
Data Versioning Techniques for Internet Transaction
Management

 Ramkrishna Chatterjee and Gopalan Arun
Oracle Corporation, One Oracle Drive, Nashua, NH 03062, USA

1-603-897-3515

{Ramkrishna.Chatterjee, Gopalan.Arun}@oracle.com

ABSTRACT
An Internet transaction is a transaction that involves
communication over the Internet using standard Internet protocols
such as HTTPS. Such transactions are widely used in Internet-
based applications such as e-commerce. With the growth of the
Internet, the volume and complexity of Internet transactions are
rapidly increasing. We present data versioning techniques that can
reduce the complexity of managing Internet transactions and
improve their scalability and reliability. These techniques have
been implemented using standard database technology, without
any change in database kernel. Our initial empirical results argue
for the effectiveness of these techniques in practice.

Categories and Subject Descriptors: H.2.4
[Database Management]: Systems - Transaction processing

General Terms: Algorithms, Reliability

Keywords: Versioning, Scalability, Internet Transaction

1. INTRODUCTION
A transaction is usually defined as a unit of work that satisfies the
ACID properties. However, in an Internet transaction (henceforth
ITX), frequently, atomicity and isolation are relaxed, and on
transaction failure, compensation is used for the completed steps.
Typical ITXs include e-commerce transactions and transactions in
Web-enabled e-business applications like CRM systems. In this
work, we are interested in any ITX that has one or more of the
following characteristics: (1) It involves human interaction, e.g.,
filling a form. (2) It spans multiple applications or companies. (3)
It is implemented using a multi-tiered architecture (e.g., browser
→ firewall → web server → middle-tier → backend database). (4)
It contains many points of possible failure. For example, in an
ITX initiated from a PDA, the wireless connection is such a point
of possible failure. (5) There are many concurrent transactions.
These characteristics define a large set of ITXs, which includes
the typical ITXs mentioned earlier.

Due to the above characteristics, many ITXs can last orders of
magnitude longer (seconds, minutes, or hours vs. milliseconds)
and have many more points of possible failure compared to a
traditional SQL-transaction. For example, a user filling a long
form may stop in the middle and then continue later. When the
user comes back to complete the form, she expects to see the form
as it was when she stopped. Hence, the overall ITX of which
filling the form is a part may last for a long time, hours or even

days. Moreover, until she is done, the user may not want her
changes to be seen outside the ITX. As another example, consider
an ITX for travel reservation. This ITX may include steps for
airline, car and hotel reservations, each of which may be handled
by a different company or application. If WS-BusinessActivity
protocol [1] is used, for instance, there could be one coordinating
activity for the trip, which invokes child activities for airline, car
and hotel reservations at participating Internet sites. Since the
coordinating activity converses with multiple child activities, it
may last longer than a typical SQL-transaction (seconds vs.
milliseconds). The child activity in itself may be short, but it may
have to wait a while for the complete or cancel signal from the
coordinating activity, making the child activity in effect last
longer.

These characteristics, mainly longer duration, high volume and
many points of possible failure, cause the following ITX
implementation problems:

1. Before an ITX ends, if the data modifications done by the ITX
are committed in a database for persistence, custom code has to be
written for rollback and isolation, which increases the cost and
complexity of implementation.

2. If the changes done by an ITX are done in an SQL-transaction
that is kept open for the duration of the ITX, issues like rollback
and isolation are automatically handled by the SQL-transaction;
but the longer duration and the high volume of ITXs can reduce
scalability because an open SQL-transaction consumes resources
in both the middle-tier and the backend database.

3. If the changes done by a large number of ongoing ITXs are kept
in the middle-tier, scalability can be affected as a middle-tier is
usually not designed for storing a large amount of data. This also
causes problems for session replication needed for load balancing
and fail-over. Moreover, if a lot of data is kept in the middle-tier,
it may not be possible to efficiently query it (e.g., find all
incoming orders for a product). Ideally, the middle-tier should be
used only as a cache for ITX data persistently stored in a database.

4. The multiple points of possible failure in an ITX and its longer
duration can reduce reliability. For example, if changes done by
an ITX are kept in an SQL-transaction or in the middle-tier, a
database or middle-tier crash will terminate the ITX.

Although many protocols [1] for managing ITXs have been
proposed, these critical ITX implementation problems have not
been adequately addressed before.

2. DATA VERSIONING TECHNIQUES
We solve these ITX implementation problems by maintaining
multiple virtual databases (henceforth VDB) in the same physical
database by versioning database rows on demand. Only the
changed data is versioned and only one copy of the data common

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

998

to multiple VDBs is stored. There is a system-defined root VDB
into which a VDB is finally merged, and from which new VDBs
are created. Data stored in a VDB is not visible outside it until the
VDB is merged, and the data is persistent; it lasts across database,
middle-tier, and browser crash. Data in a VDB is read and written
through SQL-transactions. After an SQL-transaction commits,
data modifications done in the SQL-transaction persist in the
current VDB. Each ITX (or activity [1] in an ITX) is assigned a
VDB in which data modifications done in the ITX are stored until
the ITX completes. Intuitively, since a VDB automatically
provides functionalities like rollback and isolation, no custom
code is needed to achieve these, and, hence, the cost and
complexity of implementation is reduced. Moreover, since (1) no
SQL-transaction needs to be kept open for the duration of an ITX
and (2) the middle-tier is not used as the repository for data
modifications done by ongoing ITXs, this solves the scalability
and reliability problems explained in Section 1. Frequently
accessed data can still be cached in the middle-tier.
Each table that will be modified in a VDB is version enabled by
augmenting its primary key with a version number. All rows
stored in a VDB are tagged with a version number assigned to the
VDB. A system-wide one-level deep tree of version numbers is
maintained. The root VDB is assigned the root version number in
this version tree and each of the other VDBs is assigned a leaf
version number. All rows tagged with the root version number are
initially seen from a leaf VDB. When a row is modified for the
first time in a leaf VDB, the modification is done in a new copy of
the row, i.e., a copy-on-demand approach is used. The new copy
is tagged with the VDB version number. Subsequent
modifications to the row in the VDB are done in place on the copy
created above, without creating another copy. Similarly, new rows
inserted in a VDB are also tagged with the VDB version number.
A view called VersionView(T) is created on each version-enabled
table T. This view shows only (1) the rows tagged with the current
VDB version number and (2) the root VDB rows that have not
been modified in the current VDB. It filters out the rows in sibling
VDBs and the root VDB rows that have been modified in the
current VDB.
The augmented table is renamed and the VersionView is given the
original table name. As a result, user-issued SQL queries and data
manipulation operations are now automatically done on the
VersionView, instead of the table. Three triggers are created on
each VersionView; one for each of insert, update and delete
operations. These triggers implement the copy-on-demand
approach described earlier. When the current VDB is set in a
session, the current VDB ID is stored in a context variable that is
later read inside VersionViews and view triggers to transparently
determine the current VDB. These transformations ensure SQL
transparency, i.e., ITX SQL code need not change to execute in a
VDB. All the widely used database features like constraints and
indexes are also supported in each VDB, without requiring any
change in ITX SQL code.
When an ITX fails, the changes done by the ITX are easily rolled
back by deleting the rows tagged with the version number of the
VDB assigned to the ITX, without touching data in any sibling
VDB. The rows to be deleted are efficiently identified using B-
tree indexes on version identifier columns.
A VDB is merged by (1) deleting the root VDB rows that have
been modified in the VDB and (2) updating the version number of
all rows tagged with the VDB version number to the root version
number. All the deletions and updates are done in a single SQL-
transaction to ensure ACID properties for the merge process.

Persistent row-level locks that can last for the duration of a VDB
are provided to ensure mutual exclusion between VDBs, and
hence avoid conflicts. The lock information is stored in a
metadata column of the augmented table. This column is checked
inside view triggers to ensure mutual exclusion.
These versioning techniques use only widely available database
features, i.e., column addition, views, triggers, stored procedures
[2], table renaming and indexes. On most commercial databases,
these features are available to application writers. Hence, these
techniques can be easily implemented on most commercial
databases, without making any changes in database kernel code.

3. EMPERICAL RESULTS
These versioning techniques have been implemented in Oracle
Workspace Manager [2], the long transaction management
component of Oracle Database. We used Workspace Manager to
measure the total time taken for an ITX with and without VDB.
We used a simple example ITX for this purpose. In this ITX, a
three-part HTML form was filled to update information about a
customer. Three tables were version enabled and these tables
together contained half a million rows. The results are shown in
Figure 1. The x-axis shows the number of rows modified by the
ITX and the y-axis shows the corresponding ITX execution time.
Since the time taken to enter data into the form varies with users,
we avoided it by submitting the same data as initially displayed on
the form, without modification. The columns VDB, MidTier and
SQL-TXN respectively show the results when the changes done in
the ITX were kept in a VDB, in RAM in the middle-tier, and in an
open SQL-transaction. The results show that even excluding the
time taken to enter data into the form, the overhead of using VDB
is insignificant compared to the overall ITX execution time.

0

1000

2000

3000

4000

5000

6000

0 1 5 10 15 20 40
No. of row s

Ti
m

e
in

 m
ill

is
ec

on
ds

VD B
M idT ier
SQ L-TXN

 Figure 1. Overhead of using VDB for ITX management

4. CONCLUSIONS
We have identified some critical ITX implementation problems
that have not been adequately addressed before. The data
versioning techniques we presented can solve these problems, and
thereby, reduce the cost and complexity of implementing ITXs
and enhance their scalability and reliability. Our initial
experiments indicate these techniques are effective in practice.

5. REFERENCES
[1] L. F. Cabrera et al., “Web Services Business Activity

Framework (WS-BusinessActivity)”, November 2004,
http://www.ibm.com/developerworks/library/ws-busact.

[2] Oracle Corporation, “Oracle Database Application
Developer’s Guide – Workspace Manager”, 10g Release 1,
Part Number B10824-01, December 2003.

999

