence interval is [2.873, 2.972]), compared to an
average of 2.54 ([2.45, 2.66]) based on ComScore (which in-
cludes MSN, Google, and Yahoo) data (http://www.comscore.
com). This suggests that an idealized QR configuration that
could emulate human search behavior would be somewhere
between QR1 and QR2.

4.2 Relevance Methodology
In a standard Cranfield model [7], judgments are issued

with respect to a query in a blind setting to remove bias.
Our evaluation is “end-to-end”, that is, we are only con-
cerned with whether a contextual search configuration ex-
hibits a boost in overall relevance and not with the quality
of intermediate data such as context vectors. Our method-
ology differs from the standard framework in two ways:

Relevancy to the Context: Judges are asked to provide
relevance judgments for documents with respect to the
context. They are asked to read the context carefully
prior to issuing any judgment.

Perceived Relevance: Search engines always return doc-
ument titles and abstracts that are highly tailored to
the given query (recall that query here refers to SQ
and CQ queries constructed from the original query
and the context). In our setting, judges base their rel-
evance judgment on the title and abstract of the docu-
ment, instead of the content of the landing page. Auto-
matic document summarization engines have improved
substantially with time; generally speaking, any of the
three major web search engines used in testing does
a good job distilling the gist of the document. Per-
ceived relevance judgments are cost-effective and keep
the same level of sensitivity and resolution compared
to judgments based on contents of the entire document
[1].

A judge is asked to select a context that he or she feels
most comfortable or least uncomfortable out of the pool of
200 contexts. Once selected, the context is removed from
the pool. Given a context, a judge is presented with a list
of web results, one at a time. For each web result, the judge
answers the following question, “Is this result relevant to the

context?” Judgments are captured in a 3-point scale: “Yes”,
“Somewhat”, “No”, and “Can’t Tell”. A result is relevant
when it bears a strong connection to the context beyond the
superficial; it often times offers additional, complementary,
and related information to the context, generally leading
to a satisfactory search experience. A result is somewhat
relevant when it merely repeats the information provided
by the context, or when it is relevant to only one aspect or
meaning of the context. An irrelevant result is one that has
no bearing to the context even if it merely matches on some
keywords. Finally, a judge can decide to bypass judgment if
he/she simply cannot tell whether the result is relevant or
not.

Consider the following context:

Cowboys Cut Carter; Testaverde to Start OX-
NARD, Calif Quincy Carter was cut by the Dal-
las Cowboys on Wednesday, leaving 40-year-old
Vinny Testaverde as the starting quarterback.
The team wouldn’t say why it released Carter.

This context discusses at length the Dallas Cowboys’ (an
American pro-football team) decision to release quarterback
Quincy Carter. The closing paragraph mentions the fact
that this action leaves Vinny Testaverde as the starting
quarterback. A web result relating directly to the Dallas
Cowboys (i.e., the official website with news flashes) and
Quincy Carter would typically be judged “Yes”. A result
that is apparently repeating the same as or very similar in-
formation to the context may be judged “Somewhat”. A re-
sult about Jimmy Carter, the former president of the U.S.,
would be judged “No”. A result entitled “Cowboy His-
tory and Information” with an abstract that does not clar-
ify whether this refers to Dallas Cowboys or an ordinary
cowboy would typically receive a “Can’t Tell”. To evaluate
relevance, we collected relevance judgments from 28 expert
judges for the top 3 results returned by each of these 41 con-
figurations. A total of 24,556 judgments were entered over
a period of three weeks.

4.3 Coverage Results
Table 2 shows the average and median number of results

returned using the QR configurations for each web search
engine. There is a substantial drop in recall as number of
vector entries in QR increases: the drop is comparable be-
tween MSN and Yahoo whereas it is roughly one order of
magnitude less pronounced with Google.

Configuration MSN Yahoo Google MSN Yahoo Google
QR1 1,511,351.50 405,833.50 7,003,387.50 63,443.00 21,954.50 362,000.00
QR2 121,585.69 40,888.04 1,053,351.38 791.00 575.00 1,070.00
QR3 3,216.58 2,531.92 24,636.72 116.00 59.50 325.00
QR4 872.67 578.10 8,437.63 18.00 25.00 245.00
QR5 473.33 363.97 3,349.08 12.00 81.00

Table 2: Average (columns 1 to 3) and median number (columns 4 to 6) of results returned using the QR
configurations for each backend engine.

Configuration MSN Yahoo Google
zero < 3 zero < 3 zero < 3

QR1 0 % 0 % 0 % 0 % 0 % 0 %
QR2 0 % 1 % 0 % 3 % 0 % 0 %
QR3 1 % 11 % 1 % 11 % 3 % 4 %
QR4 6 % 21 % 6 % 20 % 4 % 7 %
QR5 9 % 28 % 9 % 26 % 5 % 12 %

Table 3: Coverage drop, define as the percentage of contexts for which there are no web results (zero) and
fewer than 3 web results for various QR configurations using MSN, Yahoo, and Google.

To introduce another perspective, Table 3 shows the per-
centage of contexts for which there are no web results and
fewer than 3 web results for QR using MSN, Yahoo, and
Google. For QR4 using MSN and Yahoo, low recall could
potentially affect user experience as over 20% of context
would return fewer than 3 web results. The recall of the RB
configurations tested is the same as that of QR2.

What about IFM? In theory, it would be size of the union
of all results fetched by the sliding window queries. Ta-
ble 4 shows the estimated lower bound for this quantity—
computed as the maximum number of results returned by
any one of these queries—averaged over all 200 contexts. It
shows the estimated for SW1 to SW4 configurations, which
use as a query template a sliding window of the respective
size. Clearly, IFM operates on a much larger set of candidate
results that its corresponding QR.

4.4 Relevance Results
For our experiments we are using the following metrics:

Precision at 1 and 3 (P@1, P@3): Defined as the num-
ber of relevant results divided by the number of re-
trieved results, but capped at one (or three), and ex-
pressed as a ratio. A result is considered relevant if it
receives a judgment of Yes or Somewhat for Precision.

Strong Precision at 1 and 3(SP@1, SP@3): Defined as
the number of relevant results divided by the number
of retrieved results, but capped at one (or five), and
expressed as a ratio. A result is considered relevant if
it receives a judgment of Yes-only for Precision.

We look at precision metrics at position 1 and cumulatively
at position 3 because the Y!Q overlay GUI displays at most
three results.

Tables 5 and 6 show SP and P metrics for the QR configu-
rations, respectively, using the three engines. Unlike Google,
notice that SP drops sharply for both MSN and Yahoo be-
yond QR4 due to the low recall. The drop at position 1,
around 4 basis points, is statistically significant and would

likely affect user experience. To some extent, the same ef-
fects are observed with precision. The operating points for
optimal relevance for MSN and Yahoo backends are QR3 or
QR4 depending on the metric to be optimized, while Google
still performs well at QR5 for both metrics.

Table 7 shows SP and P for RB and IFM configurations.
RB2 and RB6 achieved the best relevance out of all 18 RB
configurations. RB-2 recorded the highest SP@1; In gen-
eral, RB (and QR) appear to do a good job fetching highly
relevant results at position 1 for a number of contexts. To
gain some insights, roughly 1 out of every 3 URLs returned
by RB6 (weight 0.01) for a context came from ranks 100 to
1000. RB2 (weight 0.1) was able to retrieve 2 out of three
from the deep set. These results are hit or miss, that is, they
are more likely to receive a Yes judgment than a Somewhat
one, hence higher SP but lower P. IFM-RA-SW3 recorded
the best precision 0.887 at position 1 amongst all config-
urations. IFM brings up more Somewhat relevant results
and yields better overall precision. There is little difference
between RA and MC4; for both, SW3 produces the best
precision metrics and issues on average 2 to 4 queries, which
beat our early expectations.

4.5 Discussion of Results
QR, using a highly tuned semantic engine, can attain high

relevance. We compared the precision of QR implemented
on top of three major search engines and saw that relevance
can be affected by low recall for long queries; in fact, preci-
sion decays as a function of low recall. However, the optimal
point depends on the web search engine and QR can be con-
figured competitively for any of the major three engines. For
example, QR3 for MSN attains a P@1 of 0.80, QR4 attains a
P@1 of 0.813 and 0.828 for Yahoo and Google respectively.
It is important to point out low recall can be attributed
to various reasons such as query processing logic, ranking
policies, and index size.

Human reformulations are unlikely to attain the same
level of relevance as that of QR. The best tested QR1, which
issues an average of 2.25 terms per query and would be in

IFM Configuration Yahoo
SW1 6,817,900
SW2 2,900,682
SW3 244,193
SW4 22,229

Table 4: Estimated lower bound for IFM’s recall, computed as the maximum number of results returned by
any one of these queries, averaged over all 200 contexts.

Configuration MSN Yahoo Google
SP@1 SP@3 SP@1 SP@3 SP@1 SP@3

QR1 0.259 0.250 0.255 0.250 0.284 0.254
QR2 0.405 0.364 0.390 0.375 0.411 0.384
QR3 0.416 0.390 0.423 0.397 0.435 0.395
QR4 0.399 0.396 0.412 0.416 0.432 0.394
QR5 0.364 0.358 0.365 0.394 0.441 0.404

Table 5: SP metrics for the QR configurations, respectively, using the three backends.

Configuration MSN Yahoo Google
P@1 P@3 P@1 P@3 P@1 P@3

QR1 0.503 0.504 0.531 0.496 0.513 0.489
QR2 0.728 0.687 0.677 0.688 0.726 0.717
QR3 0.800 0.770 0.784 0.758 0.793 0.784
QR4 0.792 0.775 0.813 0.801 0.828 0.801
QR5 0.775 0.757 0.798 0.780 0.812 0.802

Table 6: P metrics for the QR configurations, respectively, using the three backends.

Configuration SP@1 SP@3 P@1 P@3
RB2 0.450 0.390 0.803 0.742
RB6 0.413 0.358 0.755 0.684
IFM RA SW1 0.243 0.253 0.524 0.502
IFM RA SW2 0.399 0.364 0.803 0.730
IFM RA SW3 0.395 0.372 0.887 0.794
IFM RA SW4 0.366 0.357 0.855 0.785
IFM MC4 SW1 0.251 0.255 0.503 0.497
IFM MC4 SW2 0.354 0.354 0.797 0.721
IFM MC4 SW3 0.370 0.367 0.870 0.787
IFM MC4 SW4 0.363 0.337 0.845 0.762

Table 7: SP and P for RB and IFM configurations.

the low end compared to the average length of reformulated
queries (2.92 terms), attains a P@3 of 0.504. The best QR2,
with 4.14 terms in average and hence an upper bound to
human reformulation, attains a P@3 of 0.717, which is still
far lower than the optimal configurations above.

Results show that RB can perform competitively, in par-
ticular at the top position. It achieves SP@1 of 0.45, which
is the highest measured of all configurations. Further in-
sights indicate that some results that contributed to the
high precision at position 1 has been bubbled up from the
middle-tier of results (100-1000). However, RB does not
do well in overall precision as measured by P@3 (between
0.684 and 0.742). One explanation is that if the “right” re-
sults are not recalled by the simple query, bubbling others
to the top may be detrimental to overall relevance. To get
a sense of the effect of each RB parameter, we conducted a
factorial analysis on them. The number of rank operations
had no significant impact in relevance (in fact, the best ones
had 2 and 6 rank operators) whereas number of terms and
weights, when treated as combined factors, had some (Gen-
erally for low terms we should use high weights.) Given that
RB would require substantial modifications to a web search
engine, contextual search services will unlikely pursue this
route. However, if a web search engine already has support
for rank-biasing operators the overall effort decreases and
the remaining work boils down to tuning the weights of the
rank operators to support contextual search optimally.

So far, our results suggest that contextual search is not
solely a ranking problem, but one of recall. We pursued
IFM to leverage meta-search capabilities to improve recall
substantially. IFM uses ranking aggregation mechanisms
such as the presented rank averaging and MC4 to combine
and rank the results. Our experiments demonstrate that:

• IFM indeed achieves an effective recall that is an order
of magnitude higher than that of QR and RB;

• IFM can be competitive and, in some measures, supe-
rior to QR. IFM can be configured to achieve a P@1
of 0.887, which is substantially higher than 0.813 and
0.803 achieved by QR4 and RB2 (using the same back-
end engine) respectively. The highest P@3 for IFM
is clocked at 0.794, which is comparable to the 0.801
achieved by QR4.

5. CONCLUSIONS
We investigated three methods—QR, RB, and IFM—for

contextual search. We showed that QR, a simple technique
that closely emulates human query reformulation and can
be easily implemented on top of a commodity search en-
gine, performs surprisingly well and is likely to be superior
to manual reformulation. RB and IFM break the recall lim-
itations of QR: IFM is very effective and outperforms the
others both in terms of recall and relevance at an added en-
gineering cost. These three techniques offer a good design
spectrum for contextual search implementors.

Acknowledgments
We are grateful to Raymie Stata for his advice and discus-
sions. We thank our editorial team at Yahoo! for conducting
this large scale experiment; in particular, thanks to Jared El-
son, Min-Jui Huang, and John Chen for putting the results
together, and to Michele Repine for final proofreading.

6. REFERENCES
[1] K. Ali, C. Chang, and Y. F. Juan. Exploring

cost-effective approaches to human evaluation of
search engine relevance. In Proceedings of the 27th
European Conference on Information Retrieval
(ECIR), pages 360–374, 2005.

[2] N. J. Belkin, R. Oddy, and H. M. Brooks. ASK for
Information Retrieval: Part I. Background and
Theory, Part II. Results of a Design Study. Journal of
Documentation, 38(3):61–71, 145–164, 1982.

[3] D. M. Bikel, R. L. Schwartz, and R. M. Weischedel.
An algorithm that learns what’s in a name. Machine
Learning, 34(1-3):211–231, 1999.

[4] D. Billsus, D. Hilbert, and D. Maynes-Aminzade.
Improving proactive information systems. In
Proceedings of the 10th International Conference on
Intelligent User Interfaces (IUI), pages 159–166, 2005.

[5] A. Borthwick, J. Sterling, E. Agichtein, and
R. Grishman. Exploiting diverse knowledge sources
via maximum entropy in named entity recognition. In
Proceedings of the 6th Workshop on Very Large
Corpora, 1998.

[6] J. Budzik and K. Hammond. Watson: Anticipating
and contextualizing information needs. In Proceedings
of the 62nd Annual Meeting of the American Society
for Information Science (ASIS), pages 727–740, 1999.

[7] M. K. C.W. Cleverdon, J. Mills. Factors determining
the performance of indexing systems. Volume I -
Design, Volume II - Test Results, ASLIB Cranfield
Project, Reprinted in Sparck Jones & Willett,
Readings in Information Retrieval, 1966.

[8] M. Czerwinski, S. Dumais, G. Robertson, S. Dziadosz,
S. Tiernan, and M. van Dantzich. Visualizing implicit
queries for information management and retrieval. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI), pages 560–567,
1999.

[9] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. In Proceedings
of the 10th International Conference on World Wide
Web (WWW), pages 613–622, 2001.

[10] O. Etzioni. Moving up the information food chain:
Deploying softbots on the world wide web. In
Proceedings of the 13th National Conference on
Artificial Intelligence and the 8th Conference on
Innovative Applications of Artificial Intelligence, pages
1322–1326, 1996.

[11] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and
E. Vee. Rank aggregation: An algorithmic perspective.
Manuscript, 2005.

[12] R. Fagin, R. Kumar, K. S. McCurley, J. Novak,
D. Sivakumar, J. A. Tomlin, and D. P. Williamson.
Searching the workplace web. In Proceedings of the
12th International Conference on World Wide Web
(WWW), pages 366–375, 2003.

[13] R. Fagin, R. Kumar, and D. Sivakumar. Efficient
similarity search and classification via rank
aggregation. In Proceedings of the ACM SIGMOD
International Conference on Management of Data
(SIGMOD), pages 301–312, 2003.

[14] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,
Z. Solan, G. Wolfman, and E. Ruppin. Placing search
in context: the concept revisited. ACM Transactions
on Information Systems, 20(1):116–131, 2002.

[15] A. Goker. Capturing information need by learning
user context. In Proceedings of the 16th International
Joint Conference in Artificial Intelligence: Learning
About Users Workshop, pages 21–27, 1999.

[16] M. Henzinger, B.-W. Chang, B. Milch, and S. Brin.
Query-free news search. In Proceedings of the 12th
International World Wide Web Conference (WWW),
pages 1–10, 2003.

[17] A. E. Howe and D. Dreilinger. SAVVYSEARCH: A
metasearch engine that learns which search engines to
query. AI Magazine, 18(2):19–25, 1997.

[18] R. Kraft, C. C. Chang, and F. Maghoul. Y!Q:
Contextual search at the point of inspiration. In
Proceedings of the 14th Conference on Information
and Knowledge Management (CIKM), pages 816–823,
2005.

[19] R. Kraft and R. Stata. Finding buying guides with a
web carnivore. In Proceedings of the 1st Latin
American Web Congress (LA-WEB), pages 84–92,
2003.

[20] R. Kraft and J. Zien. Mining anchor text for query
refinement. In Proceedings of 13th International
Conference on World Wide Web (WWW), pages
666–674, 2004.

[21] S. Lawrence. Context in web search. IEEE Data
Engineering Bulletin, 23(3):25–32, 2000.

[22] W. Meng, C. Yu, and K.-L. Liu. Building efficient and
effective metasearch engines. ACM Computing
Surveys, 34(1):48–89, 2002.

[23] B. Rhodes and T. Starner. The remembrance agent: A
continuously running automated information retrieval
system. In Proceedings of 1st International Conference
on the Practical Application of Intelligent Agents and
Multi Agent Technology (PAAM), pages 487–495,
1996.

[24] E. Selberg and O. Etzioni. The MetaCrawler
Architecture for Resource Aggregation on the Web.
IEEE Expert, 12(1):8–14, 1997.

[25] R. Stata, K. Bharat, and F. Maghoul. The term
vector database: fast access to indexing terms for web
pages. Computer Networks, 33(1-6):247–255, 2000.

[26] C. T. Yu, K. Lam, and G. Salton. Term weighting in
information retrieval using the term precision model.
Journal of the ACM, 29(1):152–170, 1982.

