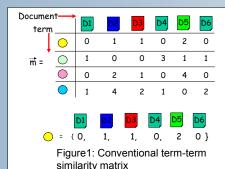


TOPIC-ORIENTED QUERY EXPANSION FOR WEB SEARCH

Shao-Chi Wang* and Yuzuru Tanaka**

ABSTRACT:

- (1) Introduce a topic-oriented query expansion model based on the Information Bottleneck theory
- (2) Define a term-term similarity matrix
- (3) Propose two measures, intracluster and intercluster similarities


- In (1), we classify terms into distinct topical clusters in order to find out candidate terms for the query expansion
- With (2), we are available to improve the term ambiguous
- Two measures in (3) are based on proximity between the topics represented by two clusters in order to evaluate the retrieval effectiveness

INTRODUCTION:

<u> [erm ambiguous example:</u>

The original text mining algorithm was created by a university student named Taylor. In our interview, we found out that he is currently in his second year as an undergraduate student of the Mining Engineering Department of this university and has many other interests beside of programming.

- (1) The first "mining" and the second "Mining" describe two different senses.
- (2) Co-occurrence terms are different, i.e., "algorithm" and "Engineering".
- (3) However, in the conventional term-term similarity matrix, "mining" is counted twice times (Figure 1) and considered as one concept.

Term have different senses in documents by by and by. However, in the conventional term-term similarity matrix, we only considered as one concept and count its numbers of amount in the documents D2 D3 and D5 Using this type of similarity matrix to look for the co-occurrence words of the original query will lead to the

problem of term ambiguous.

RELATED WORKS:

Information Bottleneck Theory [5]

A compressed variable is X and its relevant variable is Y.

The purpose is to search a middle variable T (clusters of

X) in which the mutual information between T and Y, i.e., I(T,Y) is maximized while the mutual information I(X,T) is minimized.

$$\mathcal{L}[P(T|X)] = I(X,T) - \beta I(T,Y) \tag{1}$$

three self-consistent equations

$$\begin{cases} p(t|x) &= \frac{p(t)}{Z(\beta,x)} exp(-\beta D_{KL}(p(y|x)||p(y|t))) \\ p(y|t) &= \frac{1}{p(t)} \sum_{x} p(t|x)p(x)p(y|x) \\ p(t) &= \sum_{x} p(t|x)p(x) \end{cases}$$
(2)

TOPIC-ORIENTED QUERY EXPANSION MODEL:

2. Topic-oriented query expansion model:

- (1) to collect pages that come from incoming links.
- (2) to extract extended anchor texts
- (3) to construct a term-term similarity matrix
- (4) to establish a topic-oriented cluster

2.1 Constructing a term-term similarity matrix

Refer to [1], we redefine the term-term similarity matrix

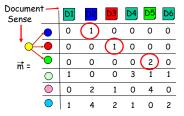


Figure 3: Our proposed term-term similarity matrix

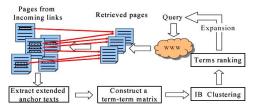


Figure 2. The topic-oriented query expansion model

DEFINITION 1. The frequency of a term t_i ($t_i \neq q_k$, q_k denotes a term of the query q) in a mini-document d_j , is referred to as $f_{t_1,j}$. At the same time, we suppose a term q_k of the query q is of divergent concepts when it appears in different mini-documents. Hence, a query term q_k in a minidocument d_t is substituted by its concept $c_{k,l}(\iota \in J)$ and if frequency is referred to as $f_{c_k,l,j}$. A term-document matrix is represented as $\vec{m} = (m_{rj})$, where $m_{rj} = f_{t_1,j} or f_{c_k,l,j}$. Here, the number of rows r are equal to $|T_L| + \sum_{k \in [q]} |C_{k,L}| |t_i \in I_{k,l}|$ document d_l is substituted by its concept $c_{k,l}(l \in j)$ and its

 $T_L, c_{k,l} \in C_{k,L}$) and the number of columns are $|D_L|$, where T_L denotes a term set that exclude the query terms, $C_{k,L}$ the concept set of query k, and D_L the document collection. Let \vec{m}^t be the transpose of \vec{m} . The matrix $\vec{s} = \vec{m}\vec{m}^t$ defines the local term-term similarity matrix.

Figure 5: A topic-proximity measure

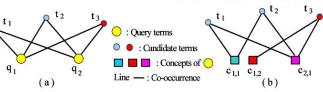


Figure 4: Correlation among candidate terms, query terms, and query concepts

Example:

Query $q: q = \{q_1, q_2\}$ Document $d_1: d_1 = \{t_1, q_1, t_2\}$ Document $d_2: d_2 = \{t_1, t_2, q_2, t_3\}$ Document d_3 : $d_3 = \{q_1, t_3\}$ Document $d_4: d_4 = \{t_2, t_3\}$

1 0 0 \

Using the conventional

similarity matrix

(3)

Using our proposed

2.2 Establishing a topic-oriented cluster

We expand the candidates together with original query

Term vectors: $V_q^i = \{w_{q_1}, w_{q_2}, ..., w_{q_n}\}^i \ (i \in C)$ (4)

to an n-dimensional vector which are postulated to

Document vectors: $V_{d_k}^j = \{w_{d_{k1}}, w_{d_{k2}}, ..., w_{d_{kn}}\}^j$

C is the set of clusters. N denotes the collection of the

documents that are retrieved by the new expanded query

We employ sIB (seguential Information Bottleneck)[4] to cluster the extracted terms

 $(j \in C, k \in N) \tag{5}$

proximity of a topic.

 $e(y|t) = -\sum p(t)p(y|t)log_2p(y|t)$

INTRACLUSTER AND INTERCLUSTER SIMILARITY MEASURES:

The variables $X(x \in X)$ and $Y(y \in Y)$ denote the same term collection.

EXPERIMENT AND EVALUATION:

(1) Experiment in January, 2005

Original query: "Web AND mining"; Search Engine: Google; Term source: Anchor texts that link to the top 10 valid pages.

Terms clustering by using the conventional definition and sIB mining text "Web mining Relate to top

Note: There are three topical terms including in the same cluster (cluster 2).

Terms clustering by using our proposed definition and sIB

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
mining(9)	mining(13)	Web(6)	mining(8)	Web(12)
Web(6)	Web(12)	mining(5)	Web(6)	mining(3)
data	text	workshop	institute	design
resource	reference	company	technology	intelligence
tech	information	index	art	designer
map	retrieval	usage	clip	
discovery	extraction	analysis	collection	
knowledge	list	proceeding	net	
road	portal	listing	links	
guide		major	link	
warehouse				
center				

Note: Terms relating to "Web mining", "mining institute" and "workshop" are divided into three different clusters

(2) Experiment and Evaluation in August, 2005

Experiment: Original query: "Web AND mining"; Search Engine: Google; Term source: 100 extended anchor texts that link to each one of the top 10 valid pages. Evaluation: Collect the top 30 documents by using the extended query term sequences corresponding to each clusters. Compute intracluster and intercluster similarities by using equations (4)-(7).

Experiment:

Terr	n cluste	ring (Ol	d defin	Term clustering (New definit							
Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 1	Cluster 2	Cluster 3	Cluster 4	0		
ousiness	offer	committee	people	mining	mining(8)	mining(9)	mining(8)	mining(6)	mi		
knowledge	clustering	chairman	discovery	data	Web(8)	Web(5)	Web(5)	Web(2)			
research	development	thesis	tip	storm	data	offer	business	perspective	Г		
team	localization	member	workshop	web	software	clustering	stand	suite	Г		
directory	interface	advisory	project	link	research	people	technology	find	inf		
acquistion	risk	management	proceeding	model	text	conjunction	knowledge	workshop	Г		
mine	marketing	student	expert	suite	intelligence	tip	chairman	ole	P		
mission	goverment	conference	library	intelligence	server	database	committee	tree			
ma	tree	consulting	technique	software	expert	end	advisory	storm	S		
record	decision	job	these	traffic	system	localization	member	risk			

Evaluation:

efi	nition)	Intracluster and intercluster similarities (Old definition)							Intracluster and intercluster similarities (New definition)						
6)	Cluster 5 mining(10)	Similarity	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5		Similarity	Tegic 1	Topic 2	Topic 3	Topic 4	Topic 5	
)	Web(6)	Cluster 1	0.647	0.701	2.240	1.557	1.070		Cluster 1	\$.180	0.946	1.008	0.796	0.712	
ive	ma	Cluster 2	0.994	1.314	1.39	1.162	0.957		Cluster 2	0.756	1.109	0.786	0.600	0.574	
_	track information	Cluster 3	3.420	0.4%	0.775	1.045	0.558		Cluster 3	0.588	0.644	2.781	0.281	0.382	
op.	link	Cluster 4	0.538	0.600	0.694	1.679	0.056		Cluster 4	0.421	1.672	0.58	0.646	8480	
_	retrieval	Cluster 5	0.334	0.606	1.067	0.759	1.091	١	Cluster 5	1.055	1.145	0.871	0.465	2144	
	review														
Т	support	A۷	erag	e int	racl	uste	er an	d	inter	clus	ter	simi	lariti	es	
	format				Int	raclus	ster sin	nil	arity	Inter	cluste	er sim	ilarity	a .	
		O	ld Defi	nition			1.101		1.038				7		
		NT.	1.0			1.050				0.700				-	

CONCLUSIONS:

- (1) We proposed a topic-oriented query expansion model and employed IB in this model.
- (2) In order to treat the multiplicity of the query term meanings at the conceptual level, we have proposed a new definition of the term-term similarity matrix.
- (3) We have proposed intracluster and intercluster similarity measures to evaluate the relevance between a topic of a cluster and the retrieved documents in the cluster itself as well as the documents in the other clusters

Experimental results and evaluations showed that the obtained candidate terms using the new definition of the term-term similarity matrix in each cluster are almost of higher topic relevance than the obtained ones using the old definition.

ACKNOWLEDGMENTS:

The work presented in this paper has been supported by the 21st Century COE (Center of Excellence) Program of Japan Society of the Promotion of Science (JSPS)

BIBLIOGRAPHY:

- Information Retrieval, 1999.

 [2] E.-N. Efthimiadis. Query expansion, 1996.

 [3] M. Sanderson. Word sense disambiguation information retrieval, 1994.

- [7] T. Hofmann. Probabilistic latent semantic indexing
- V. Lavrenko and W. B. Croft. Relevance-based language models, 2001.