# **IMAGE ANNOTATION USING SEARCH AND MINING TECHNOLOGIES**

Xin-Jing Wang, Lei Zhang, Feng Jing, Wei-Ying Ma Microsoft Research Asia, 49 Zhichun Road, Beijing 100080, China wangxinj@cn.ibm.com, {leizhang, fengjing, wyma}@microsoft.com

#### **Background**:

1.Image auto-annotation is a hot research topic in recent years 2.Traditional computer vision & machine learning approaches fail

# **Difficulties**:

1.Unclear how to model the semantic concepts 2.Lack of training data to bridge the semantic gap

# Motivations:

- 1. The huge deposit, the Web, brought solutions to many previously "unsolvable" problems
- 2. The search technology succeeds in many commercial systems

## **Basic Idea**

A data-driven approach leveraging the Web-scale image dataset and search technology to learn relevant annotations





Figure 2. Framework of the AnnoSearch System

**Input**: a query image + an initial keyword **Output**: complementary annotations

## Process:

1.Text-based search: retrieve semantically similar images

- 2.Content-based search: retrieve visually similar images
- > Hash coding algorithm to solve the efficiency problem

3.SRC clustering to mine annotations from the descriptions of the retrieved images

# **Performance Evaluation Results**

# Our Image Deposit:

2.4 million high-quality photo forum images with noisy descriptions

#### **Testing Datasets:**

1.Google image query dataset: 30 queries from categories "Apple, Beach, Beijing, Bird, Butterfly, Clouds, Clownfish, Japan, Liberty, Lighthouse, Louvre, Paris, Sunset, Tiger, Tree"

2. UW Content-based Image Retrieval dataset: categories are "Australia, Campus, Cannon beach, Cherries, Football, Geneva, Green lake, Indonesia, Iran, Italy, Japan, San juan, Spring flower, Swiss mountain, Yellowstone". All images are used as queries.

# Evaluation Criterion (Google image query set):

E = (#perfect + 0.5 x #correct - #error) / #queries

#### Conclusion:

# 1. High effectiveness (A much higher precision)

>0.6 precision score on Google query set, and 0.38 on UW dataset (5 ground-truth annotations on average), while it is normally about 0.2~0.3 for previous annotation approaches

#### 2. High efficiency:

For the content-based retrieving phase, it costs 0.072s for weighted Harming distance measure. (24,000 candidate images on average, Dual Intel Pentium 4 Xeon hyper-threaded CPU, 2G memory)

# 3. No supervised learning phase and hence can handle unlimited vocabulary



Figure 3. Examples of annotations produced by AnnoSearch system. The upper four rows show a few results on Google image query dataset. The bottom row shows a few results on the UW dataset. Max Cluster Size Criterion



#### (a) Precision w.r.t. maximum cluster size criterion



(b) Precision w.r.t. average member image score criterion

Figure 4. Average Precision of annotation vs. image filtering threshold on the 30 Google query images