Specification of Web Services

Sudhir Agarwal and Anupriya Ankolekar

Institute of Applied Informatics and Formal Description Methods (AIFB), University of Karlsruhe (TH), Germany

Transparency of business processes is critical for cooperation

Needs

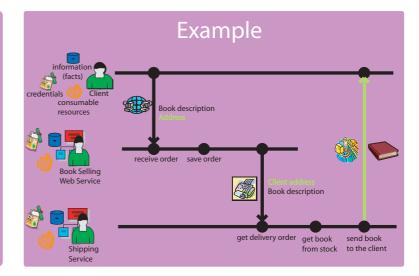
semantic constraints temporal aspects access control policies consider non-web processes

Current Approaches

can't model relations b/w inputs and outputs differentiate b/w outputs and effects mostly miss / no semantics of ACPs don't support

Our Approach

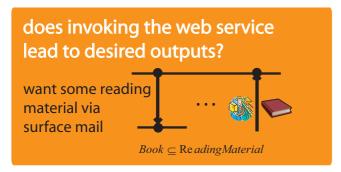
Combination of Pi-Calculus and DLs formal semantics for temporal aspects variables to model relations b/w inputs and outputs access control policies as pre-conditions


Features

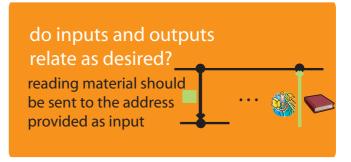
Unified specification of outputs and effects Channel = (protocol, address, message type) can model non-web processes as well captures correct semantics of comm. Interoperable credential based access control

Syntax

$$A \coloneqq 0 \mid$$
 null $l(v_1,...,v_j) \mid$ input activity $\bar{l}o_1,...,o_k \mid$ output activity $[c]P,Q$ if-then-else


$$W := A_1 \parallel \ldots \parallel A_n$$
 composition

Automatic Matchmaking of Web Services


Sudhir Agarwal and Anupriya Ankolekar

Institute of Applied Informatics and Formal Description Methods (AIFB), University of Karlsruhe (TH), Germany

expressive request specification formalism

Matchmaking Algorithm

Given a request R and a web service description W calculate V(R), the set of variables in R calculate V(W), the set of variables in W from V(R) and V(W) calculate the substitution functions $\sigma_1, \dots, \sigma_n$ For each i in $\{1, \dots, n\}$ generate W_i from W and σ_i by α -conversion eliminate condition expressions from $W_i \to W_{i,1}, \dots, W_{i,2}$ $C_{i,1}, \dots, C_{i,2}$ For each j in $\{1, \dots, 2^{k+1}\}$ If the structures of R and $W_{i,j}$ are same and every input type of R is sub concept of corr. input type of $W_{i,j}$ and every output rule of R subsumes corr. output rule of $W_{i,j}$ and every condition in R is subsumed by the corr. condition of $W_{i,j}$ and then W is a match for R with conditions $C_{i,j}$