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ABSTRACT
PageRank is defined as the stationary state of a Markov chain ob-
tained by perturbing the transition matrix of a web graph with a
damping factor α that spreads part of the rank. The choice of α is
eminently empirical, but most applications use α = 0.85; nonethe-
less, the selection of α is critical, and some believe that link farms
may use this choice adversarially. Recent results [1] prove that the
PageRank of a page is a rational function of α, and that this func-
tion can be approximated quite efficiently: this fact can be used to
define a new form of ranking, TotalRank, that averages PageRanks
over all possible α’s. We show how this rank can be computed ef-
ficiently, and provide some preliminary experimental results on its
quality and comparisons with PageRank.

Categories and Subject Descriptors: G.2 [Discrete Mathemat-
ics]: Graph Theory; G.3 [Probability and Statistics].

General Terms: Algorithms, Experimentation, Measurement.

Keywords: PageRank, link farms, ranking, Kendall’s τ .

1. INTRODUCTION AND MOTIVATIONS
PageRank [5] is one of the most important ranking techniques

used in today’s search engines: it is simple, robust, reliable and it
can be computed in a quite efficient manner. PageRank is defined
formally as the stationary distribution of a stochastic process whose
states are the nodes of a web graph (a.k.a. web pages). The process
itself is obtained by combining (a row-normalised version of) the
adjacency matrix of the web graph with a trivial uniform process
that is needed to make the combination irreducible and aperiodic,
so that the stationary distribution is well defined. The combination
depends on a damping factor α ∈ [0, 1).

Let r(α) denote the PageRank vector for a given α; r(0) is actu-
ally a uniform vector1, whereas limα→1 r(α) tends to concentrate
all the rank in few pages, sometimes called “rank sinks”.

In [5], Brin and Page suggested using r(0.85), and indeed this
choice has remained by far the most common; there are empirical
evidences that this value gives good ranks, and some a posteriori
reasons for choosing a damping factor around .80. Nonetheless,
some authors recently observed that studying how the PageRank of
a given page changes with α can be used to detect link-spam [6]; in
principle, this observation may be exploited to use a specific value
of α adversarially to build link farms.

1For sake of simplicity, in this abstract we assume that the prefer-
ence vector is uniform; all results carry over to the more general
case.
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A way to avoid this danger would be averaging the PageRank
value over all possible α’s: this new form of ranking, that we call
TotalRank, is made possible by recent results [1] that show how
PageRank can be approximated as a function. This abstract intro-
duces TotalRank and presents some preliminary results about its
quality and some comparisons with PageRank.

2. DEFINITION AND ALGORITHM
In the following, let r(α) denote the PageRank vector as a func-

tion of α. Recall that r(α) is a rational vector function of α with no
singularities in [0, 1), so the following definition makes sense:

DEFINITION 1. The TotalRank vector T is defined as follows:
T =

∫ 1
0 r(α)dα (where the integral is interpreted componentwise).

In other words, the TotalRank of a page is the area behind the
PageRank curve for that page, as α ranges on [0, 1). To explain
how TotalRank can be efficiently computed, recall that the sim-
plest algorithm to approximate PageRank is based on the Power
Method [5] (and, indeed, most known algorithms to compute PageR-
ank are just variants of the Power Method); let Rk (for k = 0, 1, . . . )
be the k-th approximation computed by the Power Method for some
(fixed but arbitrary) value α0 of α, and set R−1 = 0 by convention.

THEOREM 1 ([1]). The Maclaurin expansion of PageRank is
r(α) =

∑∞
k=0 ckαk where ck = (Rk − Rk−1)/αk

0 for all k =

0, 1, . . . .

As an easy consequence, we have:

THEOREM 2. With the same notation as above,

T =

∞∑

k=0

(Rk − Rk−1)/((k + 1)αk
0).

This result allows one to compute TotalRank using essentially
the same classical Power Method algorithm commonly employed
for PageRank, with an extra vector to accumulate total ranks; an
implementation is distributed under the Gnu Public License at the
website http://law.dsi.unimi.it.

3. COMPARISONS WITH PAGERANK
In this section, we want to provide quantitative comparisons be-

tween TotalRank and PageRank based on experimental results. Ex-
periments have been performed on three different datasets: a snap-
shot of the Italian web .it (41 Mpages), a partial snapshot of
the British web .uk (18 Mpages) and the public 2001 crawl per-
formed by the WebBase crawler (118 Mpages); all data are pub-
licly available from http://law.dsi.unimi.it: graphs are
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compressed in the WebGraph format [2], and the first two datasets
where gathered using UbiCrawler.

Comparing quantitatively different ranking techniques is a dif-
ficult task, and its results are open to interpretations: establishing
that two rankings are different is not sufficient per se to determine
which one is better. We are going to provide some measures that
should convince the reader that TotalRank and PageRank provide
quite different rankings; then, we show some hints that TotalRank
gives results of good quality, and probably better than those ob-
tained with standard PageRank (i.e., PageRank with α = 0.85).
Comparison using Kendall’s τ . As a first comparative evaluation,
we computed PageRank for different values of α and compared the
resulting ranks with the ones obtained by TotalRank on the same
graph; the comparison was performed using Kendall’s τ [4], a non-
parametric correlation index that measures similarity between two
rankings. Figure 1 shows the results obtained for our datasets: as
the reader can see, TotalRank is maximally similar with PageRank
when α is about 0.7, but even in that case τ never exceeds 0.97.
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Figure 1: Kendall’s τ comparison between TotalRank and
PageRank, as α ranges in [0, 1).

Comparing the top-k fraction. One objection to the usage of
Kendall’s τ as a measure of (dis)similarity is that it weights in
the same way all nodes; alternative proposals advocate limiting the
comparison to the “most important” pages. This idea can be imple-
mented in different ways [3]; one possible measure (called intersec-
tion metric) is computed as follows: let At and Bt be the set of the
top-t pages according to the rankings we want to compare, and let
δ′(t) = |At4Bt |/(2t) where 4 denotes the symmetric set differ-
ence; let also δ(k) be the average of all δ′(t) when t ≤ k. Note that
δ(k) = 0 if the top-k lists coincide, whereas δ(k) = 1 if they are
completely disjoint. Figure 2 shows the results obtained comparing
TotalRank with standard PageRank: as you can see, the dissimilar-
ity tends to increase up to 20% in the first few thousandths of pages,
and then it goes down to zero, as it should.
Number of homepages. Table 1 presents the number of home-
pages (URLs whose file portion is either empty or index|home.*)
that are ranked among the top-k by TotalRank and standard PageR-
ank; the reader may observe that TotalRank finds in all cases a
larger number of homepages. Since usually homepages are more
important than internal pages, these data indicate that the rankings
obtained have high quality.
Top movers. Table 2 shows the 10 pages that moved further up or
down in TotalRank order with respect to standard PageRank order.
Observe, for example, that http://tukids.tucows.com/ is ad-
vanced to position 99 (it was ranked 281th according to PageRank),
as well as the homepage of the University of Melbourne (advanced
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Figure 2: Comparing top-k lists of TotalRank and standard
PageRank using intersection metric.

.uk .it WebBase
k = 100 40/34 (+17.6%) 62/55 (+12.7%) 53/49 (+8.2%)
k = 1000 395/375 (+5.3%) 446/414 (+7.7%) 411/342 (+20.2%)
k = 10000 2252/2128 (+5.8%) 2361/2250 (+4.9%) 2901/2639 (+9.9%)

Table 1: Home pages found by TotalRank/standard PageRank
among the top-k.

by TotalRank from 181th to 84th). On the contrary, the FAQ page
http://www.worldwidemart.com/scripts/faq/ is demoted
from position 90 to 132.

URL (TR) (PR) var.
http://www.worldwidemart.com/scripts/faq/ 132 90 ↓ 42
http://www.blakeschool.org/. . . 131 99 ↓ 32
http://www.acme.com/ 83 54 ↓ 29
http://www.gendesigner.com/index.html 87 59 ↓ 28
http://www.perl.com/pub 109 83 ↓ 26
http://netwinsite.com/ 72 139 ↑ 67
http://www.scripps.com/ 94 162 ↑ 68
http://www.unimelb.edu.au/. . . 84 181 ↑ 97
http://www.bef.net/161605.htm 48 147 ↑ 99
http://tukids.tucows.com/ 99 281 ↑ 182

Table 2: Pages (. . . indicates a long path) with largest position
change among the top 100: (TR) position according to Total-
Rank; (PR) position according to standard PageRank.
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