Adaptive Filtering of Advertisements on Web Pages

Babak Esfandiari
Dpt of Systems and Computer Engineering
Carleton University
1125 Colonel By Drive
Ottawa, Ontario, Canada K1S5B6

babak@sce.carleton.ca

ABSTRACT

We present a browser extension to dynamically learn to filter
unwanted images (such as advertisements or flashy graph-
ics) based on minimal user feedback. To do so, we apply the
weighted majority algorithm using pieces of the Uniform Re-
source Locators of such images as predictors. Experimental
results tend to confirm that the accuracy of the predictions
converges quickly to very high levels.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence|: Learning; 1.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence— Intelli-
gent Agents; H.4.3 [Information Systems Applications|:
Communications Applications—Information Browsers

General Terms

Algorithms, Theory, Experimentation

Keywords
Advertisement Filtering, Weighted Majority, Interface Agents

1. INTRODUCTION

Many attempts have been made to make Web browsing
more pleasant by allowing the user to remove big pictures
and unwanted animations that interfere with reading. Some
browsers such as Netscape or Mozilla allow the user to col-
lapse such pictures or even create blacklists of internet do-
mains that supply them.

But the most sophisticated approach so far has been pro-
posed by the developers of AdBlock. AdBlock [1] is, accord-
ing to ”Mozdev update” data [6], in the top ten of the most
popular extension to the Mozilla Firefox web browser [5],
with about 100000 downloads. To use AdBlock, the user
has to come up with a collection of regular expressions that
describe the URL patterns of images that they want to see
filtered. As a result, whenever the browser is pointed to an

Copyright is held by the author/owner.
WWW 2005May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

Richard Nock
Grimaac-DSI / Univ. Antilles-Guyane
Campus de Schoelcher
B.P. 7209, 97275 Schoelcher Cedex
Martinique, France

rnock@martinique.univ-ag.fr

item whose URL is matched by a regular expression, it is
simply ignored, which not only ”cleans up” the web page,
but also makes page downloading faster.

However, as often discussed in the AdBlock online forum,
coming up with regular expressions is a difficult task, es-
pecially for the non-computer savvy. Moreover, it would be
impossible to come up with a general set of filters that would
satisfy every user. Finally, as the advertisement suppliers
and browsing habits change, so should the set of regular
expressions that are needed.

To address this problem, we propose a machine learning
approach that would create filters based on minimal inter-
action with the user. The user will not need to know how
to create regular expressions; all that is required is for the
user to click on images that he/she wants to see blocked.
Conversely, from time to time the user will need to unblock
images that shouldn’t have been blocked by the adaptive
filter. Based on this simple feedback, our proposed method,
an adaptation of the Weighted Majority algorithm [4], will
build a set of "experts” (chunks of URLs) that will vote on
whether a given image should be blocked or not. Our ap-
proach draws on previous works such as [3, 7]. Section 2
presents the algorithm. Section 3 presents the browser ex-
tension, and Section 4 presents experimental results. Section
5 concludes.

2. THE ALGORITHM

Algorithm 1: Receive New_Example ((z¢,y:))

Input: example (x¢,yt)

N «— Create_Hypotheses((x¢,yt));
Update_Experts (N);
foreach (h,w:(h)) € E do

L wis1(h) — we(h) x (1+yég(1t) + (1*yt’;(1t>>ﬁ);

t—1t+1;

We denote a couple (observation, class) obtained from the
user as an example. An observation is a regular expres-
sion, and a class belongs to the set {block, unblock}, which
we code respectively {+1, —1}, and refer to as the positive
(because we try to predict the “block” status) and nega-
tive class. We let (z1,y1), (z2,92), ... denote the stream of
examples observed from the user, and (x¢,y:) is thus the
t*" example of the stream. We build a set of experts E
which is growing with time. Each expert of E is a cou-
ple (hypothesis, weight). An hypothesis is a function h :



X — {-1,0,41} which is allowed to abstain (this is the
output “0”). More precisely, each hypothesis’ output is ei-
ther {—1,0} or {0, +1}, which means that the corresponding
expert is authorized to say ”I don’t know”, thus delegating
the decision on the class of an observation to the other ex-
perts. The weight associated to hypothesis A is denoted
wy(h) € IRT. Tt is a function of ¢ since it is updated each
time an example is received. At the very beginning of the
algorithm, prior to seeing the first example, we initialize the
following set of parameters: 8 € (0,1) is a learning constant
chosen by the user; E «— ) is the initial set of experts; t < 1
is the "time stamp” labeling the examples received. Algo-
rithm 1 above displays more formally what happens when
example (z, y;) is received. Function Update_Experts takes
the new hypotheses from N and create as many experts,
whose weights are initialized to 1. Then, it puts them into
E. The class assigned to an arbitrary URL is obtained by
making a weighted majority vote of the experts of E. The
sign of the output gives the class assigned. Its absolute value
may be thought as a confidence in the choice; whenever the
weighted vote returns zero, a random class choice is made.

3. DESIGN OF THE BROWSER EXTENSION

Our filtering algorithm and the test drivers were both im-
plemented as extensions to the Mozilla Firefox Web browser
[5] in Javascript.

Our extension provides two extra menu items in the browser’s

context menu: ”Block Me” appears only when the user
right-clicks on an URL (e.g. an image) that he/she wishes
to block; ”Unblock” is always available should the user want
to unblock an URL that appears to be blocked by mistake.

To generate the new set of experts N in Algorithm 1,
we tokenize the example URLs using the character ” /7 as
delimiter. The tokens obtained represent items such as do-
main names and folders. They are then compared with the
existing set of experts. If no match is found, the new token
is added to the corresponding list of experts using function
Update_Experts above.

4. EXPERIMENTAL RESULTS

In our experiments, we have fixed 8 = 1/\/e = 0.61.
At each step consisting of k examples (e.g. visited image
URLs), we freeze a copy of the learner’s knowledge base up
to that point. While the "unfrozen” version keeps evolving
and accepting feedback from the oracle, the ”frozen” copy is
used to evaluate the learning accuracy of the accumulated
knowledge so far by populating a confusion matrix based
on its predictions on the incoming examples. After n such
steps, and for a total of n x k examples, the user is notified
that the testing is finished. The resulting logs store n — 1
confusion matrices.

Our first set of tests were designed to see whether our al-
gorithm was able to correctly predict which URLs to block
on a single "busy” (i.e. littered with annoying images) web
page, and if so, after how many visits. We used a com-
mon set of AdBlock regular expressions, as collaboratively
devised on AdBlock discussion forums, as oracle. We set
k = 10 and n = 10. The total 100 examples were usually
quickly reached after only hitting the “reload” button a few
times.

Figure 1 (left) traces the evolution of learning accuracy
over the 10 steps. As can be seen on that figure, except

917

Figure 1: Evolution of accuracy on a single site
(left), and during a typical browsing session (right).
Each curve represents a browsing session.

for one test, the algorithm converges very quickly (in fact
usually within one step) to nearly perfect prediction. This
corresponds to less than two reloads of the same page, which
is good given that commercial web sites use dynamic load-
ing of advertisements using cookies, and as a result hitting
reload usually brings up a different set of images and URLs.

The next set of tests measures robustness to overfitting.
We asked the users to simply follow their usual browsing
habits, and we set £k = 100 (to absorb some of the variabil-
ity) and n = 10. It is worth noting that the total of 1000
examples was reached very quickly. The results are charted
on figure 1 (right). This time a few dips can be observed on
the learning curve. This happens when the learner is faced
with a set of fresh URLSs that it usually misclassifies as false
negatives at first.

5. CONCLUSION

We presented a method to dynamically create custom fil-
ters to avoid downloading unwanted URLs with minimal
interaction with the user, using a weighted-majority type al-
gorithm. Both the standalone extension (AdBlockLearner)
and the test driver (AdBlockLearnerTest) are available in
[2], including source code and documentation. They are
compatible with most versions of Mozilla Firefox.

6. ACKNOWLEDGMENTS

We would like to thank the AdBlock team for their timely
help and enthusiasm for our ideas. R. Nock would like to
thank Ottawa University and Stan Matwin for an invitation
grant, during which part of this work was achieved.

7. REFERENCES

[1] AdBlock, 2005. http://adblock.mozdev.org.

[2] B. Esfandiari and R. Nock. Adblocklearner project
page, 2005. http://adblocklearner.mozdev.org/.

[3] Y. Lashkari, M. Metral, and P. Maes. Collaborative
interface agents. In Proc. of AAAI-9/, pages 444449,
1994.

[4] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[5] Mozilla Firefox, 2005.
http://mozilla.org/products/firefox.

[6] Mozilla Firefox extensions, 2005.
http://update.mozilla.org/extensions/.

[7] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz.
A bayesian approach to filtering junk email. In AAAT
Workshop on Learning for Text Categorization. AAAI
Press, 1998.



