
A Fast XPATH Evaluation Technique with the Facility
of Updates

Ashish Virmani Suchit Agarwal Rahul Thathoo Shekhar Suman Sudip Sanyal
IIIT IIIT IIIT IIIT IIIT

 Allahabad Allahabad Allahabad Allahabad Allahabad
+919335131912 +919839412837 +919935256717 +915322552376(8161) 919415235180

{virmani,suchit,thathoo,shekhar,ssanyal}@iiita.ac.in

ABSTRACT
This paper addresses the problem of fast retrieval of data from
XML documents by providing a labeling schema that can easily
handle simple as well as complex XPATH queries and also
provide for updates without the need for the entire document
being re-indexed in the RDBMS. We introduce a new labeling
schema called the “Z-Label” for efficiently processing XPATH
queries involving child and descendant axes.The use of “Z-Label”
coupled with the indexing schema provides for smooth updates in
the XML document.

Categories and Subject Descriptors
H.3.1 Content Analysis and Indexing – Indexing Methods.

General Terms: Algorithms, Performance.

Keywords: XML, XPath Query Optimization, Updates;
Dewey Indexing; biaxes path expression

1. INTRODUCTION
In this paper, we have addressed the challenges in the use of
relational engines for storing XML documents and providing
efficient query answering.

2. DEFINITIONS
Definition 2.1: A source path [2], of a node n in an XML tree T,
denoted as S(n) is the unique simple path, P (along the tree) from
the root to itself.
Definition 2.2: A biaxes path expression is one that contains the
tag names separated only by child axis steps (/) and descendant
axis steps (//) e.g. /Season//League/Player
Definition 2.3: The set of nodes satisfying a query Q is
represented as [[Q]] [2].
Definition 2.4: The Z-Label, Sn, of node n of the XML tree is the
Z-Label of the biaxes path expression S(n) where S(n) is the
source path of node n.
The Z-Label for any two nodes with same source path S(n) is the
same. By definition 2.3, it implies that for a query Q with Z-Label
SZ,

[[Q]] = { n | Sn LIKE SZ }

3. HOW TO ASSIGN Z-Label

Figure 1

Step 1: We assign “//” the Z-Label “%”
Step 2: “/” is assigned the Z-Label “0”
Step 3: Each distinct tag of the XML tree is assigned a unique
 tagID which is an integer
Step 4: For each //ti- we assign Z-Label “%.i”.
Step 5: Each //ti /tj, we assign Z-Label “%.i.j”
Step 6: Each //ti //tj, we assign Z-Label “%.i.%.j”

The procedure is the same for any biaxes path expression that we
might encounter.
Let us look at the way the containment between two biaxes
path expressions P and Q can be determined with the help
of z-label. The following cases arise:
• In the case when there is no “.” at the end of the z-label

and there is no “%” in z-label of Q, then Q is contained
in P if and only if ZP = ZQ.

• In the case when there is no “.” at the end of the z-label
and there is no “.%.” in z-label of Q, then Q is contained
in P if and only if ZP LIKE ZQ .

• In the case when there are i occurrences of “.%.” in the
z-label of Q, then for each occurrence of “.%.” in the z-
label, we (a) replace it with null and (b) keep it as it,
generating a total of 2i different possible z-labels for the
biaxes path expression Q. Now, the biaxes path
expression Q is contained in P if and only if: Ω1<j<2i (ZP
LIKE ZQj) holds where Ω concatenates all such
expressions of the form “ZP LIKE ZQj” with an “OR”
between them.

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

886

• In the case when there is a “.” at the end of the z-label of Q, P is
contained in Q, if and only if ZP LIKE CONCAT(ZQ, %)
AND ZP NOT LIKE CONCAT(ZQ, %.%).

where LIKE, NOT LIKE and CONCAT operators
perform the same function as in SQL.

The advantage of Z-Label while handling updates is twofold:
1. Whenever a new tag is added to the tree, the tag is assigned a

unique tagID and the Z-Label of the new node with the given
tag is assigned on the basis of the source path of the node.

2. Whenever a new node of an existing tag is added to the tree,
the Z-Label is assigned on the basis of its source path.

4. THE INDEXING SCHEMA
The dynamic indexing schema borrows its basic idea from Bohme
et. al.[1]. The indexing schema is able to handle insertion and
deletion of nodes as well as supports efficient querying.

Figure 2
In Figure 2, nodes 01.00/01, 01.00/01.01 and 01.02.01/01 could
be inserted without renumbering the existing nodes. As the
character ’/’ has a greater ASCII value that the character ‘.’, it is
always ensured that the index given to a new node is greater than
that of the node on its left and smaller than that of the node on its
right. Also the index of the new node is greater than each node of
the sub-tree whose root is the left node. So, this indexing always
preserves document order of an XML document.

5. QUERY BREAKING ALGORITHM
The algorithm consists of predicate elimination from an XPath
query. The basic steps of predicate elimination are to take a XPath
query as an input string and traverse the query. Whenever a
predicate occurs, the query is broken into parts. For e.g. a query of
the form /a[b]/c is broken into three queries /a, /a/b, /a/c as shown
in figure 6. Taking joins between these biaxes-path queries can
generate the final SQL query.
The query breaking algorithm could not be shown due to space
constraints.

6. DATA SETS & EXPERIMENTAL

RESULTS
Table 1: XML Data Sets

Shakespeare Protein Auction
Size 1.3MB 3.5MB 3.4MB

Nodes 31975 113831 61890

Tags 19 66 77

Depth 7 7 12

Figure 3

Figure 4

7. CONCLUSION
We have presented the “Z-Label”, a labeling schema that is used
to facilitate the fast retrieval of information from an XML
document through XPath queries. The indexing schema that has
been proposed also provides for updates in the XML document
and makes it possible to insert or delete a node from the document
without the need for all the nodes to be re-indexed. This offers a
major advantage over previous indexing schemas that re-compute
the indexes for all the nodes whenever a new node is inserted in
the XML document.

8. REFERENCES
[1] Böhme, T.; Rahm, E.: Supporting Efficient Streaming and

Insertion of XML Data in RDBMS. Proc. 3rd Int. Workshop
Data Integration over the Web (DIWeb), 2004

[2] Yi Chen, Susan Davidson, and Yifeng Zheng. BLAS: An
Efficient XPath Processing System,Proceedings of SIGMOD
2004.

887

