|
A Web-based Kernel Function for Measuring the Similarity of Short Text Snippets
Track: Search Slot: 14:00-15:30, Thursday 25th May Determining the similarity of short text snippets, such as search queries, works poorly with traditional document similarity measures (e.g., cosine), since there are often few, if any, terms in common between two short text snippets. We address this problem by introducing a novel method for measuring the similarity between short text snippets (even those without any overlapping terms) by leveraging web search results to provide greater context for the short texts. In this paper, we define such a similarity kernel function, mathematically analyze some of its properties, and provide examples of its efficacy. We also show the use of this kernel function in a large-scale system for suggesting related queries to search engine users. |
Platinum SponsorsSponsor of The CIO Dinner |