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ABSTRACT
Personalized PageRank expresses backlink-based page qual-
ity around user-selected pages in a similar way to PageRank
over the entire Web. Algorithms for computing personalized
PageRank on the fly are either limited to a restricted choice
of page selection or believed to behave well only on sparser
regions of the Web. In this paper we show the feasibility
of computing personalized PageRank by a k < 1000 low-
rank approximation of the PageRank transition matrix; by
our algorithm we may compute an approximate personal-
ized PageRank by multiplying an n× k, a k×n matrix and
the n-dimensional personalization vector. Since low-rank
approximations are accurate on dense regions, we hope that
our technique will combine well with known algorithms.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval

General Terms
Algorithms, Performance, Experimentation, Measurement

Keywords
Personalized PageRank, Singular Value Decomposition, link
analysis, low-rank approximation, Web information retrieval

1. INTRODUCTION
Topic sensitive or personalized ranking appears since the

beginning of the success story of Google’s PageRank [6].
Topic sensitivity can be achieved by precomputing modified
PageRank measures over the entire Web [4]; unfortunately
the naive computation of PPR requires a power iteration
algorithm over the entire web graph, making the procedure
infeasible for an on-line query response service.
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All known approaches for computing personalized Page-
Rank on the fly for a user query impose limitations. Some of
them [5] restrict personalization to a limited set of a few tens
of thousands of Web pages; other methods rely on finger-
prints [2] that behave well only on relatively sparse portions
of the Web.

We show the feasibility of low-rank approximation to the
transition matrix of the Web graph for computing personal-
ized PageRank. We use the linear time SVD algorithm of [1]
by selecting a random sample of approximately 105 columns
and compute the first few hundred singular vectors. We may
only personalize on nodes well-connected into the sample; we
argue the procedure works well in dense regions.

Our algorithm consists of a precomputation step to com-
pute an n× k and a k× n matrix with the help of low-rank
approximation. There is no need to store either matrices ex-
plicitly since they are expressible as products of small dense
and large sparse matrices. Then we may personalize for vec-
tor x by multiplying the n × k matrix with the product of
the k × n matrix and x. The last multiplication is inexpen-
sive for a sparse x that we typically use for personalization;
the first multiplication however needs either RAM-resident
data or and edge scan over the Web graph.

2. THE ALGORITHM
Let M denote the transition matrix corresponding to the

Web graph. The PageRank vector ppr(x) personalized on
a distribution x on Web pages is the solution of ppr(x) =
(1− d)x + d ·MT ppr(x) and can be obtained as

pprM (x) = (1− d)(I − d ·MT )−1x (1)

Since matrix inversion at the scale of a Web transition ma-
trix is infeasible, we will use low-rank approximation to solve
the problem. Unfortunately it is know that low-rank approx-
imation cannot significantly speed up general inverse com-
putation as smallest singular values are involved [3]. Instead
we use power iteration

pprM (x) = (1− d)(x +

∞X
i=1

di(MT )i · x). (2)

and replace M by a low-rank approximation M̃ . If the error
in approximating M i by M̃ i grows slower than d−i, the total
error will remain bounded; giving theoretic guarantees is
however beyond the scope of this paper.
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Algorithmically we proceed by the linear time SVD algo-
rithm of [1]. We sample the columns of M with probability
pv for column v proportional to `2 length. We form matrix
C by selecting c columns and multiplying each by 1/

√
cpv.

Compute the SVD of C = HΣY T ; let Hk be a n× k matrix
consisting of the first k singular vectors. By Theorem 4 of
[1] M̃ = HkHT

k M is a low-rank approximation of M , hence

˜ppr(x) = (1− d)(x +

∞X
i=1

di(MT HkHT
k )i · x)

= (1− d)(x + dMT Hk ·
` ∞X

i=0

di(HT
k MT Hk)i´ ·HT

k x)

= (1− d)x + dMT Hk ·
`
pprHT

k
MT Hk

(x)
´
·HT

k x.

Our algorithm hence computes the PPR over the k× k ma-
trix HT

k MT Hk, multiplied by two n × k matrices from left
and right. We may apply the power iteration (2) or use our
matrix inversion algorithm of choice as in (1).

Since random sampling is involved, our algorithm may
only personalize to nodes that can reach the sample on out-
links and positive PPR values are assigned only to nodes
reachable in two steps from the sample. To see, note that
C = HΣY T implies HT = Σ−1Y T CT and hence the last
term HT

k x can further be reduced to an initial computation
of CT · x. This vector however depends only on values xu

such that for some v Cuv 6= 0, i.e. if u has an edge into node
v such that column v is selected into the sample. A similar
argument applies to Hk on the left hand side; finally the
result is multiplied by another MT from the left, meaning
another step along the edges of the graph.

We show how sampling affects the algorithm. Columns are
selected based on `2 length that will imply our algorithm
behave well on dense regions. Column v is selected with
higher probability if the squared sum of 1/outdeg(u) for all
u with edge into v is large. Hence we select the node if the
indegree of v is large and in particular if incoming edges are
from nodes with small out-degree. Hence the base of links
into the sample will cover a large portion of the Web.

3. EMPIRICAL EVALUATION
We computed approximate PPR for the 80-million node

Stanford Webbase graph and a 5-million node graph of the
Hungarian Web (.hu) with c = 10, 000; in order to measure
the effect of k we used the choices of k = 100 and 1000.
The longest precomputation took two days over a single 2.0
GHz AMD Opteron with 4 GB RAM. Uniform PageRank
has correlation 0.52 and 0.60, rank correlation 0.28 and 0.44,
respectively, with the approximate values.

We measured the average similarity of the exact and ap-
proximate personalized PageRank vectors in both cases for
the top 1000 PageRank pages. We used two additional se-
lection criteria: we require at least one link into the sample
(restriction: otherwise we get a null PPR vector); and dis-
card outdegree zero vertices (fairness: their PPR toplists are
very easily reproduced, resulting in very high average good-
ness). For the Hungarian graph 60% and for the Stanford
graph 25% of the pages is included in the measurement.

Due to its robustness to error in very small PPR values we
chose the aggregate goodness measure of [7] that measures
the total real rank of the first k elements output by our
algorithm. Relative aggregated goodness calculates the sum

of exact PPR values in the approximate toplist compared
to the maximum value achievable. We average these values
over pages in our sample. As baseline we use the (uniform)
PageRank as approximation to all PPR vectors.
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We find fairly good approximate toplists for the small
Hungarian graph; here an order of magnitude increase in k
makes little difference. The 80 million node Stanford graph
performs worse though still significantly above the uniform
PageRank baseline. Here even larger values of k are needed
together with larger sample size in order to increase both
the low value 25% of pages we could personalize on and the
list of pages that may appear with positive PPR value.

4. CONCLUSIONS AND FUTURE WORK
Our experiments show that dimension reduction may be

used as an ingredient in computing personalized PageRank.
We believe that the combination with [5, 2] makes person-
alization feasible in large-scale search engines.
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