
1

David Leip

ibm.com's experience with eXtreme Programming

Software Engineering
in an On Demand World

STSM, ibm.com CTO, and Agile Methods Advocate

David Leip

David Leip

Extreme Programming (XP)

“XP is a light weight methodology for small-to-
medium-sized teams developing software in the
face of vague or rapidly changing requirement.”

-- Kent Beck
‘eXtreme Programming eXplained’

Back-up Charts

David Leip

Most Software Projects

• Late
• Over Budget
• Buggy
• Miss the mark

The Unquestioned Truth: Up-front requirements analysis,
design, and modeling are the best way to avoid disaster.

But: For most applications, the actual requirements, even perhaps
the real problem, are unknown or not well understood in advance.

Back-up Charts
David Leip

Failure in S/W Engineering Projects.

CHAOS Report,
Standish Group

• 66% of projects failed or
are challenged in 2002

• Large projects are failing
more often than small
projects

• Only 52% of features
make it into product

http://www.standishgroup.com/sample_research/chaos_1994_1.php

16%

27%

26%

28%

34%

31%

40%

28%

23%

15%

53%

33%

46%

49%

51%

1994

1996

1998

2000

2002

Succeeded Failed Challenged

Back-up Charts

David Leip

Heavyweight Methodologies

• Logical reaction to the state of affairs.
• Goal: define a rigorous, quantifiable development process,

and follow it.
• Emphasis on artefacts (diagrams, models, documents) and

formal communication.
• Gives managers something concrete to do, control, and

believe in.
• Heavyweight, prescriptive, anti-creative, high overhead,

often hated by those who have to use it.

Back-up Charts
David Leip

What’s Needed in an onDemand World?

A methodology that easily accommodates
changes in direction.

A pay as you go methodology.

A methodology that allows the customer
to decide what is delivered next, function
by function.

A methodology that delivers
visible results frequently.

A methodology that keep the cost of change low.

Back-up Charts

2

David Leip

eXtreme

“The Mountain Dew-fuelled all-nighter is history.
Today's supercoders work 40 hours a week. And
two to a computer. It's called extreme
programming - and it's revolutionizing the
software world.” –Wired Magazine

Enter…

Programming

Back-up Charts
David Leip

Back-up Charts

David Leip

Summary: Agile Software Processes

• Increase responsiveness of software teams
– Changing requirements
– Strong customer involvement

• Focus on people, collaboration, communication
– Focus on face-to-face communication rather than documentation
– Generalists versus role specialization
– Plan and correct
– Customer-focused

• Each release delivers potentially shippable or deployable
functionality

• Test focused
• Time-boxed iterations (2 weeks – 4 months)
• Fast feedback

Back-up Charts
David Leip

eXtreme Programming Values

• Communication
• Simplicity
• Feedback
• Courage

Back-up Charts

David Leip

Extreme Programming Practices

Pair Programming

On-Site Customer

Simple Design

Frequent Small Releases

Sustainable Pace

Common Code Ownership

Test First Development Continuous Integration

Planning Game

Coding Standard

System Metaphor

Refactoring

Back-up Charts
David Leip

Cost of Pair Programming

Williams, Laurie, Kessler, Robert R., Cunningham, Ward,
and Jeffries, Ron, Strengthening the Case for Pair-
Programming, IEEE Software, July/Aug 2000

• University study with 41 students
• Higher quality code

– Test cases passed individuals: 73.4%-78.1%
– Test cases passed pairs: 86.4%-94.4%

• Pairs completed assignments 40-50% faster
(average 15% higher costs)

• Pair programming preferred by students (85%)

Back-up Charts

3

David Leip

User Stories

• Traditionally written on 5x7 index cards
• Describes the interaction with the system from the user’s

perspective.
“The user presses the New Instrument button, selects bond

instruments, then enters the bond details into the system.
On completion, he presses Accept.”

• Associate a title and contact customer for each story.

Back-up Charts
David Leip

Selecting User Stories

• Selecting stories is like shopping
– The items (stories)
– The prices (time estimates)
– The budget (the allotted time & manpower)
– The constraints (business and technology constraints)

• Customers pick the items whose prices fit into the budget
and satisfy the constraints.

• Order stories by business value
• High risk stories may be done earlier
• Slot stories into iterations using velocity

Back-up Charts

David Leip

Yesterday’s Weather (Velocity)

• How do you estimate how long it will take to
implement stories?

• Measure how many features you implemented in
the last iteration

• Estimate that the next iteration will implement the
same number of features

Back-up Charts
David Leip

Job Satisfaction Study (Melnik/Maurer)

Do agile methods lead to higher job satisfaction rates in software
development teams than the average satisfaction in IT industry?

Agile Teams

Somewhat
satisfied,

 53%

Neither
satisfied nor
dissatisfied,

8%

Somewhat
dissatisfied,

 8%

Very
dissatisfied,

1%

Very satisifed,
30%

Overall IT Industry

Somewhat
satisfied,

 35%
Neither

satisfied nor
dissatisfied,

11%

Somewhat
dissatisfied,

 25%

Very
dissatisfied,

11%Very satisifed,
18%

Back-up Charts

David Leip

Skill Building

• Created Study Group
• Brought in experts to help
• Extreme Construction Session

– http://csis.pace.edu/~bergin/extremeconstruction/

• XP text books for all on the team.
• Third party coaches.

David Leip

Some things we learned

• Don’t confuse simple philosophy with being simple to
do.

• Training is important.
• Get strong coaches.
• Devote someone to tools, if you can.
• Nomenclature can be important for buy-in.

– “Planning Game” for example can create negative
perceptions for example with executives.

• Automated test cases for much of the UI can be
fragile, and thus of little value.

4

David Leip

Some more things we learned

• System metaphor concept didn’t work for us.
• Take care to keep concept of ideal time and real time

clearly separated.
• You might need to segment the team into different

skill areas.
• You don’t need to pair for everything.
• Stand-up meetings can degenerate into customer

status meetings if you are not careful.
• Be ready to adapt. Stop doing things that are not

adding value. But be careful that you reinforce
what you stop doing in other ways.

David Leip

Results & Further Work/Research

• Corporate Portal 4.0 successfully deployed on
schedule (Nov. 2004)
– Satisfied Customer

• Preferred Tools
• Further integration with IT governance systems.
• Meshing s/w development velocity with other

velocities.
• XP and Usability.

Back-up Charts

David Leip

Further Information

• David Leip Leip@us.ibm.com

• http://www.ExtremeProgramming.org

Back-up Charts
David Leip

Back-up Charts!

David Leip

Back-up Chart Index

• XP Bill of Rights
• XP Roles
• Stages of an XP Project
• Communications

David Leip

XP Customer Bill of Rights

• As the customer, you have the right to:
– An overall plan, to know what can be accomplished, when,

and at what cost;
– Get the most possible value out of every programming week;
– See progress in a running system, proven to work by passing

repeatable tests that you specify;
– Change your mind, to substitute functionality, and to change

priorities without paying exorbitant costs;
– Be informed of schedule changes, in time to choose how to

reduce scope to restore the original date, even cancel at any
time and be left with a useful working system reflecting
investment to date.

5

David Leip

XP Developer Bill of Rights

• As the Developer, you have the right to:
– Know what is needed, with clear declarations of priority;
– Produce quality work at all times;
– Ask for and receive help from peers, superiors, and

customers;
– Make and update your own estimates;
– Accept your responsibilities instead of having them assigned

to you.

David Leip

XP Roles

• Customer
– Writes User Stories and specifies Functional Tests
– Sets priorities, explains stories
– May or may not be an end-user
– Has authority to decide questions about the stories

• Programmer
– Estimates stories
– Defines Tasks from stories, and estimates
– Implements Stories and Unit Tests

• Coach
– Watches everything, sends obscure signals, makes sure the project stays

on course
– Helps with anything
– Applies “Rolled Up Newspaper” as required

David Leip

XP Roles (cont.)

• Tracker
– Monitors Programmers’ progress, takes action if things seem to be

going off track.
– Actions include setting up a meeting with Customer, asking Coach or

another Programmer to help

• Tester
– Implements and runs Functional Tests (not Unit Tests!)
– Graphs results, and makes sure people know when test results decline.

• Doomsayer
– Ensures that everybody knows the risks involved
– Ensures that bad news isn't hidden, glossed over, or blown out of

proportion

David Leip

Stages of an XP Project

• Initiation
– User Stories
– Release Planning
– Release (typically 1-6 months)

• Iteration 1 (typically 1-3 weeks)
– Development
– Deployment
– Acceptance Testing

• Iteration 2
– Development
– Deployment
– Acceptance Testing

• …
• Iteration n

David Leip

Stand-up Meetings

• Daily meetings
• Everyone has to stand for the whole meeting
• What did you do yesterday?
• What are you doing today?
• Problems or announcements of interest to the team are

raised
• Don’t try to solve problems – take it offline

David Leip

Visible Graphs

• Smell a problem
• Devise a measurement
• Display the measurement
• If the problem doesn’t go away, repeat
• Choose graphs carefully. Use it only as long as

needed.

6

David Leip

Red Flags

• Identify problems
– Missing estimates
– Customers won’t make decisions
– Defect reports
– Not going end to end
– Failing daily builds
– Customer won’t finish

