Bootstrapping semantics on the Web: meaning elicitation from schemas

Paolo Bouquet $¹$ </sup> Joint work with: Luciano Serafini 2 and Stefano Zanobini 1

¹University of Trento, Italy ²ITC-Irst, Trento, Italy

WWW2006 Edinburgh (Scotland), 26 May 2006

Deeper Semantics

- \triangleright A wide variety of schemas (such as classifications, directory trees, web directories, relational schemas . . .) are exposed on the Web.
- \blacktriangleright They convey a clear meaning to humans (e.g. help in the navigation of large collections of documents).
- \blacktriangleright However, they convey only a small fraction of their meaning to machines, as meaning is not formally/explicitly represented.

Deeper Semantics

- \triangleright A wide variety of schemas (such as classifications, directory trees, web directories, relational schemas . . .) are exposed on the Web.
- \blacktriangleright They convey a clear meaning to humans (e.g. help in the navigation of large collections of documents).
- \blacktriangleright However, they convey only a small fraction of their meaning to machines, as meaning is not formally/explicitly represented.

Our goal

Design a general methodology for automatically eliciting and representing the intended meaning of schema elements and making it available to machines.

イロメ イ母メ イヨメ イヨメ

Directory Structure

 \leftarrow \Box

高 **B** \equiv \rightarrow E $2Q$

Directory Structure

Intended meaning

 $4.17 + 1.6$

A

E

重

 $2Q$

メロメ イ団メ メモメ メモメー 毛

 299

- \blacktriangleright Eliciting the meaning of an exposed schema requires that we formally/explicitly represent the intended meaning of each of its elements
- \triangleright Part of element meaning (the *structural meaning*) is exposed with the schema (and for some types of schemas, like ER schemas or RDFS, even formally codified)
- \blacktriangleright However:
	- \triangleright typically, part of the structural meaning is not exposed (e.g. the relation between pictures and Sardinia)
	- \triangleright the conceptual content is "hidden" in the choice of (natural language) labels

イロメ イ部メ イヨメ イヨメー

- \triangleright Construct all meaning skeletons which are compatible with the structure of a schema
- \triangleright Construct the conceptual content of labels from their linguistic formulation
- \triangleright Use any available domain knowledge to filter out meaning skeletons which are not compatible
- \triangleright Use the combination of structural meaning and conceptual content to produce a formal and explicit representation of each schema element's deep semantics.

A problem with this idea

 290

- \triangleright Concepts are not directly accessible (they're mental constructs) nor comparable
- \triangleright The only access we have to other people's concepts is through their use of (natural) language
- \blacktriangleright Luckily, for natural languages, we have a very powerful tool for semantic coordination: dictionaries (lists of words $+$ list of acceptable senses for each word)
- \triangleright We propose to systematically use dictionary senses as surrogates of concepts

The intuitive model

 \equiv

 290

Meanings are represented in a formal language (called WDL, for WORDNET Description Logic), which is the result of combining two main ingredients:

- \triangleright a logical language, with a precise (formal) semantics and a sound a complete decision procedure (Description Logics)
- \triangleright WORDNET senses as the vocabulary of the descriptive language

WDL example - ER

The meaning of the node labeled with "Publication" in this ER schema is

Publication#1 □ ∃Author#1⁻.Person#1

and the intuitive semantics is "a copy of a printed work offered for distribution" that "a human being", "writes ... professionally ..."

 Ω

WDL example - Directories

The meaning of the node n_3 of the hierarchical classification is

 $\{ \text{image} \# 2 \sqcap \exists \text{subject} \# 4.(\text{beaches} \# 1 \sqcap \exists \text{Local} \# 1. \{\text{Sardinia} \# 1\}) \}$

The intuitive meaning is "a visual representation produced on a surface" $\left[\text{image} \# 2\right]$ whose "subject" $\left[\text{subject} \# 4\right]$ is "an area of sand sloping down to the water of a sea or lake" $\lceil \text{beach} \# 1 \rceil$ "situated in" $[Local \#1]$ "an island in the Mediterranean west of Italy" $[Sardinia \# 1]$

The problem of meaning elicitation can be restated as the problem of finding a WDL expression $\mu(n)$ for each element *n* of a schema, so that the intuitive semantics of $\mu(n)$ is a good enough representation of the intended meaning of the element.

ia ⊞is

Three main steps

 \triangleright Meaning Skeletons: encode the structural information contained in a schema, namely the information carried by a schema with meaningless labels. This information comes from the (in)formal semantic of the schema.

Three main steps

- \triangleright Meaning Skeletons: encode the structural information contained in a schema, namely the information carried by a schema with meaningless labels. This information comes from the (in)formal semantic of the schema.
- \triangleright Local meaning: encodes the meaning of the label associated to an element when taken in isolation. Information on local meanings can be derived from a $lexicon$ (e.g. $WORDNET$).

Three main steps

- \triangleright Meaning Skeletons: encode the structural information contained in a schema, namely the information carried by a schema with meaningless labels. This information comes from the (in)formal semantic of the schema.
- \triangleright Local meaning: encodes the meaning of the label associated to an element when taken in isolation. Information on local meanings can be derived from a $lexicon$ (e.g. $WORDNET$).
- Relations between local meanings (R_{mn}) : relations that may hold between local meanings (e.g. the relation Located $#1$ between beach $#1$ and Sardinia $#1$). Relations between local meaning can be extracted from the domain knowledge (ontologies).

イロメ イ御 メイヨメ イヨメ

- \triangleright Meaning skeletons are associated to each node *n* of a schema,
- ▶ A Meaning skeleton is a DL concept whose basic components are the nodes of the graph, and the possible relations between them.
- \blacktriangleright The meaning skeleton associated to a node *n* represents the structural information carried by this node (independent from its label).

Meaning Skeletons (cont'd)

Example

In directories, the meaning skeleton of the node n_2 is:

 $n_1 \sqcap \exists R_{n_1,n_2}$. n_2

 n_2 acts as a "modifier" of n_1 , and R_{n_1,n_2} is role connecting the two nodes.

 $2Q$

 λ = λ

Meaning Skeletons

Example

The meaning skeleton of the blue node (identified by n_1), according to the formal semantics of ER schema described by Alex Borgida et. al. is the following:

```
n_1 \square \forall n_1.n_4 \square \exists n_2.n_3
```
 $2Q$

- \blacktriangleright The local meaning of a node *n* in a schema, denoted with $\lambda(n)$, is a DL description representing all possible meanings of the label associated to a node.
- $\triangleright \lambda(n)$ is computed by exploiting a linguistic resources
- \triangleright A linguistic resource as a function which, given a word, returns a set of senses, each representing an acceptable meaning of that word.
- \triangleright WORDNET is probably the best electronic lexical available to date.

Example

 $WORDNET("picture") = picture#1, picture#2,..., picture#9$ $WORDNET("Sardinia") = Sardinia#1, Sardinia#2$

If the label of m is "picture" and the label of n is "Sardinia" then

$$
\lambda(m) = \text{Picture} \# 1 \sqcup \text{Picture} \# 2 \sqcup \cdots \sqcup \text{Picture} \# 9
$$

$$
\lambda(n) = \text{Sardinia} \# 1 \sqcup \text{Sardinia} \# 2
$$

御き メミメ メミメー

 $2Q$

重

- \triangleright Domain knowledge is used to discover semantic relations holding between local meanings.
- Intuitively, given two primitive concepts C and D, we search for a role R, denoted with $\rho(C, D)$ that possibly connect a C-object with a D-object.
- \triangleright As an example, the relation that connects the concept picture#2 and the concept Sardinia#1 can be subject#4.

Putting things together

.

- 1. Meaning skeleton $n_1 \sqcap \exists R_{n_1,n_2}, n_2$
- 2. Instanciate the skeleton with all possible combinations of local meanings (e.g. picture#1 $\Box B_{n_1,n_2}$. Sardinia#1, ..., $picture#5 \sqcap \exists R_{n_1,n_2}$. Sardinia $\#2$, \ldots)
- 3. fill the meaning skeleton with the semantic relations between the local meanings and discard all the local senses which do not have semantic relations:

```
picture#1 \Box ∃subject#4.Sardinia#1
```
An application: schema matching

イロメ イ部メ イヨメ イヨメー

 \equiv

 290

- \triangleright Once the meaning of two schemas is elicited and represented in WDL, discovering semantic relations across them is a matter of logical reasoning
- \triangleright We can use any standard DL reasoner to discover equivalence or subsumption between any pairs of nodes of different schemas
- \blacktriangleright The relations computed by this method are meaningful (have a clearly defined semantics) and can be used for distributed DL reasoning

∽≏ດ

Concept Γ from the first schema:

image#2 \Box ∃subject#4.(beaches#1 \Box ∃Located#1.{Italy#1})

Concept Δ from the second schema:

picture#1 \Box ∃subject#4.(beaches#1 \Box \exists Located#1.{Sardinia#1})

Using lexical $+$ domain knowledge, we can easily infer that: $\lim_{\alpha\to 0}$ image#2 \equiv picture#1, Sardinia#1 \Box Italy#1 $\models \Delta \sqsubset \Gamma$

メタメメ ミメメ ミメー き

 $2QQ$

Peer-to-peer schema matching

イロメ イ部メ イヨメ イヨメー

重

 290

- \triangleright A first implementation called $CTxMATCH1.0$, which uses WPL (propositional logic) encoding
- \triangleright Our current implementation $CTxMATCH2.0$, which uses a WDL encoding $(WORDNET + "lexicalized" OWL ontologies)$
- \triangleright GUI for $CTxMATCH2.0$ which allows creating, editing and matching schemas

Projects

- \blacktriangleright Matching classifications in Distributed Knowledge Management (Project: EDAMOK – Provincia di Trento)
- \triangleright Extracting knowledge from information and content sources (Project: VIKEF – EU funded integrated project)
- \triangleright Ontology alignment via elicitation in e-learning environments (Project: APOSDLE – EU funded)
- Intelligent queries across heterogeneous web sites (Project: WISDOM – Italian Ministry of Research and University)
- \triangleright Database integration through DB schema elicitation and matching (Project: RISICOM)
- \triangleright Ontology extraction from texts using elicitation (Project: ONTOTEXT – Provincia di Trento)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

つくい

- \blacktriangleright The method presented here can be used on many schemas which are already available on the web (e.g. in most portals or e-business web sites)
- \triangleright The main message is: ontologies MUST be complemented with lexical information
- \triangleright We need a principled way for "lexicalizing" ontologies (and store the results in OWL) to close the gap between structural and intended meaning