
SLL: Running My Web Services on Your WS Platforms
Donald Kossmann

ETH Zürich
8092 Zürich, Switzerland

donald.kossmann@inf.ethz.ch

Christian Reichel
University of Heidelberg, Germany

& Siemens AG, Germany

christian.reichel@email.de

ABSTRACT
Today, the choice for a particular programming language limits the
alternative products that can be used to deploy the program. For
instance, a Java program must be executed using a Java VM. This
limitation is particularly harmful for the emergence of a new
programming paradigm like SOA and Web Services because
platforms for new innovative programming languages are typically
not as stable and mature as the established platforms for traditional
programming paradigms. The purpose of this work is to break the
strong ties between programming languages and runtime
environments and thus make it possible to innovate at both ends
independently. Thereby, the specific focus is on Web Services and
Service-Oriented Architectures; focusing on this domain makes it
possible to achieve this goal with affordable efforts. The key idea is
to introduce a Service Language Layer (SLL) which gives a high-
level abstraction of a service-oriented program and which can easily
and efficiently be executed on alternative Web Services platforms.

Categories and Subject Descriptors
D.2 [Software Engineering] : Software Architectures –
Languages; D.2 [Software Engineering] : Design –
Representation; D.3 [Programming Languages] : Processors –
Code Generation

General Terms: Languages

Keywords: service language layer, decoupling, web services,
XML-based service language, XML, transformation

1. INTRODUCTION
The W3C and OASIS have defined many standards in order to
enable Service-Oriented Architectures (SOA) and the emergence
of Web Services (WS). However, there is no standard
programming language to implement WS. As a result, many
different languages are used for this purpose; e.g., Java, C# /
.NET, BPEL [1], and a battery of Workflow and other domain-
specific languages. Unfortunately, the choice for a particular
programming language limits the options for platforms to deploy
the WS. For example, if C# is used, then the services only run on
Microsoft Windows boxes. If BPEL is used, one of the BPEL
engines must be installed. Depending on the application server
and tools used (e.g., WebLogic or WebSphere), there is a strong
dependency between the programming environment and execution
platform even within the Java world. This situation is very
unfortunate because one goal of the WS vision is to decouple
software components and allow best-of-bread development and
evolution of the whole IT infrastructure.

This work proposes a Service Language Layer (SLL) with the goal
to decouple the WS programming model from the execution
platform. The idea is to translate programs that define a WS into
an intermediary language, called xSL, to carry out transformations
from xSL to xSL, and to map the resulting xSL programs for
deployment onto one of the available platforms (e.g., Java VM,
.NET, a BPEL engine, or another special-purpose platform).
There are several advantages to such an approach:

Best of bread: Developers can choose the best programming
model and platform for deployment independently.
Reduced Vendor Dependency: Developers can implement their
applications in the programming language they wish without the
fear that they will be tied to a specific vendor for all times. The
increased portability of programs is also beneficial if programs
need to be run on different devices (e.g., mobile phones, PDAs).
Management and Administration: Companies that have installed
several platforms over the years can consolidate their IT landscape
and reduce the number of platforms that need to be maintained.
In addition to savings in administration costs, this consolidation
can result in significant performance improvements.

What is special about the approach proposed in this work is that
xSL, the proposed intermediary language, is high-level and can
thus be mapped very efficiently to typical WS platforms which
also support a high-level programming interface. In other words,
rather than using a low-level intermediary language such as three-
address code [2], the SLL uses a high-level, XML-based encoding
of a WS that can easily be mapped to different target WS engines.

2. SERVICE LANGUAGE LAYER
Figure 1 shows how a Service Language Layer (SLL) can be used
to decouple programming models and their execution models:

Figure 1: The Service Language Layer (SLL)

This approach removes the direct link between traditional
programming languages and platforms within the service domain.
SLL defines an XML-based Service Language (xSL) which can
be seen as a central model for service-oriented software. Programs
in various (service-oriented) programming languages can be
transformed into xSL programs. In a second step, xSL programs
can be transformed so that they can be deployed and executed on
different WS engines. In Figure 1, for instance, a BPEL program

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

962

could be transformed into an xSL program which in turn could be
transformed into Java Byte Code for execution on a Java VM.
Likewise, a Java program could be executed using the XL VM
[3], a special-purpose engine for the execution of WS. There
might be limitations in practice (for instance, the current
implementation of transformations in our prototype does not
support the execution of any arbitrary Java program on a BPEL
engine), but in principle any combination is possible as long as
the engines in the runtime environment are Turing complete.

As shown in Figure 1, it is also possible to transform xSL
programs back into programs of a traditional programming
language. This way, the SLL can be used as a vehicle for cross-
compilation. Another way to look at Figure 1 is that xSL
describes a program at an abstract level which is easy to process
for machines, but difficult to read and manipulate for human
beings. The syntax of modern programming languages such as
Java can be seen as a way to define views on such abstract
programs. In other words, the SLL can also be used to decouple
the way that programs are represented internally (in xSL) and the
way they are presented to programmers in their IDE (e.g., Java or
C#). In this regard, the SLL approach works along the lines of the
work proposed by Gregory Wilson [4], thereby extending
Wilson’s work to be applied to the execution of programs, too.

2.1 Overview of xSL
An xSL language that can be used for the SLL must be powerful
enough to represent fundamental concepts of programming
languages for WS. For instance, using three-address code is not a
viable option because it is very difficult to execute that efficiently
on a typical WS engine. Furthermore, xSL must be extensible so
that it can evolve as the field matures. In addition, xSL must be
simple and it must be possible to automate transformations.
In order to support transformations, the current version of xSL is
fully XML based. As a result, transformations can be expressed
using XSLT or XQuery. XML also makes xSL extensible: new
concepts can be represented using new elements. In order to
balance expressive power and simplicity, the current version of
xSL provides elements for the following concepts (a detailed
description and examples can be found in [5]):

• Service Definition: The name, version and other non-functional
properties such as imports, partner bindings, resources and
semantic (QoS, scope, etc.) can be expressed.

• Service Body: A representation of the clauses (e.g., triggers,
contexts, event handling), operations, statements (e.g., loops
and conditionals, transaction and security handling, etc.) and
statement combinators (e.g., sequence and data flow) that define
the behavior of the WS.

• Wrapper: Native functionality of a programming language (e.g.,
Java library calls of obfuscated code) can be packed into special
wrapper elements. These parts can only be executed on the
platform that natively supports this functionality.

2.2 Layer Implementation
To implement the SLL, two kinds of transformations are required.

a) Programming Language (e.g. Java) xSL. These
transformations start with the language grammar, use parser
generators such as ANTLR [6] to generate the Abstract Syntax
Tree (AST) and afterwards tree-walkers to get an XML-based
representation of the original source code document (e.g. xJava
[7]). Additionally, transformations (XSLT) are used to provide a

template-oriented mapping between the XML-based source code
representation and xSL.

b) xSL target technology (e.g. BPEL). These transformations
are completely XSLT based and can provide a direct Mapping
(e.g. plain-text) or mappings via intermediate models (e.g. xJava).

As part of the FXL project at Siemens AG and ETH Zurich,
several transformations have already been implemented. These
include bi-directional mappings from Java to xJava [7] and from
xJava to xSL and back to Java, thereby using Axis and Glue in
order to implement WS invocation in Java. Furthermore,
languages that were specifically designed for WS such as BPEL
[1] and XL [3] can be translated back and forth into xSL using
FXL. Table 6 shows the complexity of these transformations.

Table 6: Transformation Complexity [KB]
 to xSL From xSL
XL ~59 kByte [ANTLR] ~83 kByte [XSLT]

BPEL ~49 kByte [XSLT] ~58 kByte [XSLT]

Java (Axis) ~31 kByte [ANTLR] ~43 kBype [XSLT]

3. Lessons Learned
We have used SLL and xSL for several experiments [5]. In one
experiment, we used an online bookshop application that
consisted of three WS. One of them was implemented in BPEL
and the other two WS were implemented in XL. The
orchestration was carried out in BPEL. As a baseline, we executed
that application in the traditional way (using Collaxa as a BPEL
engine and the XL platform for XL). Furthermore, we used SLL
and xSL in order to execute the whole application on the XL
platform and alternatively to execute the whole application using
a Java VM; thereby not changing a single line of (BPEL and XL)
source code. Surprisingly, executing the application entirely on
the XL platform was about a factor of 2 faster than in the
traditional way. Executing the application on a Java VM was a
little slower than on the XL platform.
In another experiment, we used SLL as a means for cross-
compilation and compiled the BPEL services from BPEL to XL
and back to BPEL and to XL and back and so on. Surprisingly,
the size of the code grew only marginally due to cross-
compilation and the performance did not degrade with every
round of cross-compilation.

4. REFERENCES
[1] Tony Andrews, et al., Business Process Execution Language

for Web Services Version 1.1, Mai 2003.
http://www-106.ibm.com/developerworks/library/ws-bpel/

[2] A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques
and Tools, 1986.

[3] Daniela Florescu, Andreas Grünhagen, Donald Kossmann: XL:
a platform for Web Services. CIDR 2003

[4] G. V. Wilson, Extensible Programming for the 21st Century.
Jan 2004. http://pyre.third-bit.com/~gvwilson/xmlprog.html

[5] Service Language Layer (SLL) Specification, v1.0, Sept 2004.
http://www-dbs.informatik.uni-heidelberg.de/projects/fxl/

[6] Terence Parr. ANTLR, ANother Tool for Language
Recognition, 2004. http://www.antlr.org/.

[7] C. Reichel, R. Oberhauser, XML-based Programming
Language Modeling: An Approach to Software Engineering,
Proceedings of SEA 2004, MIT Cambridge, MA, USA

963

