TotalRank: Ranking Without Damping

Paolo Boldi DSI, Università degli Studi di Milano boldi@acm.org

ABSTRACT

PageRank is defined as the stationary state of a Markov chain obtained by perturbing the transition matrix of a web graph with a damping factor α that spreads part of the rank. The choice of α is eminently empirical, but most applications use $\alpha = 0.85$; nonetheless, the selection of α is critical, and some believe that link farms may use this choice adversarially. Recent results [1] prove that the PageRank of a page is a rational function of α , and that this function can be approximated quite efficiently: this fact can be used to define a new form of ranking, TotalRank, that averages PageRanks over all possible α 's. We show how this rank can be computed efficiently, and provide some preliminary experimental results on its quality and comparisons with PageRank.

Categories and Subject Descriptors: G.2 [Discrete Mathematics]: Graph Theory; G.3 [Probability and Statistics].

General Terms: Algorithms, Experimentation, Measurement.

Keywords: PageRank, link farms, ranking, Kendall's τ .

1. INTRODUCTION AND MOTIVATIONS

PageRank [5] is one of the most important ranking techniques used in today's search engines: it is simple, robust, reliable and it can be computed in a quite efficient manner. PageRank is defined formally as the stationary distribution of a stochastic process whose states are the nodes of a web graph (a.k.a. web pages). The process itself is obtained by combining (a row-normalised version of) the adjacency matrix of the web graph with a trivial uniform process that is needed to make the combination irreducible and aperiodic, so that the stationary distribution is well defined. The combination depends on a *damping factor* $\alpha \in [0, 1)$.

Let $\mathbf{r}(\alpha)$ denote the PageRank vector for a given α ; $\mathbf{r}(0)$ is actually a uniform vector¹, whereas $\lim_{\alpha \to 1} \mathbf{r}(\alpha)$ tends to concentrate all the rank in few pages, sometimes called "rank sinks".

In [5], Brin and Page suggested using r(0.85), and indeed this choice has remained by far the most common; there are empirical evidences that this value gives good ranks, and some *a posteriori* reasons for choosing a damping factor around .80. Nonetheless, some authors recently observed that studying how the PageRank of a given page changes with α can be used to detect link-spam [6]; in principle, this observation may be exploited to use a specific value of α adversarially to build link farms.

Copyright is held by the author/owner. *WWW 2005*, May 10–14, 2005, Chiba, Japan. ACM 1-59593-051-5/05/0005. A way to avoid this danger would be averaging the PageRank value over all possible α 's: this new form of ranking, that we call *TotalRank*, is made possible by recent results [1] that show how PageRank can be approximated *as a function*. This abstract introduces TotalRank and presents some preliminary results about its quality and some comparisons with PageRank.

2. DEFINITION AND ALGORITHM

In the following, let $r(\alpha)$ denote the PageRank vector as a function of α . Recall that $r(\alpha)$ is a rational vector function of α with no singularities in [0, 1), so the following definition makes sense:

DEFINITION 1. The TotalRank vector T is defined as follows: $T = \int_0^1 r(\alpha) d\alpha$ (where the integral is interpreted componentwise).

In other words, the TotalRank of a page is the area behind the PageRank curve for that page, as α ranges on [0, 1). To explain how TotalRank can be efficiently computed, recall that the simplest algorithm to approximate PageRank is based on the Power Method [5] (and, indeed, most known algorithms to compute PageRank are just variants of the Power Method); let \mathbf{R}_k (for k = 0, 1, ...) be the *k*-th approximation computed by the Power Method for some (fixed but arbitrary) value α_0 of α , and set $\mathbf{R}_{-1} = \mathbf{0}$ by convention.

THEOREM 1 ([1]). The Maclaurin expansion of PageRank is $\mathbf{r}(\alpha) = \sum_{k=0}^{\infty} \mathbf{c}_k \alpha^k$ where $\mathbf{c}_k = (\mathbf{R}_k - \mathbf{R}_{k-1})/\alpha_0^k$ for all $k = 0, 1, \dots$

As an easy consequence, we have:

THEOREM 2. With the same notation as above,

$$\boldsymbol{T} = \sum_{k=0}^{\infty} (\boldsymbol{R}_k - \boldsymbol{R}_{k-1}) / ((k+1)\alpha_0^k).$$

This result allows one to compute TotalRank using essentially the same classical Power Method algorithm commonly employed for PageRank, with an extra vector to accumulate total ranks; an implementation is distributed under the Gnu Public License at the website http://law.dsi.unimi.it.

3. COMPARISONS WITH PAGERANK

In this section, we want to provide quantitative comparisons between TotalRank and PageRank based on experimental results. Experiments have been performed on three different datasets: a snapshot of the Italian web .it (41 Mpages), a partial snapshot of the British web .uk (18 Mpages) and the public 2001 crawl performed by the WebBase crawler (118 Mpages); all data are publicly available from http://law.dsi.unimi.it: graphs are

¹For sake of simplicity, in this abstract we assume that the preference vector is uniform; all results carry over to the more general case.

compressed in the WebGraph format [2], and the first two datasets where gathered using UbiCrawler.

Comparing quantitatively different ranking techniques is a difficult task, and its results are open to interpretations: establishing that two rankings are different is not sufficient *per se* to determine which one is better. We are going to provide some measures that should convince the reader that TotalRank and PageRank provide quite different rankings; then, we show some hints that TotalRank gives results of good quality, and probably better than those obtained with *standard PageRank* (i.e., PageRank with $\alpha = 0.85$).

Comparison using Kendall's τ . As a first comparative evaluation, we computed PageRank for different values of α and compared the resulting ranks with the ones obtained by TotalRank on the same graph; the comparison was performed using Kendall's τ [4], a non-parametric correlation index that measures similarity between two rankings. Figure 1 shows the results obtained for our datasets: as the reader can see, TotalRank is maximally similar with PageRank when α is about 0.7, but even in that case τ never exceeds 0.97.

Figure 1: Kendall's τ comparison between TotalRank and PageRank, as α ranges in [0, 1).

Comparing the top-*k* **fraction.** One objection to the usage of Kendall's τ as a measure of (dis)similarity is that it weights in the same way all nodes; alternative proposals advocate limiting the comparison to the "most important" pages. This idea can be implemented in different ways [3]; one possible measure (called *intersection metric*) is computed as follows: let A_t and B_t be the set of the top-*t* pages according to the rankings we want to compare, and let $\delta'(t) = |A_t \Delta B_t|/(2t)$ where Δ denotes the symmetric set difference; let also $\delta(k)$ be the average of all $\delta'(t)$ when $t \leq k$. Note that $\delta(k) = 0$ if the top-*k* lists coincide, whereas $\delta(k) = 1$ if they are completely disjoint. Figure 2 shows the results obtained comparing TotalRank with standard PageRank: as you can see, the dissimilarity tends to increase up to 20% in the first few thousandths of pages, and then it goes down to zero, as it should.

Number of homepages. Table 1 presents the number of homepages (URLs whose file portion is either empty or index | home.*) that are ranked among the top-*k* by TotalRank and standard PageRank; the reader may observe that TotalRank finds in all cases a larger number of homepages. Since usually homepages are more important than internal pages, these data indicate that the rankings obtained have high quality.

Top movers. Table 2 shows the 10 pages that moved further up or down in TotalRank order with respect to standard PageRank order. Observe, for example, that http://tukids.tucows.com/ is advanced to position 99 (it was ranked 281th according to PageRank), as well as the homepage of the University of Melbourne (advanced

Figure 2: Comparing top-*k* lists of TotalRank and standard PageRank using intersection metric.

	.uk	.it	WebBase
k = 100	40/34 (+17.6%)	62/55 (+12.7%)	53/49 (+8.2%)
k = 1000	395/375 (+5.3%)	446/414 (+7.7%)	411/342 (+20.2%)
k = 10000	2252/2128 (+5.8%)	2361/2250 (+4.9%)	2901/2639 (+9.9%)

 Table 1: Home pages found by TotalRank/standard PageRank

 among the top-k.

by TotalRank from 181th to 84th). On the contrary, the FAQ page http://www.worldwidemart.com/scripts/faq/ is demoted from position 90 to 132.

URL	(TR)	(PR)	var.
http://www.worldwidemart.com/scripts/faq/	132	90	↓ 42
http://www.blakeschool.org/	131	99	↓ 32
http://www.acme.com/	83	54	↓ 29
http://www.gendesigner.com/index.html	87	59	$\downarrow 28$
http://www.perl.com/pub	109	83	$\downarrow 26$
http://netwinsite.com/	72	139	↑ 67
http://www.scripps.com/	94	162	<u>↑</u> 68
http://www.unimelb.edu.au/	84	181	↑ 97
http://www.bef.net/161605.htm	48	147	↑ 99
http://tukids.tucows.com/	99	281	↑ 182

Table 2: Pages (... indicates a long path) with largest position change among the top 100: (TR) position according to Total-Rank; (PR) position according to standard PageRank.

4. **REFERENCES**

- Paolo Boldi, Massimo Santini, and Sebastiano Vigna. PageRank as a function of the damping factor. In *Proceedings of the Fourteenth International World–Wide Web Conference*, 2005. To appear.
- [2] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques. In *Proc. of the Thirteenth International World Wide Web Conference*, pages 595–601, Manhattan, USA, 2004. ACM Press.
- [3] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k lists. In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 28–36. Society for Industrial and Applied Mathematics, 2003.
- [4] Maurice G. Kendall. *Rank Correlation Methods*. Hafner Publishing Co., New York, 1955.
- [5] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies Project, Stanford University, Stanford, CA, USA, 1998.
- [6] Hui Zhang, Ashish Goel, Ramesh Govindan, Kahn Mason, and Benjamin Van Roy. Making eigenvector-based reputation systems robust to collision. In Stefano Leonardi, editor, *Proceedings WAW* 2004, number 3243 in LNCS, pages 92–104. Springer-Verlag, 2004.