
���������	�
���
	��
����
���
�����
������������	��������

������������������
���������� �
�����������

��������	�

���
���������������������������
����

����������������������

��������������	���
�����
���
���������������������������

�
�������������������� !"#����������$�����

%�
�

�����������������

��������������&'
�(
����(��

ABSTRACT
The growth of the Internet brought a new age for game
developers. New exciting, highly interactive Massively
Multiplayer Online Games (MMOGs) may be now deployed on
the Web, thanks to new scalable distributed solutions and amazing
3D graphics systems plugged directly into standard browsers.
Along this line, taking advantage of a mirrored game server
architecture, we developed a 3D car racing multiplayer game for
use over the Web, freely inspired to Armagetron. Game servers
are kept synchronized through the use of a fast synchronization
scheme which is able to drop obsolete game events to uphold the
playability degree while preserving the game state consistency.
Preliminary results confirm that smart 3D spaces may be created
over the Web where the magic of gaming is reproduced for the
pleasure of a huge number of players. This result may be obtained
only by converging highly accurate event synchronization
technologies with 3D scene graph based rendering software.

Categories and Subject Descriptors
K.8.0 [Computing Milieux]: Personal Computing – Games.

General Terms: Algorithms, Design, Performance.

Keywords: MMOG, Synchronization, Scene Graph.

1. INTRODUCTION
The global connectivity provided by the Internet and the
enormous advances of game technologies promote new exciting
gaming scenarios, where large numbers of users participate
together in highly interactive Massively Multiplayer Online
Games (MMOGs). Keys to success of MMOGs are as follows: i)
game interfaces have to respond to the issue of emulating a
sensation of a realistic participation; ii) games must be deployed
over a scalable architecture able to timely provide a compelling
experience shared amongst many simultaneous players. With
respect to i), a new genre of networked gaming applications is
emerging that belongs to the realm of fiction. In this context, it is
under the responsibility of game designers to develop systems that
make available to players the look and feel of exciting gaming
sensations. Game interfaces are thus needed that provide full
sensorial experiences involving all human senses like vision and
hearing [1]. To this aim, today’s graphics processor units offer
means to create accurate virtual worlds thanks to 3D visual
representations and positional audio. Modern graphical interfaces
permit to integrate 3D multiplatform libraries, such as
OpenSceneGraph for example, directly on a standard browser [2].

According to this approach, a scene is described as a set of
hierarchical data structures (i.e., trees) that are used to manage
efficiently the rendering activities of 3D objects. Using this 3D
visualization technology for developing game interfaces, it turns
out that each game event generated by a given player produces a
corresponding modification of the rendered scene graph at the
player display. As to the problem of distributing MMOGs over the
Web, an efficient architectural solution has been recently
proposed which rests upon the use of a mirrored game server
architecture [3]. In essence, such solution deploys over the
network a constellation of communicating replicated game
servers, locally maintaining a redundant copy of the game state.
Each game server receives game events generated by its connected
players and periodically notifies them with new game states that
correspond to modifications of the scene graphs that have to be
rendered at the player side. Obviously, game servers synchronize
themselves in order to maintain a uniform view of the game
evolution within the entire system. These synchronization
activities must be accomplished as fast as possible to guarantee an
adequate interactivity degree among players [4]. In this paper, we
present a new 3D car racing MMOG, deployed over the Web,
which is able to speed up the rate of the exchanged scene updates
at the player side based on the required interactivity degree. This
result is obtained by resorting to a fast event synchronization
scheme that exploits the notion of obsolescence to drop out-of-
date events while preserving game consistency at each mirrored
game server. As network QoS is not yet a tangible product to
ameliorate gaming problems due to network service disruptions,
our work shows that only the convergence of fast synchronization
technologies with modern 3D rendering software can be a viable
solution to improve the entertaining experience for the Web
gaming community.

2. DESIGN ISSUES
A fundamental requirement of MMOGs is to provide a shared
experience that appears consistent across all the players. A
consequent problem is concerned with the latency needed to
notify all participants with new scene graphs representing
modifications of the game state. In particular, fast-paced games
need high values of the Scene Update Rate (SUR) for a full player
satisfaction. Unfortunately, the typical network behavior can be
detrimental to meeting even a minimal Scene Update Rate
(mSUR) value for an acceptable playability degree. Based on the
scientific literature [5], mSUR is typically set equal to 8 scene
updates per second (sps), roughly equivalent to an interactivity
degree of 125 ms. It is worth noticing that such SUR value is
independent of the rate of frames rendered by the graphics
processor unit at the client side. Indeed, this latter parameter is
concerned with the graphical rendering of the actual scene. SUR,
instead, is concerned with the pace of delivering scene updates
(i.e., how fast game state updates are notified to all players).

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

884

Recent studies demonstrated that the semantics of the game may
be exploited to speed up the synchronization activities among
game servers, thus improving the responsiveness of the system
while maintaining the game state consistency. In particular, a
notion of obsolescence has been introduced that permits to discard
those game events that during the game evolution lose their
importance [4]. In substance, the idea of obsolescence rests upon
the fact that fresher events (and corresponding scene updates) can
make irrelevant the previous ones. With this in view, as soon as a
game event (and its corresponding scene update) becomes
obsolete, due to the generation of a newer one, then it can be
discarded for an augmented interactivity. In the following, we will
show how this concept may be applied in the development of a
highly interactive 3D car racing game for use over the Web.

Table. 1: Game Events.

Game Event Description Key

Accelerate Each key press increases the speed of the car ↑

Brake Each key press decreases the speed of the car ↓

Turn Left The more the key is pressed the higher the left turn ←

Turn Right The more the key is pressed the higher the right turn →

Figure 1. Accelerate: the rightmost event makes obsolete the leftmost one.

Figure 2. Turn: the rightmost event does not make obsolete the leftmost one.

3. 3D CAR RACING
We developed a 3D car racing game, freely inspired to
Armagetron [6]. According to the game, each player drives a car
within a synthetic arena. As long as each car moves within the
arena, a wall is built up after its passage. The goal of the game is
to make the opponents crash into a wall. The car can turn left or
right in a range of 0-179 degrees. The user can
accelerate/decelerate the speed of its car while going in the same
direction. The speed of the car is bound between two specific
values: MIN_SPEED and MAX_SPEED. If the user turns the car,
its speed is decreased, following a linear law based on the
amplitude of the turn. Game events that a player may generate are
reported in Table 1. Each time the user presses a key, the
corresponding game event is generated and sent to the server that,
in turn, notifies other servers and updates its game state
accordingly. A game event e is encoded through the tuple (X, ρ,
θ), where X is the actual position of the car in the virtual arena,
while ρ and θ represent respectively the radial and angular
coordinates of the new speed vector. Needless to say, each

generated game event corresponds to a scene graph modification
that must be delivered to all players. In this scenario, game events
may become obsolete based on a straight-line
acceleration/deceleration of the car. In simple words, an event
e1 = (X1, ρ1, θ1) may be made obsolete by a subsequent event
e2 = (X2, ρ2, θ2), generated by the same player, if θ1 = θ2 (Fig. 1).
Indeed, in this situation dropping e1 does not alter the final
computed game state, as the two events simply amount to drawing
walls along the same direction. Instead, if two events e1 and e2 are
generated such that θ1 ≠ θ2 (Fig. 2), then the previous event e1
cannot be considered as obsolete and must be sent to all the
mirrored servers for final delivery to all the players. Further,
according to the game rules, two walls cannot cross each other.
Hence, knowing the exact instant at which the wall is built up by a
car (say A) may become important to determine if a further car
(say B) crashes into the wall or cuts in front of A. Indeed, in the
former case A wins, in the latter A loses. Summing up,
obsolescence cannot be applied when it becomes necessary to
settle collision detection problems.

4. RESULTS AND CONCLUSIONS
We conducted a preliminary study based on the use of the 3D car
racing game we developed. We implemented different gaming
scenarios where the number of communicating mirrored game
servers deployed over the Web varies from 4 to 7. Figure 3 reports
the performances of the 3D car racing MMOG when our
obsolescence-based mechanism is either activated or not (ON or
OFF). Our mechanism promotes the fluent rendering of the game
evolution as it guarantees that, in average, experienced SUR
values are always over mSUR (Fig. 3). We claim that “the need
for speed” is a mandatory requirement to guarantee reckless
racing cyber-contests on the Web. The paper has showed that an
opponent rapidly running away (through the streets of the Web)
may be caught provided that our approach is adopted.

Figure 3. Average SUR values.

5. REFERENCES
[1] Cacciaguerra S., Roccetti M., Roffilli M., Lomi A., “A Wireless

Software Architecture for Fast 3D Rendering of Agent-Based
Multimedia Simulations on Portable Devices”, Proc. IEEE
Consumer Communications and Networking Conf., 2004.

[2] OpenSceneGraph Web Site: www.openscenegraph.org/, 2005.
[3] Mauve M., Vogel J., Hilt V., Effelsberg W., “Local-lag and

timewarp: Providing consistency for replicated continuous
applications”, IEEE Trans. on Multimedia, 6(1):47–57, 2004.

[4] Palazzi C.E., Ferretti S., Cacciaguerra S., Roccetti M., “On
Maintaining Interactivity in Event Delivery Synchronization for
Mirrored Game Architectures”, Proc. IEEE Int. Conf. on
Networking Issues in Multimedia Entertainment, 2004.

[5] Pantel L., Wolf L.C., “On the Impact of Delay on Real-Time
Multiplayer Games”, Proc. 12th Int. Workshop on Network and
Operating Systems Support for Digital Audio and Video, 2002.

[6] Armagetron: http://armagetron.sourceforge.net/, 2005.

av
er

ag
e

SU
R

 (s
ps

)

number of mirrored servers

mSUR

ON
OFF

885

