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Working notion of semantic search

� Exploiting in conjunction

• “Strings with meaning” – entities and relations

• “Uninterpreted strings” – as in IR

� This paper

• Only “is-a” relation

• Token match

• Token proximity

� Can approximate
many info needs
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Type-annotated corpus and query e.g.

Born in New York in 1934 , Sagan was
a noted astronomer whose lifelong passion

was searching for intelligent life in the cosmos. 

person

scientist

physicist

astronomer

entity

region

city

district

state

hasDigit isDDDD

Where was Sagan born?
� type=region NEAR “Sagan”

Name a physicist who searched
for intelligent life in the cosmos

� type=physicist NEAR “cosmos”…

When was Sagan born?
� type=time

pattern=isDDDD NEAR

“Sagan” “born”

abstraction

time

year

is-a
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The query class we address

� Find a token span w (in context) such that

• w is a mention of entity e

• “Carl Sagan” or “Sagan” is a mention of the concept of 

that specific physicist

• e is an instance of atype a given in the query

• Which a=physicist …

• w is “NEAR” a set of selector strings

• “searched”, “intelligent”, “life”, “cosmos”

� All uncertain/imprecise; we focus on #3

� Yet surprisingly powerful: correct answer 
within top 3—4 w’s for TREC QA benchmark
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Contribution 1: What is “NEAR”?

� XQuery and XPath full text support

• (distance at most|window) 10 words [ordered] –

hard proximity clause, not learnt

• ftcontains … with thesaurus at … relationship 
"narrower terms" at most � levels

� No implementation combining “narrower 
terms” and “soft” proximity ranking

� Search engines favor proximity in proprietary 
ways

A learning framework for proximity
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Contribution 2: Indexing annotations

� type=person NEAR theory relativity � type in 
{physicist, politician, cricketer,…} NEAR 
theory relativity

• Large fanout at query time, impractical

� Complex annotation indexes tend to be large

• Binding Engine (WWW 2005): 10x index size 

blowup with only a handful of entity types

• Our target: 18000 atypes today, more later

Workload-driven index and query 
optimization

• Exploit skew in query atype workload
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Part-1: Learning to score token spans

� type=person NEAR “television” “invent*”

� Rarity of selectors

� Distance from
candidate position
to selectors

� Many occurrences
of one selector
• Closest is good

� Combining scores
from many selectors
• Sum is good

Candidate position to scoreSelectors
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Learning the shape of the decay function

� For simplicity assume left-right symmetry

� Parameters (β1,…,βW), W=max gap window

� Candidate position characterized by a 
feature vector f = (f [1],…,f [W])
• If there is a matched selector s at distance j and 

• This is the closest occurrence of s

• Then set f [j ] to energy(s), … else 0

� Score of candidate position is β⋅f

� If we like candidate u less than v (“u � v”)

• We want β⋅fu  ≤ β⋅fv
• Assess a penalty proportional to exp(β⋅fu − β⋅fv)
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Learning decay function—results 
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Part-2: Workload-driven indexing

� Type hierarchies are large and deep

• 18000 internal and 80000 leaf types in WordNet

� Runtime atype expansion time-intensive

• Even WordNet knows 650 scientists, 860 cities…

� Index each token as all generalizations

• Sagan � physicist, scientist, person, living thing

• Large index space bloat

Index a subset of
atypes

Corpus/Index Gbytes

Original corpus 5.72

Gzipped corpus 1.33

Stem index 0.91

Full type index 4.30
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Pre-generalize (and post-filter)

� Full set of “atypes” (answer types) is A

� Index only a “registered” subset R of A

� Say query has atype a; want k answers

� Find a’s “best” generalization g∈R

� Get best k’ >k spans
that are instances of g

• Given index on R,

this is standard IR

(see paper)
scientist

person
causal agent

living thing

entity

…whales were studied by Cousteau…

a

g
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(Pre-generalize and) post-filter

� Fetch each high-scoring span w

� Check if w is-a a

• Fast compact “forward index” (doc,offset)�token

• Fast small “reachability index”, common in XML

� If fewer than k survive,
restart with larger k’

• Expensive

• Pick conservative k’

scientist

person
causal agent

living thing

entity

…whales were studied by Cousteau…�

a

g

14

Estimates needed by optimizer

� If we index token ancestors in R as against 
ancestors in all of A, how much index space 
will we save?

• Cannot afford to try out and see for many Rs

� If query atype a is not found in R and we 
must generalize to g, what will be the bloat 
factor in query processing time?

• Need to average over a representative workload
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Index space estimate given R

� Each token occurrence leads to one posting entry

� Assume index compression is a constant factor

� Then total estimated index size is proportional to

� Surprisingly 

accurate!

Number of tokens in 

corpus that connect up to r
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Processing time bloat for one query

� If R=A, query takes time approximated by

� If a cannot be found in R, the price paid for 
generalization to g consists of

• Scanning more posting entries:

• Post-filtering k’ responses:

� Therefore, overall bloat factor is

)(scan atcorpusCount

Time to score one candidate 
position while scanning postings

Number of occurrences of
descendants of type a

)(scan gtcorpusCount

filter' tk

Time to 
check if 

answer is 
instance of 
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Query time bloat—results 
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� While observed::estimated ratio for one query is 

noisy, average over many queries is much better
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Expected bloat over many queries

� Maximum likelihood estimate

� Many a’s get zero training probability
� Optimizer does not register g close to a

� Low-prob atypes appear in test � huge bloat

� Collectively matter a lot (heavy-tailed distrib)

Prob of new query 
having atype a
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Smoothing low-probability atypes

� Lidstone smoothing:

� Smoothing param � fit by maximizing log-

likelihood of held-out data:

� Clear range of good
fits for �
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The R selection algorithm

� R  roots of A

� Greedily add the

“most profitable” atype a*

� Profit = ratio of

• reduction in bloat of a* and 
its descendants to

• increase in index space

� Downward and upward 

traversals and updates

� Gives a tradeoff

between index space

and query bloat

scientist

physicist

person
1. When 

scientist is 
included…

2. bloat of 
physicist 

goes down

3. reducing
the profit
of person

� too small; 

“improbable”
test queries

� too small; 

“improbable”
test queries 
�large bloat
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Optimized space-time tradeoff
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Corpus/Index Gbytes

Original corpus 5.72

Gzipped corpus 1.33

Stem index 0.91

Full type index 4.30

Reachability index 0.01

Forward index 1.16

Atype subset index 0.52

Optimized index sizes
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Summary

� Working prototype around Lucene and UIMA

• Annotators attach tokens to type taxonomy

• Query atype workload help compact index

• Ranking function learnt from preference data

• NL queries translated into atype+selectors

� Ongoing work

• Indexing and searching relations other than is-a

• More general notions of graph proximity

� Email soumen@cse.iitb.ac.in for code 
access
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The big picture

Email soumen@cse.iitb.ac.in for code access
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