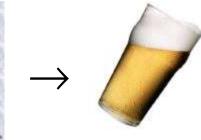


Generating Query Substitutions

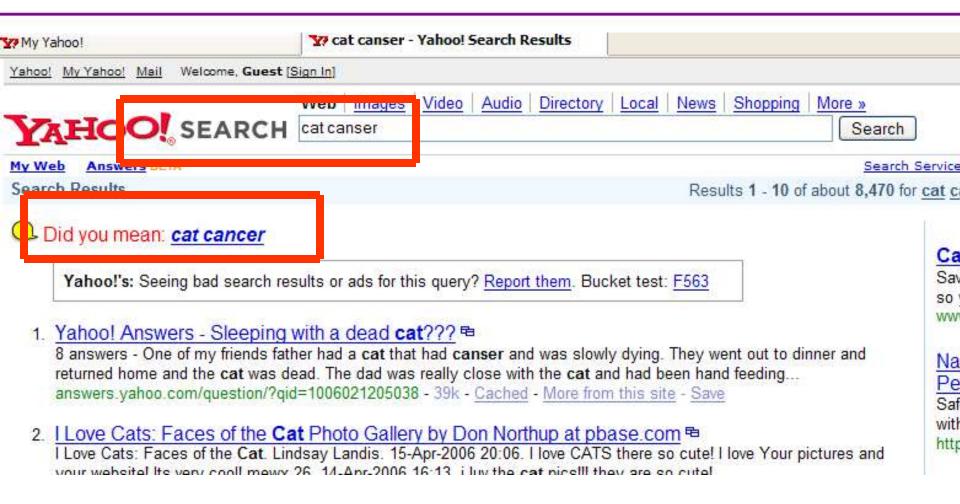
Rosie Jones

Benjamin Rey, Omid Madani and Wiley Greiner





Query Substitutions



Query Substitutions



- Enhance meaning
 - Spell correction
 - Corpus-appropriate terminology
 - Cat cancer → feline cancer
- Change meaning
 - Narrow
 - [lexical entailment: fruit → apple]
 - Broaden
 - [alternatives, common interests]
 - Conference proceedings → textbooks

Trying to Find Nathan Welsh, who lives and works in Edinburgh

nathan welsh edinburg scotland

Spell correction

nathan welsh edinburgh scotland

Name →profession

financial consultants edinburg scotland

Spell correction

financial consultants edinburgh scotland

Delete terms, generalize

financial consultants

Try second approach, using his address

nathan welsh 16-18 pennwell place edinburgh

 nathan welsh 16-18 pennywell place edinburgh

Spell correction

• international phone directory Try looking up addresses

white pages rephrase

edinburgh scotland phone directory specialization

edinburgh scotland uk

Generalize to location

- nathan welsh investment consultant edinburg
- nathan welsh investment consultant edinburgh
- investment consultants edinburgh scotland
- nathan welsh

kansas virginia
 Switch to new topic

herndon virginia
 Yahoo! Research

Half of Query Pairs are Related

Туре	Example	%
non-rewrite	mic amps -> create taxi	53.2%
insertions	game codes -> video game codes	9.1%
substitutions	john wayne bust -> john wayne statue	8.7%
deletions	skateboarding pics → skateboarding	5.0%
spell correction	real eastate -> real estate	7.0%
mixture	huston's restaurant -> houston's	
specialization	jobs -> marine employment	
generalization	gm reabtes -> show me all the current auto rebates	3.2%
other	thansgiving -> dia de acconde gracias	2.4%

Substitutions are repeated

- car insurance → auto insurance
 - 5086 times in a sample
- car insurance → car insurance quotes
 - 4826 times
- car insurance \rightarrow geico [brand of car insurance]
 - 2613 times
- car insurance → progressive auto insurance
 - 1677 times
- car insurance → carinsurance
 - 428 times

Different Users, Different Days

Statistical Test to Find Significant Rewrites

Test whether

P(britney spears|brittney spears) >> P(britney spears)

Log likelihood ratio test (GLRT) gives distributed score

About 90% of query pairs are related after filtering with LLR > 100

Many Types of Substitutable Rewrites

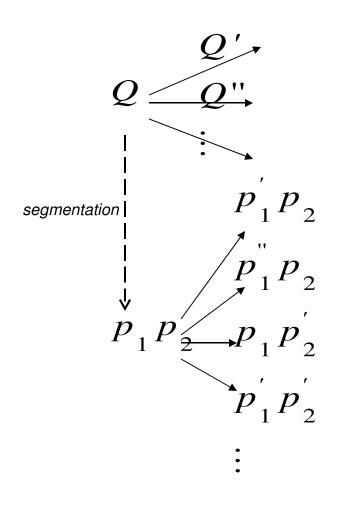
dog -> dogs	9185	pluralization
dog -> cat	5942	both instances of 'pet'
dog -> dog breeds	5567	generalization
dog -> dog pictures	5292	more specific
dog -> 80	2420	random junk in query processing
dog -> pets	1719	generalization hypernym
dog -> puppy	1553	specification hyponym
dog -> dog picture	1416	more specific
dog -> animals	1363	generalization hypernym
dog -> pet	920	generalization hypernym

Defining Categories of Relatedness for Sponsored Search

1- Precise Match	A near-certain match. <i>E.g.: automotive insurance - automobile insurance;</i>
2- Approximate Match	A probable, but inexact match with user intent. E.g.: apple music player - ipod shuffle
3- Marginal Match	A distant, but plausible match to a related topic. E.g.: glasses - contact lenses
4- Mismatch	A clear mismatch.

We will call {1,2} Precise and {1,2,3} Broad

Increase Tail Coverage with Query Segmentation



- Query segmented using high mutual information terms
- Most frequent queries: replace whole query
- Infrequent queries: replace constituent phrases

12

Generating Query Substitutions

- $Q1 \rightarrow \{q2,q3,q4,q5,q6\}$
- "catholic baby names" -> {christian baby names, christian baby boy names, catholic names, ...}
- All are statistically relevant (log likelihood ratio on successive queries)

Find a model to

- rank substitutions, to be able to pick the best ones $score(Q-\dot{\iota}u_1^{"}u_2) < score(Q-\dot{\iota}Q") < \dots$
 - associate a probability of correctness

$$P(Q-iQ')$$
 is correct $|score(Q-iQ')|$

Train/Test Data

- Sample 1000 queries (q1)
- Select a single substitution for each (q2)
- Manually label the <q1,q2> pairs
- Learn to score <q1,q2> pairs
- Order by score
- Assess Precision/Recall
 - Precise task {1,2} vs {3,4}
 - Broad task {1,2,3} vs {4}

14

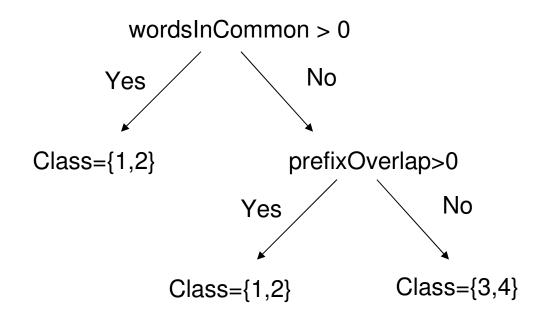
Predicting High Quality Query Suggestions

- Used labels to fit model
- Tried 37 features for model:
 - Lexical features including
 - Levenshtein character edit distance
 - Prefix overlap
 - Porter-stem
 - Jaccard score on words
 - Statistical features including
 - Probability of rewrite
 - Frequency of rewrite
 - Other
 - Number of substitutions (numSubst)
 - Whole query = 0
 - Replace one phrase = 1
 - Replace two phrases = 2
 - Query length, existence of sponsored results...

Baseline: Most suggestions broadly related

	Precise	Broad
	{1,2}	{1,2,3}
Random		
Suggestion Maximize LLR	55%	_
Minimize numSubst	66%	87.5%

Simple Decision Tree



Interpretation of the decision tree:

- substitution must have at least 1 word in common with initial query
- the beginning of the query should stay unchanged

Regression: continuous output in [1,4]

$$LMScore = in \ tercept + \sum_{f = features} w_f. f$$

Classification:

If(LMScore < T) then Good, else Bad

For each T, we have a precision and a recall

Evaluation:

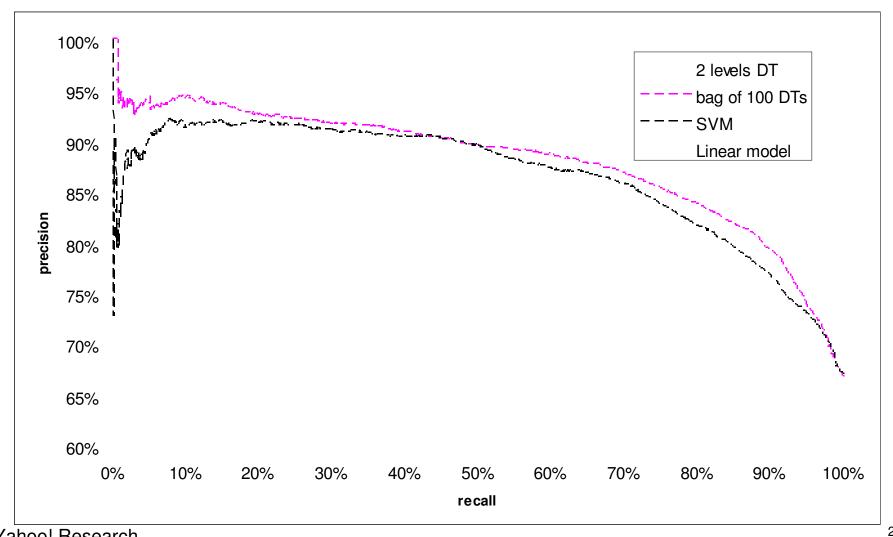
Average precision / recall on 100 times 10-fold cross validation

Learned Function

$$\begin{split} &f(q_1,q_2) = 0.74 + 1.88 \times editDist(q_1,q_2) \\ &+ 0.71 \times wordDist(q_1,q_2) \\ &+ 0.36 \times numSubst(q_1,q_2) \end{split}$$

- Outputs continuous score [1..4]
- Like decision tree
 - Prefer few edits
 - Prefer few word changes
 - Prefer whole-query or few phrase changes
- Normalize output to a probability of correctness using sigmoid fit

SVM, Bags of Trees, Linear Model **Give Similar Trade-offs**



Results Reranking Query-Suggestion Pairs

	Breakeven	Max-F1	Av. Prec
Baseline	0.66	0.66	0.66
2 level DT	0.71	0.83	0.71
SVM	0.81	0.83	0.86
Linear Model	0.80	0.84	0.87
Bag of 100 DTs	0.83	0.84	0.88

Generate Best Candidate on New Sample: Precision at 100% Recall

	Precise	Broad
	{1,2}	{1,2,3}
Random	55%	_
Suggestion		
Maximize LLR	66%	87.5%
Minimize numSubst		
Linear Regression	74%	87.5%

Example Query Substitutions

Initial Query	Substitution	Hand- label	Alg. Prob
anne klien watches	anne klein watches	1	92%
sea world san diego	sea world san diego tickets	2	90%
restaurants in washington dc	restaurants in washington	2	89%
nash county	wilson county	3	66%
frank sinatra birth certificate	elvis presley birth	4	17%

- Sponsored Search
- Query Expansion
- Assisted Search
- Lexical entailment

Other Sources of Phrase Similarity

Data Source	Cooccurence	Distributional Similarity
Queries	Pet dogs	dog food pet food
Query Sequence	Pets → dogs	$dogs \rightarrow petshop$ pets $\rightarrow petshop$
Sentences	"Pets such as dogs"	"pets like their owners" "dogs like their owners"
Documents	" pets dogs"	"dogs owners food" "pets owners food"

Sample Query Substitution Types

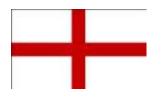
- meaning of dreams → interpretation of dreams (synonym)
- furniture etegere → furniture etagere (spelling correction)
- venetian hotel → venetian hotel las vegas (expansion)
- delta employment credit union → decu (acronym)
- lyrics finder → mp3 finder (related term)
- national car rental → alamo car rental (related brand)

amanda peet → saving silverman (actress in)

- Add other sources of similarity
- Try additional features
- IR experiments

Substitutes for Edinburgh Castle

- edinburgh castle scotland (0.86)
- edinburgh (0.79)
- stirling castle (0.76)
- dudley castle (0.56)



28

Substitutes for Mars Bar

- mars candy bar (0.83)
- mars candy (0.77)

Substitutes for "deep fried mars bar"

_?

29