
An Information Extraction Engine for
Web Discussion Forums

Hanny Yulius Limanto, Nguyen Ngoc Giang, Vo Tan Trung,
Nguyen Quang Huy, Jun Zhang, Qi He

Nanyang Technological University
Nanyang Avenue, Singapore 639798

(65) 6791-1744

{H943701, A0227955A, 023448171, AS0225608, JZhang, QIHE0001}@ntu.edu.sg

ABSTRACT
In this poster, we present an information extraction engine for
web-based forums. The engine analyzes the HTML files crawled
from web forums, deduces the wrapper (template) of the pages
and extracts the information about posts (e.g., author, title, content,
number of replies and views, etc.). Extraction is an important
module for forum search engine, since it helps to understand the
content of a forum HTML page and facilitates ranking during
retrieval. We discuss the system architecture of the extraction
engine in the context of a forum search engine and present various
components in the extraction engine. We also introduce briefly the
extraction process and discuss some implementation issues.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing - abstracting methods.

General Terms
Algorithms.

Keywords
Information Extraction, Information Retrieval, Search Engine,
Discussion Board, Forums.

1. INTRODUCTION
Web discussion forums are web-based discussion boards where
people exchange ideas by posting articles and replies. Forum is
one of the major communication platforms for Internet users with
similar interests. Unlike newsgroups, web forums provide diverse
functionalities, nice user interface and easy usage. As the
emergence of numerous web forums, a huge amount of new and
real-time information is generated and this calls for an effective
search support. The forum software provides basic search
functions restricted to only one forum. General search engines
support searching across forums provided these forums can be
reached by their crawler. However, regardless whether they are of
general purpose, e.g., Google [3], or specifically designed for web
forums, e.g., Lycos Discussions [4], they index and rank each
forum page as a whole without the knowledge of the content
inside the pages. Combined with the fact that link analysis also
fails, their ranking is not effective and advanced searching (e.g.,
search based on title) is not supported.
Motivated by this, in this poster, we present an information
extraction engine for web forums that automatically discovers the
structures of the forum pages and extracts information inside the

pages. The idea of information extraction has been previously
proposed in various papers [1, 2, 5]. The extracted content can be
further indexed to support effective retrieval. Sophisticated post-
based (instead of page-based as in most of the search engines
nowadays) ranking functions can be developed utilizing the
extract content, e.g., it is possible to give a high rank to a post
with large number of views (or replies).
The proposed system architecture and algorithms in this poster
can be generalized and applied to any web content that is
generated by templates. In this poster, however, we will focus on
the web forum application. We first describe the architecture of
the extraction engine and study how extraction fits in the forum
search engine big picture. Then we elaborate on each component
of the extraction engine and present briefly the algorithms. Finally,
we conclude the contribution of the poster.

2. SYSTEM ARCHITECTURE
In order to present a complete picture, we depict the system
architecture of a forum search engine in Figure 1, with the
information extraction engine highlighted. The whole system is a
web application that allows users to search for information of their
interest over all the web forums. The major modules of the forum
search engine are crawler, wrapper generator, extractor and query
processor. Together with the wrapper database, extractor and
wrapper generator constitutes the extraction engine.

Internet Crawler

Wrapper
Generator

Wrapper
Database

Extractor
Wrapper Wrapper

Text
Database

Query
Processor

Forum HTML Pages

User
Q u e r y

Result

Extracted Info

Information
Extraction

Engine

Figure 1. Forum Search Engine System Architecture

Crawler continuously discovers and retrieves HTML pages from
the Internet. For each of the pages obtained, crawler utilizes a
trained classifier to determine whether it is a forum page. Forum
pages are passed to information extraction engine, which consists
of wrapper generator and extractor. Wrapper generator studies an
HTML pages and discovers the repeated patterns in the page. A
wrapper (represented as a regular expression) is deduced from the

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

978

page, and stored in wrapper database. Later when a page with the
similar URL prefix arrives, we directly retrieve the wrapper for
the page from the database without running the wrapper generator
again. Extractor extracts information by matching the HTML page
with the corresponding wrapper. The extracted information is
directed to the text database, where index is built to support
efficient retrieval. Query processor accepts queries from the user,
retrieves relevant information from the text database, ranks the
result accordingly based on the ranking function specifically
defined for web forums and returns it to the user.

3. EXTRACTION PROCESS
The extraction is performed in two steps: i) deduce the wrapper of
the page (Session 3.1); ii) extract information inside the page
using the generated wrapper (Session 3.2).

3.1 Wrapper Generation
The wrapper generator produces the wrapper of an HTML page
by analyzing the page content. It is a reverse engineering process
to obtain the original template of the page. The wrapper
generation algorithm used in the system is an improved version of
the algorithm presented in [5]. Firstly, the HTML page is cleaned
to adhere to the XHTML specification. The XHTML page is then
tokenized by treating HTML tags and text between tags as tokens.
A token suffix tree is built on these tokens to discover
continuously repeated patterns. A continuously repeated pattern is
a token set that repeats itself consecutively in a token string.
Figure 2 illustrates a token string and the corresponding suffix tree.
As an improvement of the algorithm in [5], we only insert
substrings starting with an open tag into the suffix tree, since a
meaningful repetition always begins with an open tag.

Figure 2. Token Suffix Tree

To detect repeated patterns, we traverse the suffix tree and for
each non-leaf node, we check all its child nodes and see whether
consecutive strings can be found. In the suffix tree of Figure 2,
under node c, we find substring 4 and 7. They both start with
<td>text</td>, and they are consecutive. Thus they constitute a
continuously repeated pattern. We add an additional step to the
original algorithm, filtering out the patterns without text or
unbalanced (i.e., open and close tags do not match). Among all
the patterns found in one iteration, we select the shortest one and
build a new suffix tree by replacing it to its collapsed form. The
same process is repeated until no new patterns can be found.

The above algorithm finds repetition on the HTML tag level only.
It cannot handle cases where text phrase is part of the repetition.
Figure 3 shows an example where text Registered: is in fact from
the template and appears repetitively. In order to find such
repetition, we propose the following algorithm: we scan all text
token t that is part of a repeated structure. If we find some
common word w appearing constantly in every instance of t, we
treat w as a text repetition. In the example of Figure 3, we find

that Registered: appears once in each of the text token, so it is
regarded as part of the template.

 User1, Registered: 01/02/2005
 User2, Registered: 04/15/2005

Repeated pattern: text

w

Figure 3. An Example of Text in the Template

t

For optional element detection, we employ string alignment
algorithm. Observe that optional element always appears inside
repetitions, we only need to consider each repetitive pattern and
compare it to the tokens adjacent to it. If the tokens are similar,
we can conclude that the differences between the two patterns are
due to optional tokens.

3.2 Data Extraction
After the wrapper is generated, both the wrapper and the tidied
XHTML page are sent to extractor. We utilize a non-deterministic
finite-state automaton (NFA) to extract data. Extractor consists of
two modules: i) converting wrapper into a NFA and ii) building a
NFA engine to extract data. Figure 4 shows the structure of a data
extractor.

Figure 4. Structure of a Data Extractor

Thompson's algorithm is employed to convert wrapper (in form of
regular expression) to a NFA. As an improvement, we reduce the
number of states in the NFA by: i) treating text token as a single
alphabet; ii) treating set of consecutive non-text tokens not
interfered by regular operators (e.g., ‘*’ and ‘|’) as a single
alphabet.

The constructed NFA is fed to an NFA engine, together with the
XHTML page. NFA engine traverses the NFA and maps the
source page with the wrapper by exploiting all possible ways of
matching. When a match is detected, the NFA engine backtracks.
When a text alphabet is encountered during backtracking, we
perform extraction of data.

4. CONCLUSION
In this poster, we propose a novel information extraction engine
for web forums. The engine generates wrappers by studying the
structure of the forum HTML files and extracts data inside the
pages using the created wrappers. The extraction enables
advanced searching and improves the effectiveness of ranking
during retrieval.

5. REFERENCES
[1] Arasu, A. and Garcia-Molina, H. Extracting structured data

from web pages. SIGMOD 2003, 337-348
[2] Crescenzi, V., Mecca G., and Merialdo P. ROADRUNNER:

towards automatic data extraction from large web sites.
VLDB 2001, 109-118

[3] Google: http://www.google.com
[4] Lycos Discussion: http://discussion.lycos.com
[5] Wang, J. and Lochovsky, F.H. Data extraction and label

assignment for web databases. WWW 2003, 187-196

DataNFA
Building

HTML

NFA Wrapper NFA
Engine

c

b

a

Tokens: <body><table><tr><td>text</td><td>text</td><td></td></tr></table></body>

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

7 4

10

3 2 1

Pattern found: <td>text</td>

Wrapper: <body><table><tr>(<td>text</td>)*<td></td></tr></table></body>

979

	1. INTRODUCTION
	2. SYSTEM ARCHITECTURE
	3. EXTRACTION PROCESS
	3.1 Wrapper Generation
	3.2 Data Extraction
	4. CONCLUSION
	5. REFERENCES

