
Interactive Web-Wrapper Construction for Extracting
Relational Information from Web documents
Tsuyoshi Sugibuchi

Hokkaido University, Meme Media Laboratory
Kita 13 Nishi 8, Kita-ku, Sapporo,

Hokkaido Japan
buchi@meme.hokudai.ac.jp

Yuzuru Tanaka
Hokkaido University, Meme Media Laboratory

Kita 13 Nishi 8, Kita-ku, Sapporo,
Hokkaido Japan

tanaka@meme.hokudai.ac.jp

ABSTRACT
In this paper, we propose a new user interface to interactively
specify Web wrappers to extract relational information from Web
documents. In this study, we focused on improving user’s trial-
and-error repetitions for constructing a wrapper. Our approach is a
combination of a light-weight wrapper construction method and
the dynamic previewing interface which quickly previews how
generated wrapper works. We adopted a simple algorithm which
can construct a Web wrapper from given extraction examples in
less than 100 milliseconds. By using the algorithm, our system
dynamically generates a new wrapper from a stream of user’s
mouse events for specifying extraction examples, and
immediately updates a preview result that shows how the
generated wrapper extracts HTML nodes from a source Web
document. Through this animated display, a user can make a lot of
wrapper construction trials with various different combinations of
extraction examples by only moving a mouse on the Web
document, and reach a good set of examples to obtain an intended
wrapper in a short time.

Categories and Subject Descriptors
H5.2 [Information Interfaces and Presentation]: User
Interfaces – Graphical user interfaces (GUI)
General Terms: Algorithms, Design, Human Factors
Keywords: User interfaces, Information extraction, Web
wrappers

1. INTRODUCTION
A Web wrapper is used to convert an HTML document into a
form that intended software can understand. A Web wrapper is a
program which extracts data of interest from an HTML document
and outputs the data in a structured form. Various wrapper
construction tools [1] have been proposed for users to easily
construct new Web wrappers for arbitrary Web documents.
Wrapper construction from given extraction examples is one of
the most popular approaches for such tools. In this approach, a
user gives a set of portions of an HTML document as examples.
Then the system constructs a new wrapper that extracts portions
similar to given examples from the HTML document. The
extraction manner of the wrapper depends on the given examples.
Therefore, a user needs to make many trials with various
combinations of examples until an intended wrapper is generated.
Various interfaces for Web wrapper construction are proposed in
previous studies. However, there are few studies that focus on the
improving of this trial-and-error task.

In this study, we tried to improve this task through user’s
interactive manipulation and dynamic visual feedback from a
system. Our dynamic previewing interface allows users to quickly
change a combination of examples and to get an immediate visual
feedback about an effect of the change. By using this interface, a
user can dynamically make a lot of wrapper construction trials and
easily find a desirable one.
To realize the dynamic previewing interface, we developed a data
extraction model and a wrapper construction method for our Web
wrapper. Our method constructs a wrapper without traversing the
whole of an HTML document. Therefore it can construct
wrappers in a significantly short time to realize the dynamic
preview display.

2. DYNAMIC PREVIEWING INTERFACE
Our dynamic previewing interface for wrapper construction is a
combination of user’s interaction and visual feedbacks. In our
dynamic previewing interface, an extraction example is selected
by a mouse. Along the movement of the mouse pointer, the
system dynamically changes a combination of extraction
examples and generates a new wrapper immediately. Then the
system updates its display highlighting extracted portions. A
response time of this visual feedback is less than 100 milliseconds,
so that users feel as if the preview display is animated along with
user’s mouse operations. In our system, users can make a lot of
trials with various combinations of examples only through mouse
movement, and find a good combination through the animated
preview display.

Select example 1 (A) (B) (C)

ex.2ex.2

ex.2ex.2 ex.2ex.2

ex.1ex.1 ex.1ex.1ex.1ex.1
ex.1ex.1

Figure 1. Example of the dynamic previewing display

Figure 1 shows that our interface smoothly highlights nodes to be
extracted in response to the mouse movement. In this example, a
user is specifying a Web wrapper on ‘The World Heritage List’
page presented by UNESCO. He selects the first candidate to
extract on the page, and then he moves a mouse pointer over the
page to specify various portions to work as the second candidate
to extract. The specification of a new portion as the second
candidate dynamically highlights all the portions to be extracted
by generalizing the first two example candidates. The dynamically
updated preview suggests various patterns of extraction results

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

968

such as (A) all heritages of one nation, (B) all the heritages that
appear in the first portion in some nation's heritage list, and (C) all
the heritages of all the nations. User can quickly find good
extractions by only moving the mouse pointer over the target Web
page.

3. DATA EXTRACTION MODEL
Our Web wrapper extracts a set of HTML nodes from a source
HTML document, and then the wrapper constructs a relational
table from extracted nodes by associating related nodes as a tuple.

HTML

BODY

TR

TD TD

'Tokyo' 'Chiba'

TD

TR

TD TD TD

'21℃' '22℃'

TABLE

TR

TD TD

'Osaka' 'Kobe'

TD

TR

TD TD TD

'28℃' '29℃'

TABLE

HTML

BODY

TR

TD TD

'Tokyo' 'Chiba'

TD

TR

TD TD TD

'21℃' '22℃'

TABLE

TR

TD TD

'Osaka' 'Kobe'

TD

TR

TD TD TD

'28℃' '29℃'

TABLE

Example HTML document DOM tree structure

.........

12Osaka

21Chiba

11Tokyo

#Y#XA

.........

12Osaka

21Chiba

11Tokyo

#Y#XA

relation: RA

.........

1228℃

2124℃

1121℃

#Y#XB

.........

1228℃

2124℃

1121℃

#Y#XB

relation: RB

PA: /HTML[1]/BODY[1]/TABLE[#X]/TR[1]/TD[#Y]
PB: /HTML[1]/BODY[1]/TABLE[#X]/TR[2]/TD[#Y]

Wrapper Specification

Osaka

...

Chiba

Tokyo

A

.........

1228℃

2124℃

1121℃

#Y#XB

Osaka

...

Chiba

Tokyo

A

.........

1228℃

2124℃

1121℃

#Y#XB

relation: R

'Tokyo': /HTML[1]/BODY[1]/TABLE[1]/TR[1]/TD[1]
PA: /HTML[1]/BODY[1]/TABLE[#X]/TR[1]/TD[#Y]

'Chiba': /HTML[1]/BODY[1]/TABLE[1]/TR[1]/TD[2]

… …

'Tokyo': /HTML[1]/BODY[1]/TABLE[1]/TR[1]/TD[1]
PA: /HTML[1]/BODY[1]/TABLE[#X]/TR[1]/TD[#Y]

'Chiba': /HTML[1]/BODY[1]/TABLE[1]/TR[1]/TD[2]

… …

Evaluating XPATH expressions

Figure 2. Data extraction model

A specification of our Web wrapper is represented as a set of
XPATH expressions with variables. In this paper, a variable in an
XPATH expression is denoted by an alphabet prefixed with ‘#’
like ‘#X’. When an XPATH expression is evaluated to extract
HTML nodes, a variable in the expression works as a wild card
which matches for any type of a node or any position. Then a
node type or a position corresponding to the variable is output as a
value of the variable. When the wrapper constructs a relation from
extracted HTML nodes, the wrapper construct tuples by
comparing values of variables. Figure 2 shows an example of our
data extraction process. In this example, XPATH expressions PA
and PB extract HTML nodes as values of attributes A and B in the
relation R. Both XPATH expressions include variables #X and #Y.
As a result, the extracted result for PA forms a relation RA that
consists of extracted node A, and values of #X and #Y. In the same
way, RB is the extracted result for PB. Then our wrapper constructs
relation R as the natural join of RA and RB.
Our data extraction method works well if HTML nodes we intend
to extract appear in a repetitive structure in the DOM tree. The
method can be applied not only to basic HTML tables, but also to
various hierarchical structures and transposed tables that are
difficult for conventional delimiter-based wrappers to extract data
from.

4. WRAPPER CONSTRUCTION METHOD
For end users to construct a Web wrapper by end users, we define
two types of user’s actions we call generalization and aggregation.
In both actions, a user selects two HTML nodes from an HTML
document. By generalization, selected two nodes are treated as
extraction examples in the same attribute of a relation. By

aggregation, selected two nodes are treated as extraction examples
in the same tuple of a relation.
Figure 3 shows an example of user’s actions. First, the user
specifies a generalization on two cells a1 and a2. By this action,
all cells in the first row of each table are extracted as an attribute
A of the relation R. Then the user specifies an aggregation on the
two cells a2 and b1. By this action, all the cells in the second row
of each table are extracted as a new attribute B, and then each cell
in the first low, the one containing a city name, and the cell just
under it, the one containing the temperature of the city, are
combined into a single tuple.

example a1example a1

example a2example a2

example b1example b1

Aggregation

Generalization

P1:/HTML[1]/BODY[1]/DIV[1]/A[1]/IMG[1]

P2:/HTML[1]/BODY[1]/DIV[2]/A[1]/IMG[2]

Pairwise XPATH alignment of P1 and P2:

mismatch
gap

Figure 3. User’s actions and an XPATH alignment

In out wrapper construction method, we define a set of XPATH
expressions from a sequence of the user’s actions. In each action,
we define two XPATH expressions that point two selected nodes,
and compare the two expressions to assign variables to XPATH
expressions. To compare two XPATH expressions, our system
computes the XPATH alignment. Figure 3 shows an example of
the XPATH alignment. The XPATH alignment is a mutual
arrangement of location steps in two XPATH expressions. To
obtain the XPATH alignment, we use an algorithm for computing
string alignments through dynamic programming [2].

Pa1:/HTML[1]/BODY[1]/TABLE[1]/TR[1]/TD[1]

Pa2:/HTML[1]/BODY[1]/TABLE[2]/TR[1]/TD[3]

1. Generalization(a1, a2)

Pa1:/HTML[1]/BODY[1]/TABLE[1]/TR[1]/TD[1]

Pa2:/HTML[1]/BODY[1]/TABLE[2]/TR[1]/TD[3]

Pa2:/HTML[1]/BODY[1]/TABLE[2]/TR[1]/TD[3]

Pb1:/HTML[1]/BODY[1]/TABLE[2]/TR[2]/TD[3]

2. Aggregation(a2, b1)

Pa2:/HTML[1]/BODY[1]/TABLE[2]/TR[1]/TD[3]

Pb1:/HTML[1]/BODY[1]/TABLE[2]/TR[2]/TD[3]

mismatch match

#X

#X #Y

#Y #X

#X #Y

#Y

#X #Y

assign variables copy variables

PA:/HTML[1]/BODY[1]/TABLE[#X]/TR[1]/TD[#Y]
PB:/HTML[1]/BODY[1]/TABLE[#X]/TR[2]/TD[#Y]

Wrapper specification

Figure 4. Wrapper construction process

For each generalization action, we assign new variables for each
mismatched pair of node tests or predicates in the XPATH
alignment. In this example, variables #X and #Y are assigned to
predicates after TABLE and TD in Pa1 and Pa2. For each
aggregation action, we equalize arrangements of variables in each
matched pair of node tests and predicates. In this example,
variables #X and #Y are copied from Pa2 into Pb1.

5. CONCLUDING REMARKS
In this paper, we proposed a new user interface to construct a Web
wrapper. Immediate visual feedback of our interface allows users
to easily explore in a large set of wrapper candidates. In our future
work, we would like to extend proposed technique to construct a
Web wrapper for multiple Web pages, and apply this interface to
an information integration environment that allows users to
interactively combine various Web resources.

6. REFERENCES
[1] Alberto H. F. Laender, et al. A brief survey of web data extraction

tools. ACM SIGMOD Record, 31(2), pp. 84-93, 2002.
[2] Dan Gusfield. Algorithms on Strings, Trees, and Sequences.

Cambridge Press, pp. 213-223, 199

969

