
How to Make Web Sites Talk Together
– Web Service Solution

Hoang PHAM HUY
Hanoi University of Technology

Tel.: 84-4-8680896
hoangph@it-hut.edu.vn

Takahiro KAWAMURA
Toshiba R&D Center
Tel.: 81-44-549-2237

takahiro@isl.rdc.toshiba.co.jp

Tetsuo HASEGAWA
Toshiba R&D Center
Tel.: 81-44-549-2237

tetsuo3.hasegawa@toshiba.co.jp

ABSTRACT
Integrating web sites to provide more efficient services is a very
promising way in the Internet. For example searching house for
rent based on train system or preparing a holiday with several
constrains such as hotel, air ticket, etc... From resource view
point, current web sites in the Internet already provide quite
enough information. However, the challenge is these web sites
just provide information but do not support any mechanism to
exchange them. As a consequence, it is very often that a human
user has to take the role to “link” several web sites by browsing
each one and get the concrete information. The reason comes from
a historical objective. Web sites were developed for human users
browsing and so, they do not support any machine-understandable
mechanism.

Current researches in WWW environment already propose several
solutions to make newly web sites become understandable to
other web sites so that they can be integrated. However, the
question is how to integrate existing web sites to these new one.
Evidently, redeveloping all of them is an unacceptable solution. In
this paper, we propose a solution of Web Service Gateway to
“wrap” existing web sites in Web services. Thus, without any
efforts to duplicate the Web sites code, these services inherit all
features from the sites while can be enriched with other Web
service features like UDDI publishing, semantic describing, etc…

This proposal was developed in Toshiba with Web Service
Gateway and Wrapper Generator System. By using these systems,
several integrated-applications were built and they are also
presented and evaluated in this paper.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Domain engineering, Reusable
libraries, Reuse models.

General Terms: Design, Standardization, Theory.

Keywords
Web Service, WSDL, Service Development, Wrapper, Web site

1. Introduction
The success of the Internet does not only allow the connection of
computers and business partners world-wide but also open a new
way to carry out the business transactions. Supply and commerce

over the Internet, such as online weather forecast ([9]) or online
book shops ([10][11]), have already entered to the market as
individual information sources. Broadly saying, “Business-to-
Customer oriented” and “not-open”, are the two principle
characteristics of almost all theses information sources. The latter
can be considered as a consequence of the former since
supporting Business-to-Customer schema does not require one
information source to be opened to others. However, Business-to-
Business must be a considerable market in the future e-business in
which each provider needs to share its capabilities with others.
This future market also requires an infrastructure to integrate
several providers in a global service, in supporting other service-
independent features like accounting, billing, security, etc….
Evidently, Web Service technology is the most promising
candidate. The question that we want to tackle in this paper is
related to the existing information sources in the current Internet.
That is how to harmonize them with the future Business-to-
Business market ?
A common way to “import” the existing information sources to a
new market is installation of wrapper components that act as
representatives of the “old” providers. Though that it is not a new
research domain, adopting this wrapper mechanism in our
approach under the Web Service strategy turns it out as a
promising solution. Thanks to the current efforts of developing
and standardizing Web Service technology, our Web Service
gateway brings all the advanced features of Web Service to the
current existing Internet information source, without paying much
efforts to re-developing them. Keeping in mind that more than
80% current information sources in the Internet realized on
dynamic Web sites with a underlying database ([1]), we
concentrate to support this kind of Web sites. Figure 1 shows
general components of our Web Service gateway and the way to
import existing Internet information sources to Web Service
domain. Because Internet information sources differ from each
other in the way to access (protocol, query structure, etc…) and in
the format of returned HTML pages, a different wrapper is
required to represent each information source. Theses wrappers
are generated with the help of Wrapper Generator System and
automatically deployed to the gateway. They take the
responsibility to

• receive requests from service clients in Web Service
domain;

• convert the request to an appropriate form before
sending to the existing information source;

• get the returned HTML pages and extract the required
concrete data;

• return the data to service client in Web Service.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

850

Theses tasks are carried out by using several appropriated
supports from the Generic Wrapper System, available in the
gateway. In order to support different technologies in existing
Internet sources as well as in Web Service domain, plugin was
adopted as designing strategy in our Web Service gateway. For
instance, if we need to support a new kind of information source,
a new plugin can be added in the Generic Wrapper System and
providing necessary library for newly wrappers.

Info. source 3Info. source 1
Info. source 2

Generic Wrapper SystemGeneric Wrapper System

Wrapper Wrapper Wrapper

Web Service Web Service

Current Internet EnvironmentCurrent Internet Environment

Web Web
Service Service

GatewayGateway

Wrapper Wrapper
GeneratorGenerator

Gather info.
of individual
sources

Generate wrappers
& deploy to
gateway

Figure 1: Toshiba Web Service Gateway
In the next section, we briefly describe several related works in
pointing out several related aspects in our approach. Then, section
3 and 4 describe in detail the architecture and implementation of
our Web Service gateway. Section 5 presents a demonstration of
using out Web Service gateway to create an e-business service
from several existing Internet information sources. The last
section concludes our work and draw our several future works.

2. Related Work and Our Approach
The wrapper idea has been considered for several years. Basic
mechanism is the same but in each period of time, the applied
method were different according to the current trend of
technology. In Stanford’s TSIMMIS project on 1997 ([4]),
wrapper was used to provide an universal access mechanism for
heterogeneous information source including database, Web site,
etc… The key point of TSIMMIS is not creating wrapper it-self
but customizing wrapper’s interface, based on a concept of
wrapper-template. For that, TSIMMIS provides several “hard-
code” wrappers for different information sources. Theses
wrappers, when being used in a particular application, can be
customized with newly defined wrapper-templates in order to
provide an appropriated interface for the application. This
approach has a weakness is that each information source requires
a new “hard-code” wrapper and moreover, wrapper generation
was completely lacked in TSIMMIS. However, the idea of
wrapper-template is a strong point and it is inherited in our
approach to automatically generate wrapper, based on some
definitions of users.
Jedi ([6]) is another project organized in German some years after
TSIMMIS. Within objective to mostly support information
sources of Web site, Jedi concentrates to the procedure of parsing
and extracting data in a HTML page. For that, Extraction
Language was defined to pattern data in a HTML page and then, a
Jedi parser (provided as several Java libraries) can be used to
extract the data in the patterned HTML page. Like TSIMMIS, Jedi

also did not consider the aspect of wrapper generation. It just
provide a mechanism and several Java libraries to create HTML
parser and extract concrete data in a HTML page. By taking the
design approach of plugin, out Web Service gateway can apply
Jedi mechanism to create a Intelligent HTML Parser. It will be
presented in section 3.2.
Automatically wrapper generation was considered in UMICAS
([3]). Qualified-path-expression Extractor Language (QEL) and
Complex Extractor Specification Language (CESL) were used to
define the query that wrappers should use to extract data in a
HTML page. User can examine a HTML page and use a GUI
toolkit to define query with theses two language. Then, a wrapper
can be automatically generated by just one mouse click in the GUI
toolkit. Although this project had quite completely covered the
Web site wrapper domain, standardization aspect is its weak
point. QEL and CESL were not widely accepted as a standard
method for extracting data in HTML page. The generated
wrappers also did not provide a standard interface to receive
client’s request. Nowadays, XPath ([12]), XQuery ([13]) and
DOM ([14]) specifications are widely accepted in place of QEL
and CESL. For wrapper’s interface to receive request, Web
Service Description Language (WSDL) is world-wide accepted
specification. That’s why they are taken into account in our
approach.
Semi-automatic wrapper generation ([2], [7], [8]) can be
considered as the most advanced wrapper generation mechanism
currently. User with the help of a GUI can analyze a HTML page
and define several data extraction rules. The rest of wrapper
generation procedure is delegated to a to toolkit. This “semi-
automatic” way can support complicated tasks in seeking data of a
HTML page by the help from users while releasing them from
several common uninteresting routines. However, theses works all
try to define their own descriptive language in order to define the
data extraction rules which is, we think, not a intelligent
approach. This strategy implicitly excludes the possibility of
applying other mechanisms to extract data from HTML page.
Keeping in minds this observation, our approach also follows
semi-automatic wrapper generation mechanism but try to define a
common framework for Intelligent HTML Parsers, which are the
plugins in our Web Service gateway. This framework provide a
common interfaces that wrappers can use to extract data in HTML
pages. On the other hand, each plugin can be implemented with
different data extraction mechanism, based on different
descriptive languages to pattern data in HTML pages. Users can
use our plugin discovery tool to find out which plugin parser is
the most appropriate for the HTML page pattern of a particular
Web information source, then “bind” this plugin to the
corresponding wrapper. The wrapper description it-self is not
changed. This is the “intelligence” aspect in our HTML parser
framework. Concerning the characteristic of “most appropriate”
parser, wrapper verification concept was also proposed in [5].

3. Web Service Gateway and Web Service
Wrapper

As generally presented in figure 1, our Web Service gateway
consists of two principle parts – the Web Service Wrappers and
the Generic Wrapper System. Theses components will be
discussed in the following sub-sections.

851

3.1 Web Service Wrapper
The logical design of our Web Service wrappers can be seen in
figure 2. Each wrapper consists of 4 basic modules:

• Web Service Interface. This interface is defined with
WSDL, providing an entry point to access to the
wrapper. Through this interface, other entities in Web
Service domain see and make use of this wrapper as a
normal Web Service. Evidently, other Business-to-
Business supported mechanisms in future Web Service
domain such as UDDI, ontology-based service seeking,
etc… can be applied with these Web Service wrappers.

• Wrapper Coordinator. This module takes the
responsibility to transfer the requests received through
Web Service interface into another form that the
Internet information source can understand. For
example, for wrapping CGI Web sites, the Wrapper
Coordinator module coverts the parameters’ value in
Web Service interface into a CGI query conforming to
the CGI Web site.

• Information Source Access Protocol. This module
provide an engineering feature to transport the requests,
after being harmonized by Coordinator, to the
information source. It also takes the responsibility to
retrieve the HTML pages, which is the reply from
information source. Depended on the technique that the
Internet information source uses, the corresponding
accessing protocol is applied in this module by a driving
from Coordinator. For example CGI GET, CGI POST
or ASP, JSP, etc…

• Data Extractor. This module takes the responsibility to
extract data from HTML pages and construct an
appropriate data structure. This data structure is then
returned to the requesting entity in Web Service
domain, through Web Service Interface. Instead of hard-
code integrating HTML data extraction mechanism, this
module communicate with several independent HTML
parsers (the Parser plugin in Web Service gateway) to
carry out its task.

The key point in our approach is that the wrappers are not
hard-coded in Web Service gateway but they are
automatically generated by Wrapper Generator tool, based on
a wrapper description. This description contains all necessary
information of the Internet information source (accessing
protocol, request format, etc…), the signature of the Web
Service interface as well as the mapping between theses two
items. By designing wrappers with several independent basic
modules and supporting modules generation feature, our
Web Service gateway can be easily adapted to new business
environment or different kinds of information source. For
example, to provide a gateway interface for J2EE Enterprise
Java Bean environment, the wrapper description files can be
changed and a newly wrapper’s class can be generated with
EJB interface in the place of Web Service Interface

Figure 2: Web Service Wrapper

3.2 Intelligent HTML Parser Plugin
As described above, data extraction from HTML pages is carried
out by several intelligent HTML parsers. Theses parsers are
deployed in the Generic Wrapper System of the Web Service
gateway as the plugin entities. By adopting this design strategy,
any third parties can develop their own HTML parsers, based their
own mechanism, and deploy to our Web Service gateway to make
them available to the wrappers. For that, we need to define a
standard framework that all HTML parsers implementation must
follow to be able to execute in our gateway. The following two
mandatory requirements are strongly considered in our framework
design:

• The algorithm to extract data from a HTML page and
the way to implement it should be as flexible as possible
so that third parties can freely (as much as possible)
decide the way to develop their intelligent HTML
parser.

• One standard communication mechanism must be
designed so that all HTML parsers must support to
communicate with the Web Service wrappers.

For the first requirement, as the fact that all HTML pages are
constructed by a tree-style HTML tags, we propose to abstract all
HTML pages format to some kinds of tree-styles nodes. Thus, the
path to locate data in a HTML page can be abstract to:

root.node(1).node(2)…node(n)
We call this is a path-finder sentence which consists of several
node-finder elements. Each node-finder element (node(1),
node(2), etc…) can be constructed by an explicit node address
such as root node or a relative address in comparing with the node
parent. The “intelligence” in this approach is that even the
abstract HTML page format if fixed to tree-style but the
realization of theses trees are completely depended on the
implementation. So does the node-finder. Depended on the parser
implementation mechanism, a node-finder can be an explicit digit
position like “1.0.3.5” or a textual position expression like
“second DIV tag” or “first DIV tag after ‘1.0.3.5’”. Figure 3
shows that the same HTML page can be represented in two
different tree-style structure with two different path-finder
sentence to locate the same data.

Web Service Interface (WSDL)

Info. Source Access Protocols

Data
ExtractorCoordinator

Internet
Info. Source

Web Service Domain

Parser Plugin

W
S

W
ra

pp
er

W
S

W
ra

pp
er

Wrapper
Description

852

One HTML page

Structured in
another tree-style

root

data node

Intermediate
node

path from root to data node
Structured
in tree-style root

data node

Intermediate
node

Figure 3: Parsing a HTML page by flexible tree-style

Thus, the procedure to extract data from HTML page become is to
find out the path-finder sentence. In more detail, it is a sequence
of information exchange between the wrapper’s Data Extractor
module and an appropriate HTML parser plugin to, firstly,
construct a tree-style structure and, secondly, setup the next node-
finder, and so on. Evidently, the information that the wrapper’s
Data Extractor module sends to the HTML parser to establish the
path-finder sentence must be conformed to the parser
implementation. This information is given to the wrappers when
they were generated and deployed to the Web Service gateway, by
its wrapper description.

Figure 4: Standard Communication Framework
Figure 4 presents the standard communication framework between
wrappers’ Data Extractor module and HTML parser plugin to
extract data. After receiving a HTML page from the information
source, the wrapper’s Data Extractor module contacts with the
Web Service gateway to initialize an appropriate HTML parser.
After initializing the HTML parser, Web Service gateway returns
the parser reference to the Web Service wrapper. By invoking
several standardized operation to this parser reference, the
wrapper requests the parser to initialize a tree-style nodes

represented to the current HTML mode. Then, the wrapper
invokes one of several time to the parser to send the node-finder
sentences as defined in the wrapper description to find the data
node. As explained before, it is depended on the parser
implementation that the node-finder can be various, such as “go to
the first image node” or “go to the second children node”. Finally,
the wrapper requires the HTML parser send back the data in
current data node.
Based on above designing strategy, we define a set of operations
that any intelligent HTML parsers must provide to be invoked by
the wrappers. The most important plugin function is
getNodePosition():

getNodePosition(parrentPosition, node-finder)
This function calculates and returns the position of the current
node in the tree, based on the parent node and the relative
“distance” to the given node. The position format of these node
(parrent, current and node-finder) are completely depended on the
plugin implementation. For example, one plugin accepts an
explicit node tree-based digit position like “1.0.3.5” while another
can provide a plugin which accepts both above explicit digit
position and a textual position expression like “second DIV tag”
or “first DIV tag after ‘1.0.3.5’”. XPath, XPointer or XQuerry can
be applied here to define the node-finder sentence. Thus, the more
human-like in position format that a plugin HTML parser accepts,
the more intelligent in the parser to extract data.

4. Wrapper Generator Toolkit
In order to support users to define the wrapper description and to
generate wrapper code, Web Service wrapper generator toolkit
was developed in Toshiba R&D Center. This toolkit consists of 2
main components - Wrapper Generator and Plugin Discovery.

Figure 5 presents the main windows of our Web Service
Wrapper Generator (WSGen). This tool supports a GUI
to analyze information source to define wrapper
description. Then, by just one mouse click, the wrapper
code is generated and deployed to Web Service
gateway. In the first version, we concentrate to the
Internet information source based on CGI technology.
For that, by enter a normal CGI query, including the
protocol, CGI Web site address, resource path and the
query pattern, WSGen automatically generate a
primitive Web service for the given CGI Web site. Web
Service interface and CGI mapping is carried out by
several steps, in several working tab. In each tab, user
can graphically create, modify, delete, etc… the
elements of the wrapper description. After generating a
Web Service wrapper, user can go to “Deploy working
tab” in WSGen to deploy it to the Web Service
gateway. Toshiba provides a default Web Service
gateway that is delivered with WSGen. Otherwise, user

can take the generated Web Service gateway (packed in a WAR
file – Web Application Archives) to deploy it in any other Web
Service hosting systems. This WAR file is packed with all
necessary library such as accessing protocol, HTML parser
plugin, etc… so it can be deployed to any Web Service hosting
server which support WAR specification.
Figure 6 presents the main windows of our Plugin Discovery. This
tools allows user to try all the HTML parsers available in the Web
Service gateway to find which is the most suitable for parsing
HTML pages returned from a given information source. This tool

WS Wrapper WS Gateway HTML parser

Receives returned HTML page from the info. source

Request contact with a HTML parser

Initialize a HTML parser and return the contact point

Next node-finder sebtebce

Get data attached in current node

[contact point]

Initialize tree nodes

[root node address]

[next node address]

[data]

853

also allows user to define the node-finder sentences. After
selecting an available HTML parser, the tree nodes is shown to
the user. When user click to a node in HTML page, the discovery
engine will analyze the data attached to this node and propose all
the possible code-finder sentence to go to this node.

Figure 5: Web Service Wrapper Generator main windows

Figure 6: Plugin Discovery Tool

5. Applying Web Service Gateway
By using Toshiba WSGen, several wrappers were generated for
certain CGI Web sites like Yahoo, Amazon, etc… and deployed
to Toshiba Web Service gateway. This gateway provides Web
Service interfaces inside our group in order to test the feasibility
of several Web Service in future business environment. In this
section, we introduce one of our applications based on this
system.
Currently, there are a lot of Web sites selling books in the Internet
(book-online Web site). By entering a book’s ISBN number, user
can see the price in a Web page. The idea is creating a service to
buy a book with the best price. Figure 7 presents the general
architecture of this application.

Figure 7: Book shop agency application

Amazon, Bamm, Powells, Textbook and Barnes & Noble are the
book-online CGI Web site that were taken in to account in this
example. For example, to view the price of “Reading in
AGENTS” – ISBN 1558604952, the following CGI queries can
be sent to the corresponding sites:

• http://www.amazon.com/exec/obidos/ASIN/1558604952

• http://www.booksamillion.com/ncom/books?type=isbn_se
arch&find=0201485435

• http://www.powells.com/cgi-bin/biblio?isbn=1558604952

• http://www.textbookx.com/product_detail.php?detail_isb
n=1558604952

• http://search.barnesandnoble.com/textbooks/booksearch/i
sbninquiry.asp?isbn=1558604952

By using WSGen toolkit, five Web Service wrappers for these
five online-book sites are generated. They are deployed in several
Web Service gateways and published to an UDDI registry. Each
Web Service wrapper provides an operation getPrice(isbn) with
one parameter – the book’s ISBN number. The returned value of
these wrapper operations is the price of the corresponding books
which is displayed in the corresponding Web site. Making use of
these wrappers, a Book shop service was developed. In order to
search the best price, user gives the ISBN to a book search agent.
After sending several message to these book-online wrappers,
agent receive a list of price. It then calculates and gives the best
one to the user.

6. Conclusion and Future Works
The Book Shop Agency application is not the first “best price
book search” in the Internet. There are, for example isbn.nu
([11]), several web sites providing such kind of price comparing
service. However, underlying mechanism of these sites is
propriety. It can have even some kinds of private interaction with
the other web sites to directly access to their database. By
applying our Web Service gateway, we provide a standard
mechanism for Business-to-Business with existing Internet
resources. This product of Web Service gateway have been
completed in our laboratory and started to be distributed in the
market.
Currently, the Toshiba Web Service gateway is being upgraded
within several directions. The first one is to integrate Toshiba
WSGen with MatchMaker, a Web service match making system
supporting semantic description. It will allow Web Service

Document structure zoneDocument structure zone

Working zoneWorking zone

Document preview zoneDocument preview zone

Original Operation URLOriginal Operation URL

Amazon site bamm.com site powells.com site

Toshiba WS
Gateway

Amazone
wrapper

Other WS
gatewaypowells

wrapper

Other books site

bamm.com
wrapper

Book Searching
Engine

Book Shop Agency

Searching the best price

Book ISBN

Best price

WS Generator ToolsWS Generator Tools

Working tab nameWorking tab name

Current Working tabCurrent Working tab

Working buttonsWorking buttons

854

wrappers, after being generated, to be automatically published
with semantic description. The second direction is supporting
other interfaces than Web Service, such as EJB. Another future
work is to develop new intelligent HTML parser allowing wrapper
to perform more human-like actions.

References
[1] A. Sahuguet and F. Azavant, “Building Light-Weight

Wrappers for Legacy Web Data-Sources Using W4F”,
Proceedings of 25th International Conference on VLDB,
1999, pp. 738-741

[2] R. Baumgartner, S. Flesca, and G. Gottlob, “Visual Web
Information Extraction with Lixto”, 2001, Proceeding of
27th Conference on VLDB, pp. 119-128

[3] J. Gruser, L. Raschid, M. Vidal, and L. Bright, “Wrapper
Generation for Web Accessible Data Sources”, Proceeding
of Conference on Cooperative Information Systems, 1998,
pp. 14-23

[4] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M.
Breunig, and V. Vassalos, “Template-Based Wrappers in
the TSIMMIS System”, Proceedings of 23rd ACM
SIGMOD Conference on Management of Data, 1997

[5] K. Nicholas, “Wrapper verification”, World Wide Web,
Kluwer Academic Publishers, Volume 3, Issue 2, 2000, pp.
79-94

[6] G. Huck, P. Frankenhauser, K. Aberer, and E. Neuhold,
“Jedi: Extracting and Synthesizing Information from Web”,
Proceeding of 3rd Conference on Cooperative Information
Systems, 1998, pp. 32-43.

[7] L. Lui, C. Pu, and W. Han, “An XML-Enabled Wrapper
Construction System for Web Information Sources”, 2000,
Proceeding of 15th Conference on Data Engineering
(ICDE), pp. 611-621.

[8] M. Christoffel, B. Schmitt, and J. Schneider, “Semi-
Automatic Wrapper Generation and Adaption”, Proceeding
of Conference on Enterprise Information Systems, 2002

[9] AccuWeather: http://www.accuweather.com
[10] Amazon book shop: http://www.amazon.com
[11] Isbn.nu book shop: http://www.isbn.nu
[12] XPath Specification: http://www.w3c.com/TR/xpath
[13] XQuery Specification: http://www.w3c.org/XML/Query
[14] W3C Document Object Model (DOM):

http://www.w3c.com/DOM

855

