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ABSTRACT
We present a design for verification approach to developing reliable
web services. We focus on composite web services which consist of
asynchronously communicating peers. Our goal is to automatically
verify properties of interactions among such peers. We propose
a design pattern that eases the development of such web services
and enables a modular, assume-guarantee style verification strat-
egy. In the proposed design pattern, each peer is associated with a
behavioral interface description which specifies how that peer will
interact with other peers. Using these peer interfaces we automat-
ically generate BPEL specifications to publish for interoperability.
Assuming that the participating peers behave according to their in-
terfaces, we verify safety and liveness properties about the global
behavior of the composite web service during behavior verifica-
tion. During interface verification, we check that each peer imple-
mentation conforms to its interface. Using the modularity in the
proposed design pattern, we are able to perform the interface veri-
fication of each peer and the behavior verification as separate steps.
Our experiments show that, using this modular approach, one can
automatically and efficiently verify web service implementations.

Categories and Subject Descriptors: D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.2.4 [Software Engineering]
Software/Program Verification – Model checking, Formal methods;
H.5.3 [Information Systems] Group and Organization Interfaces –
Asynchronous interaction, Web-based interaction

General Terms: Design, Verification

Keywords: Composite web services, asynchronous communica-
tion, design patterns, BPEL

1. INTRODUCTION
Web-based software applications which enable user interaction

through web browsers have been extremely successful. Nowadays
one can look for and buy almost anything online, from a book to a
car, using such applications. A promising extension to this frame-
work is the area of web services, i.e., Web accessible software ap-
plications which interact with each other through the Internet. Web
services have the potential to have a big impact on business-to-
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business applications similar to the impact interactive web software
had on business-to-consumer applications.

Web services provide a framework for decoupling the interfaces
of Web accessible applications from their implementations, mak-
ing it possible for the underlying applications to interoperate and
integrate into larger, composite services. The following character-
istics of web services are crucial for this purpose: 1) standardizing
data transmission via XML [26], 2) loosely coupling interacting
services through standardized interfaces, and 3) supporting asyn-
chronous communication.

A fundamental problem in developing reliable web services is
analyzing their interactions. The characteristics mentioned above
present both opportunities and challenges in this direction. For ex-
ample, decoupling interfaces and implementations, which is nec-
essary for interoperability, also provides opportunities for modular
analysis. On the other hand, asynchronous communication, which
is necessary to deal with pauses in availability of services and slow
data transmission, makes analysis more difficult.

In this paper, we present a design for verification approach for
developing reliable composite web services. Earlier work on ap-
plying formal verification techniques to web services [9, 11, 21, 7,
20] focused on the specification level, whereas our work focuses
on implementing reliable web services in Java and addresses the
reliable implementation of individual services.

A composite web service consists of a collection of individual
web services, called peers, working in a collaborative manner. As
mentioned above, interaction among peers is established via asyn-
chronous messages. In asynchronous communication, when a mes-
sage is sent, it is inserted to a FIFO message queue, and the receiver
consumes (i.e. receives) the message when it reaches to the front
of the queue. The interaction among the peers in a composite web
service can be modeled as a conversation, the global sequence of
messages that are exchanged among the peers [6, 12, 14]. A typical
peer implementation includes a code for the operations specific to
the application, a code for the asynchronous communication mech-
anism, and an interface specification describing the peer behavior.

In this paper, we propose a behavioral design pattern called the
Peer Controller Pattern for developing reliable web services. The
Peer Controller Pattern separates the operations related to the appli-
cation logic from the communication details. The communication
component is responsible for asynchronous messaging. The com-
ponent implementing the application logic uses the communication
component to interact with other peers. This decoupling improves
the code maintainability and reusability and supports our modular
verification strategy.
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In the Peer Controller Pattern, each peer has a behavioral in-
terface description which captures the information needed by the
other peers that interact with it. A peer interface is a Java class
implementing a state machine which defines the order of send and
receive operations that can be executed by that peer. The interface
of a peer serves as a contract between that peer and the other peers.
We automatically generate BPEL [4] specifications from the peer
interfaces that can be published for interoperability.

The Peer Controller Pattern enables a modular, assume-guarantee
style verification strategy. We show that if the developers use the
proposed design pattern, then using model checking, they can auto-
matically check the properties of a composite web service (behav-
ior verification) and the conformance of the peer implementations
to their interfaces (interface verification).

For interface verification we use the program checker Java Path-
Finder [5]. During interface verification, the interface of a peer is
used as a stub for the communication component. This approach
solves the environment generation problem in this context, and en-
ables verification of each peer in isolation, improving the efficiency
of the interface verification significantly.

For behavior verification we use the explicit and finite state model
checker SPIN [13] which allows us to model asynchronous messag-
ing. Given the peer interfaces, we automatically generate a Promela
(the input language of the SPIN model checker) specification for
the composite web service. We check safety and liveness properties
of the composite web service specification using the conversation
model.

Since SPIN is a finite state model checker, the size of the mes-
sage queues needs to be bounded. Such bounded verification guar-
antees correctness only with respect to the set bounds. Moreover,
model checking a composite web service that communicates asyn-
chronously with unbounded queues is undecidable [10]. Note that,
this is not just a theoretical problem. Asynchronous messaging
with unbounded message queues is supported by messaging plat-
forms such as Java Message Service (JMS) [16], Microsoft Mes-
sage Queuing Service (MSMQ) [19], and Java API for XML Mes-
saging (JAXM [15]).

We adapt the synchronizability analysis proposed in [11] to our
framework to verify properties of composite web services in the
presence of unbounded queues. A composite web service is called
synchronizable if its conversation set does not change when asyn-
chronous communication is replaced with synchronous communi-
cation. We check the sufficient conditions for synchronizability
presented in [11] based on the Peer Controller Pattern. This auto-
mated synchronizability check enables us both to reason about the
global behavior with respect to unbounded queues and to improve
the efficiency of the behavior verification (by removing the mes-
sage queues, and, hence reducing the sate space without changing
the conversation behavior).

Related Work. To achieve interoperability among web services a
contractual agreement among participating peers is a necessity. The
WSDL [25] standard is commonly used as a contract for specifying
the operations, port types, and message types of an individual web
service. This kind of information, however, is not sufficient for
developing composite services. WSDL is a connectivity contract
which does not model the behavior [18]. A number of standards
have been proposed for describing the behavior of a web service,
such as BPEL [4], WSCI [24], and OWL-S (formerly DAML-S)
[22]. In [6], state machines are used for this purpose and in [11]
it is shown that other behavioral descriptions (such as BPEL) can
be translated to state machines. Since state machines are powerful
enough to specify the behaviors of web services and since they are

suitable for automated reasoning, in our framework, the behavioral
contracts among peers are specified as state machines.

Berardi et al. [2] also use state machines as behavioral contracts.
They focus on action sequencing rather than message sequencing
in the composition. Unlike our work, their goal is to automatically
synthesize composite web services. Benatallah et al. [1] use state-
charts to describe service behavior, specifically to declare a service
composition. They present a framework for implementing web ser-
vices without addressing verification of service interactions.

Model checking has become a commonly used technique in au-
tomated software verification. Recently, some researchers have ap-
plied existing model checking tools to verification of composite
web services. For example, in [20] and [11] the authors verify a
given web service flow (specified in WSFL and BPEL respectively)
by using the model checker SPIN. [9] presents an application of the
Labeled Transition System Analyzer (LTSA) in inferring the cor-
rectness of the web service compositions which are specified using
message sequence charts. In [21], web services are verified using a
Petri Net model generated from a DAML-S description of a service.
Unlike these earlier verification efforts, we consider the correctness
of the individual peer implementations as well as the verification of
the global properties of the composite web services. Verification of
the communication flow does not guarantee that the composition
behaves according to the specification unless we ensure that each
individual service obeys its published contract (this requirement is
called conformance in [18]).

Rajamani et al. [23] address the conformance of an implemen-
tation model to a specification for asynchronous message passing
programs. Unlike the interface verification in our framework, their
conformance check requires a model extraction from the imple-
mentation. Moreover, their approach does not separate the interface
and the behavior verification steps.

Mehlitz et al. [17] suggest the design for verification approach
which promotes using design patterns and exploiting the properties
of the design patterns in improving the efficiency of the automated
verification. The approach we propose in this paper is an applica-
tion of the design for verification approach to web services.

In [3] we presented a design pattern and a modular verification
approach for concurrency controllers. The work presented in [3]
focuses on concurrent threads accessing shared data using synchro-
nization statements. In this paper, we are focusing on interaction
among web services and asynchronous communication; therefore,
both the application domain and the underlying semantic model are
different.

The rest of the paper is organized as follows: Section 2 presents
an example composite web service. In Section 3, the Peer Con-
troller Pattern is presented. Section 4 presents the proposed modu-
lar verification technique for composite web services based on the
Peer Controller Pattern. Section 5 explains the automated BPEL
specification generation. Section 6 discusses the experimental re-
sults, and Section 7 presents our conclusions.

2. AN EXAMPLE WEB SERVICE
To illustrate the approach presented in this paper, we use the

Loan Approval example described in the BPEL 1.1 specification
[4]. In this example a customer requests a loan for some amount.
If the amount is small, the loan request is approved. For large
amounts, a risk assessment service decides a risk level. The loan
request is approved when the risk level is low and denied when the
risk level is high.

The Loan Approval service is composed of three individual ser-
vices (peers): CustomerRelations, LoanApprover and RiskAsses-
sor (see Figure 1). Customers make loan requests using the Cus-
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LoanApprover

CustomerRelations RiskAssessor

Figure 1: Loan Approval Service

tomerRelations service. This service sends a request message to
the LoanApprover service. If the request is for a small amount, the
LoanApprover service sends an approval message, with the accept
field set to true, to the CustomerRelations service. Otherwise, the
LoanApprover service sends a check message to the RiskAsses-
sor service. Then, the LoanApprover service sends an approval
message to the CustomerRelations service with the accept field
set to true or false depending on the message received from the
RiskAssessor service.

In this system, the communication among the peers is through
asynchronous messaging. The Loan Approval service can process
more than one customer application at a time. Each loan request
generates a new session. The control logic described above is the
same for each session.

2.1 Peer Interfaces as Contracts
To reason about a composite web service, we need behavioral

contracts describing the behaviors of the individual services, i.e.,
peers. We use finite state machines to specify behaviors of the peers
and we call these state machines peer interfaces. Let us consider
the Loan Approval example. Since this service is a composition of
three services, one can specify the peer interfaces with three finite
state machines, as shown in Figure 2.

The state machines in Figure 2 (a), (b), and (c) specify the be-
havioral interfaces of the CustomerRelations, LoanApprover and
RiskAssessor services respectively. These behaviors are specified
for one session. The transitions are labeled either with !message
or ?message, denoting sending or receiving of a message, respec-
tively. There are 5 message types: request with an amount field,
approval with an accept field, check with an amount field, nocheck
with no fields, and risk with a level field. As seen in Figure 2, send
transitions are labeled with conditions on the message contents.
We will discuss the syntax and semantics of these conditions in
Section 3, however, as an example, consider the transition labeled
with !approval[risk.level=high/accept=false] in Figure
2 (b). This transition is taken only if the level field of the last
risk message is high. When this guarding condition holds, the
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Figure 2: Peer Interfaces

LoanApprover peer sends an approval message with the accept

field set to false.

2.2 Conversations
Using the peer interfaces, global behavior of a composite web

service can be modeled as a set of state machines communicating
with asynchronous messages, similar to the communicating finite
state machine (CFSM) model. In [6, 10, 11] the interactions among
peers in such a system are specified as a conversation, i.e., the se-
quence of messages exchanged among peers recorded in the order
they are sent. A conversation is said to be complete if at the end of
the execution each peer ends up in a final state and each message
queue is empty. The notion of a conversation captures the global
behavior of a composite web service where each peer executes
correctly according to its interface specification, and every mes-
sage ever sent is eventually consumed. (We assume that no mes-
sages are lost during transmission, which is a reasonable assump-
tion based on the messaging frameworks provided by the industry
[16, 19, 15]). For example, the following is a conversation that can
be generated by the Loan Approval example in Figure 2 (where
the values of the message fields are shown in parentheses): re-
quest(amount=large), check(amount=large), risk(level=high), ap-
proval(accept=false).

The conversation model gives us a convenient framework for rea-
soning about and analyzing interactions of web services. Given
this framework, a natural problem is verifying properties related to
conversations. As discussed in [10], the temporal logic LTL can be
extended to specify properties of conversations. A composite web
service satisfies an LTL property if all the conversations generated
by the service satisfy the property.

Note that, during the execution of the Loan Approval service
which generates the above conversation, the input queue of each
peer contains at most one message. However, this may not always
be the case. It is easy to write specifications with infinite state
spaces where the queues are not bounded. In fact, model checking
conversations of asynchronously communicating finite state ma-
chines is an undecidable problem [10]. In the following sections
we will show that using a set of synchronizability conditions we can
identify composite web services which can be verified using finite
state model checking techniques by replacing asynchronous com-
munication (with unbounded message queues) with synchronous
communication without changing the conversation set generated by
the composite web service.

3. PEER CONTROLLER PATTERN
In this section we present the Peer Controller Pattern which re-

solves the following design forces that arise in the development of
reliable composite web services: 1) To achieve interoperability, the
interface of a peer should be specified explicitly and should serve
as a behavioral contract, specifying everything other peers need
to know about a peer to interact with it. The interface of a peer
should not be affected by the changes in the peer implementation
that are not relevant to this contract. 2) The application logic of a
peer should be implemented independent from the communication
logic handling the asynchronous communication. This separation
is necessary for standardization of the communication and main-
tainability of the code. 3) The implementation should be amenable
to automated verification. Due to their distributed nature and asyn-
chronous communication, web services are prone to errors. There
should be a scalable automated verification framework to ensure
their correctness.

The Peer Controller Pattern resolves the above design forces. In
the Peer Controller Pattern, the application logic of a peer and the
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Figure 3: Class Diagram for the Peer Controller Pattern

communication component are separated. This separation enables
the developer to focus on the application logic without worrying
about the details associated with the implementation of the asyn-
chronous communication. This pattern also requires the developer
to define the peer interface, which is the behavioral contract of the
peer, explicitly. The peer interface is specified within the commu-
nication component. This explicit definition of the behavioral con-
tract is crucial both for interoperability and modular verification.

The class diagram of the Peer Controller Pattern is shown in Fig-
ure 3. The classes a developer needs to write are drawn as bold.
Other classes can be used as is, without modification.

The proposed pattern is session based. The application logic of
a peer is the same for each session. This logic is implemented
in the ApplicationThread. The application thread communi-
cates asynchronously with other peers through the Communicator.
The Communicator is a Java interface that provides standardized
access to the actual asynchronous communication implementation
and its stub. The actual communication is performed via the Com-
municationController and customized message implementa-
tion classes (e.g. Msg1Impl). The peer interface is written as a
state machine via the CommunicationStub. This class uses mes-
sage stubs and a nondeterministic state machine implementation
(SM). Note that in the Peer Controller Pattern, the communication
component is more than a Business Delegator [8]. This component
contains the behavioral contract of a peer, and plays a crucial role
in verification.

Communication Controller. The CommunicationController
class is a servlet that performs the actual communication. Since it
is tedious to write such a class, we provide a servlet implementation
(PeerServlet) that uses JAXM [15] in asynchronous mode. This
helping servlet deals with opening an asynchronous connection,
creating SOAP messages, and sending/receiving a SOAP message
through the JAXM provider. The CommunicationController
class extends the PeerServlet and implements the Communica-
tor interface. An interface method in this class returns a new actual
outgoing message instance. Figure 4 shows a CommunicationCon-
troller implementation for the LoanApprover peer.

The helping servlet is associated with a ThreadContainer that
contains application thread references indexed by the session iden-
tifier. Whenever a message with a session identifier is received
from the JAXM provider, it is delegated to the thread indexed with
that session number. We use buffers for this message delegation.

public class ApproverServlet extends PeerServlet
implements LAServlet{

public void init(ServletConfig servletconfig)
throws ServletException{

super.init(servletconfig);
urn="urn:LoanApprover";

}
public ApprovalMessage request(int sessionId){

return new ApprovalMessageImpl(this,sessionId); }
public CheckMessage check(int sessionId){

return new CheckMessageImpl(this,sessionId); }
public NoCheckMessage nocheck(int sessionId){

return new NoCheckMessageImpl(this,sessionId); }
}

Figure 4: ApproverServlet

If there is no thread for the specified session, this container class
creates a new application thread instance and starts that thread.

Messages. The peers interact with each other with customized mes-
sages implemented in Java. Each message implementation consists
of one actual message type definition, one message stub, and one
Java interface to provide uniform access to these classes. The ab-
stract class for the customized message types is shown as Mes-
sageImpl in Figure 3. Its send operation uses the sending method
of the PeerServlet. The abstract class for the message stubs is
MessageStub class. Its send operation uses the sendTransition
method of SM, which is explained below. This abstract class has
a subclass that serves as a stub for incoming messages. Finally,
the Java interface which unifies the actual message types and their
stubs is called Message in Figure 3.

As an example, consider the approval message used by the Loan-
Approver peer. For this message type, we need to implement one
Java interface, one message class which is used for communica-
tion, and one stub class which is used during verification. In Figure
3, these implementations correspond to the Msg1, Msg1Impl and
Msg1Stub, respectively.

In our framework, the fields of message classes are categorized
as control data and non-control data. The data fields that are used in
the interface specifications are called control data. A control data
field can be of enumerated or boolean type. Since Java does not
have enumerated type, we provide an Enumerated class. We use
this separation between control and non-control data in reducing
the states of the message stubs. The stub for a message class only
stores the values of the control data.
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Communication Stub. The CommunicationStub class is a spe-
cial class that specifies the peer interface. A peer interface speci-
fies the behavioral contract of the peer and it is also used during the
verification process. The CommunicationStub class contains two
representative variables for each message type. One holds the last
value, and the other holds the current value of a message.

The CommunicationStub encodes the state machine defining
the contract by using the provided SM class. In the constructor, de-
veloper defines the transitions of the state machine. There are two
kinds of transitions: send and receive transitions. A send transition
is defined as a SendTransition instance. This instance stores the
message, the source and the target states, and the guarded update
for that transition. A guarded update is defined as an anonymous
inner class implementing the GuardedUpdate Java interface. The
guard defines the condition when the transition is available. The
update condition specifies the contents of the message to be sent
when the guard holds.

The syntax of guard and update conditions are defined as fol-
lows:

guard → term
˛
˛ guard && guard

˛
˛ guard || guard

˛
˛ !guard

update → term
˛
˛ update && update

term → varname == value

In the guard condition the varname is in the form of
last msg.fieldname()where last msg is the name of the vari-
able that holds the last value of the message msg. In other words,
in guard conditions the equalities are defined on the control fields
of last messages. In an update condition, the equalities are de-
fined on the message to be sent, i.e., varname is in the form of
msg.fieldname(). As an example, consider the transition (3,
!approval[risk.level=low/ accept=true], 5) in Figure 2(b). This
send transition is implemented as:

GuardedUpdate gc=new GuardedUpdate(){
public boolean guard(){

return last_risk.level()==Low;}
public boolean update(){

return approval.accept()==true;}};
SendTransition outT=

new SendTransition(approval,3,5,gc);

A receive transition is defined with a ReceiveTransition in-
stance. This instance holds the message, the source and the target
states. For example, in the LoanApprover peer the receive transi-
tion (0,?request, 1) in Figure 2(b) is specified as ReceiveTransi-
tion inT=new ReceiveTransition(request,0,1); where
the variable request has the current value of the request message.

The SM class is a nondeterministic finite state machine imple-
mentation. This class has two important methods: sendTran-
sition and receiveTransition. The method sendTransi-
tion(message) computes the set of next states from the current
states, asserts that this set is not empty, and updates the current
state. Each next state must be the target of a send transition whose
1) label is of the same message type, 2) guard and update condi-
tions are satisfied, 3) and source state is in the current state. The
receiveTransition() method computes the set of possible re-
ceive transitions available in the current state, and asserts that this
set is not empty. Then, it chooses one of these transitions non-
deterministically, updates the current state, and returns the cho-
sen incoming message stub instance. The incoming message stubs
(InMessageStub) are generated in the preprocessing phase of the
interface verification. These classes have an instance method
which returns an instance with control field values chosen nonde-
terministically from the possible values that other peers can set.

The nondeterminism is achieved by the Verify.random function
which is a special function of the program checker Java PathFinder
(JPF) [5]. This function forces JPF to search exhaustively every
possible nondeterministic choice during interface verification.

3.1 Semantics of Composite Web Services
In this section we formalize the semantics of a composite web

service based on the Peer Controller Pattern. We use interface of
a peer as the specification of its behavior. This semantic definition
is the formal model we use during behavior verification. We omit
the guard and update conditions in the semantic model. However,
it is easy to extend the model below to handle guard and update
conditions by adding the control data for the messages to the model.
In fact, as long as the control data is of finite domain, one can model
the semantics of a composite web service with guard and update
conditions using the semantic model given below by storing the
contents of the messages in the states of the finite state machines.

In our semantic model, a composite web service is a tuple W =
(M, P1, . . . , Pk). M is a finite set of message types and Pi is
the interface of the peer i, where 1 ≤ i ≤ k and k is the num-
ber of peers in the composition. For each m ∈ M , sender(m) ∈
{P1, . . . , Pk} denotes the peer that sends the message m, and re-
ceiver(m) ∈ {P1, . . . , Pk} denotes the peer that receives the mes-
sage m. We assume that there is one sender and one receiver for
each message type.

Each peer interface Pi = (SPi, TPi, IPi, FPi) is a finite state
machine specifying the behavior of the peer i. SPi is the set of
states, IPi ∈ SPi is the initial state, and FPi ⊆ SPi is the set of
final states. The transition relation TPi is defined as follows. Let
m ∈ M and r1, r2 ∈ SPi. For each t ∈ TPi, t is in the form
of t = (r1, !m, r2) where sender(m) = Pi, or t = (r1, ?m, r2)
where receiver(m) = Pi.

The semantics of a composite web service is a transition system
T (W ) = (IT, ST, RT ) where ST is the set of states, IT ⊆ ST
is the set of initial states, and RT is the transition relation of the
system. The set of states is defined as ST = SP1 × Q1 × · · · ×
SPk × Qk where k is the number of peers in the composition and
Qi is the configuration of the message queue that holds the incom-
ing messages to peer Pi for 1 ≤ i ≤ k.

We introduce the following notation. Given a state s ∈ ST and
a peer identifier i, s(SPi) denotes the state of the peer Pi in state
s, and s(Qi) denotes the configuration of input queue Qi in state
s. We define two functions. The function append: DOM(Q) ×
DOM(Q) → DOM(Q) is used for manipulation of the queue con-
figurations, where append(Q1, Q2) appends Q1 to the front of Q2.
The function first returns the first element in the Q. 〈〉 denotes an
empty queue and 〈m〉 where m ∈ M denotes a queue containing a
single message m.

The set of initial states of T (W ) is defined as IT = {s | s ∈
ST ∧ (∀1 ≤ i ≤ k, s(Qi) = 〈〉 ∧ s(SPi) = IPi)}

We define the following relation for a send operation:

RT(r,!m,r′) = {(s, s′) | s, s′ ∈ ST ∧ (∃1 ≤ i ≤ k,
(r, !m, r′) ∈ TPi ∧ s(SPi) = r ∧ s′(SPi) = r′

∧(∀1 ≤ j ≤ k, j �= i, s′(SPj) = s(SPj)))
∧receiver(m) = Pp ∧ s′(Qp) = append(s(Qp), 〈m〉)
∧(∀1 ≤ l ≤ k, l �= p, s′(Ql) = s(Ql))}

We define the following relation for a receive operation:

RT(r,?m,r′) = {(s, s′) | s, s′ ∈ ST ∧ (∃1 ≤ i ≤ k,
(r, ?m, r′) ∈ TPi ∧ s(SPi) = r ∧ s′(SPi) = r′

∧(∀1 ≤ j ≤ k, j �= i, s′(SPj) = s(SPj))
∧ first(s(Qi)) = m ∧ append(〈m〉, s′(Qi)) = s(Qi)
∧(∀1 ≤ l ≤ k, l �= i, s′(Ql) = s(Ql)))}
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The transition relation RT for the T (W ) is defined as

RT =
S

(r,!m,r′)∈TPi,1≤i≤k RT(r,!m,r′)
∪S

(r,?m,r′)∈TPi,1≤i≤k RT(r,?m,r′)

An execution sequence e = s0, s1, ... is a sequence of states
where (si, si+1) ∈ RT and s0 ∈ IT . The conversation conv(e)
generated by an execution sequence e is defined recursively
as follows: The conversation conv(s0) is the empty se-
quence. The conversation conv(s0, s1, ..., sn, sn+1) is equal to
conv(s0, s1, ..., sn), m if there exists Qj such that sn+1(Qj) =
append(sn(Qj), 〈m〉), and it is equal to conv(s0, s1, ..., sn) oth-
erwise. A conversation is a complete conversation if in the last
state of the execution sequence each peer is in a final state and all
the message queues are empty.

4. VERIFICATION
In this section, we present a modular verification technique for

composite web services implemented based on the Peer Controller
Pattern. During the interface verification, we check that each peer
implementation conforms to its interface which defines the order
that a peer can send and receive messages. During the behavior
verification, assuming that the peers behave according to their in-
terfaces, we check a set of LTL properties on the global behavior
of the composite web service using the conversation model. This
verification strategy solves the environment generation problem for
the peers and improves the efficiency of the verification and, hence,
makes automated verification of realistic web services feasible.

4.1 Interface Verification
A peer implementation conforms to its interface, if all the call

sequences to the Communicator are accepted by the finite state
machine defining the peer interface. For example, in the Loan
Approval service, the LoanApprover peer should not send a check
message to the RiskAssessor peer before getting a loan request with
a large amount.

We use the program checker Java PathFinder (JPF) [5] for the
interface verification. JPF is an explicit state model checker for
Java and supports property specifications via assertions that are em-
bedded in the source code. JPF exhaustively traverses all possible
execution paths to look for assertion violations. Using JPF, we can
check whether a peer implementation generates a call sequence that
is not allowed by the peer interface. As discussed in Section 3, the
peer interface is specified by the CommunicationStub which en-
codes the finite state machine using the SM class. The assertions
that JPF checks are embedded in the SM class. Since these stubs are
finite state machines and abstract the asynchronous messaging with
other peers, the efficiency of the interface verification is improved
significantly.

During the interface verification, we check the peer implementa-
tions for a single session. Since in the Peer Controller Pattern each
session is independent and does not affect other sessions, it is suffi-
cient to check the peer implementations for a single session, which
improves the efficiency of the verification further.

To perform the interface verification, the communication con-
troller and the message instances are replaced with the communi-
cation stub and the message stubs by a source-to-source transfor-
mation. With this transformation, the asynchronous communica-
tion mechanism (which cannot be handled by JPF) is abstracted
away. However, we still need to write a small driver to instantiate
the service. The reason is that JPF requires standalone programs
as input, but a peer is a servlet without a main method. The sim-
ple driver class contains only a main method that consists of three

statements: 1) instantiating the communicator stub, 2) instantiating
an application thread, and 3) starting the application thread. Af-
ter these steps, the resulting program is given to JPF to search for
interface violations. Note that, using the stubs and the driver we
close the environment of a peer. Hence, our verification approach
solves the environment generation problem and enables verification
of each peer in isolation.

In the program that is given to JPF as input, each send action that
the application thread performs is directed to the sendTransition
of the SM class described in Section 3. This method computes the
set of next states from the current state. If the set of next states
is empty, it means that the application thread executed an illegal
send action and JPF gives an assertion violation. Otherwise, the
current state is updated, the previous value and the current value of
the message to be sent is stored. Note that the message stubs only
preserve the valuations of the control data. The non-control data
(for example, the customer name in the Loan Approval service) is
abstracted away. Hence, the message stubs reduce the state space
further.

Each receive action performed by the application thread is di-
rected to the receiveTransition of the SM class. This method
computes the set of possible receive transitions available in the cur-
rent state and asserts that this set is not empty. If JPF does not re-
port an assertion violation, this means that a receive action is legal
at this state. One of the receive transitions is chosen nondetermin-
istically and the associated incoming message is returned. All of
the nondeterministic choices are made using the Verify.random
function which is a special method of the program checker JPF that
forces JPF to search every possible choice exhaustively (i.e., this is
an exhaustive search not random testing).

4.2 Bounded Behavior Verification
We use the explicit and finite state model checker SPIN [13] for

the behavior verification. SPIN provides a structure called channel
which is suitable for modeling the asynchronous messaging among
the peers.

During the behavior verification, we assume that each peer obeys
its interface. Based on this assumption, we can verify safety and
liveness properties of a composite web service by using only the
peer interfaces to characterize the peer behaviors, and ignoring the
peer implementations (implementations are checked during the in-
terface verification). Recall that, the peer interfaces are actually
finite state machines (such as the ones shown in Figure 2) which
are specified using the CommunicationStub classes (Figure 3).
We have implemented a translator that takes these state machine
specifications and the message stubs as input, and automatically
generates a specification in Promela, which is the input language
of SPIN.

Consider the Loan Approval service which consists of three peers.
Given the message stubs and the communication stubs encoding
the interfaces in Figure 2, our translator generates a Promela spec-
ification with three process types. Below is an excerpt from the
generated specification.

#define size 5
mtype ={requestType, approvalType, nocheckType,

checkType,riskType} //message names
/*data domains*/
mtype ={undef1,small,large}//amount domain
mtype ={undef2,low,high}//level domain
/*message types*/
typedef approval{ bool accept; }
typedef request{ mtype amount; }
typedef risk{ mtype level; }
...
message lastmsg;//holds the last send message
/*channels*/
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chan customerQ=[size] of {mtype,message}
chan approverQ=[size] of {mtype,message}
chan assessorQ=[size] of {mtype,message}
proctype LoanApprover(){

short state=0;
nocheck nocheckmsg;
check checkmsg;
approval approvalmsg;
risk riskmsg;
request requestmsg;
message msg;
do
::state==0 ->

if
::approverQ?[requestType,msg]->/*receive*/

approverQ?requestType,msg;
requestmsg.amount=msg.requestmsg.amount;
state=1;

fi
::...
::state==3 ->

if
::riskmsg.level==low ->/*guard*//*send*/
approvalmsg.accept=true;/*update*/
msg.approvalmsg.accept=approvalmsg.accept;
atomic{
lastmsg.approvalmsg.accept=approvalmsg.accept;
customerQ!approvalType,msg; }

state=5;
::riskmsg.level==high ->/*guard*//*send*/
approvalmsg.accept=false;/*update*/
msg.approvalmsg.accept=approvalmsg.accept;
atomic{
lastmsg.approvalmsg.accept=approvalmsg.accept;
customerQ!approvalType,msg; }

state=5;
fi

::state==5 ->break; /*final state*/
od;

}
proctype CustomerRelations(){...}
proctype RiskAssessor(){...}
init{ atomic{run CustomerRelations();

run LoanApprover(); run RiskAssessor();}}

The first part of this specification declares the constants, the
types and the global channels. The message name domain is de-
fined with mtype which is the enumerated type in Promela. The
domains of the control data are defined similarly. The message
types are declared as type constructs (typedef) holding the con-
trol data values. The global variable lastmsg holds the last mes-
sage transmitted. This variable is of type message which combines
all the message types. The global channel variables are the asyn-
chronous communication channels simulating the input message
queues of the peers. In this example the sizes of the channels are
restricted to 5 which is given as an input to the specification gener-
ator. These channels are defined to store elements consisting of a
message name and a message.

The second part is a set of process type definitions. In Promela,
the proctype keyword is used for defining concurrent process.
One concurrent process definition is generated for each peer. These
definitions are used for defining the behavior of a peer by imple-
menting the state machine specified by the communication stub
(i.e., the peer interface). In the generated code, each process def-
inition has a local variable called state. This variable holds the
current state of the state machine. Each process also has one local
variable for each message type it sends or receives. The body of
each process is a single loop which nondeterministically chooses
an operation to execute depending on the state. At each state,
there is a conditional selection which chooses a send, a receive or
a termination operation to execute. During execution, one of the
operations whose enabling condition is true is selected nondeter-
ministically. The last part is the init block which instantiates the
concurrent processes.

Let us consider the process type LoanApprover. The body of
this process encodes the finite state machine given in Figure 2(b).
This excerpt shows one example for each of the receiving, send-
ing and terminating operations in that order. When the state
is 0, the process can execute a receive operation. If there is a
request type message at the head of the message queue, the re-
ceive operation is enabled. This condition is checked using the
approverQ?[requestType,msg] statement which does not alter
the queue contents. When this condition holds, the request mes-
sage is removed from the queue, the message contents are stored in
the local request message variable, and the state is updated. This
fragment corresponds to the transition from state 0 to state 1 with
label ?request in Figure 2(b).

When the state is 3 the process has two send operations to
choose from. The first choice corresponds to the !approval transi-
tion with the guard condition last risk.level()==low and the update
condition approval.accept()==true. Note that, this guarded up-
date is described in the communication stub of the LoanApprover
peer. This fragment checks the risk level, sets the accepting field of
the approval message to true, and constructs a message to be sent.
Next, lastmsg is atomically updated and the approval message is
sent. Finally, the state is updated. The second choice corresponds
to the !approval transition with the guard last risk.level()==high
and the update condition approval.accept()==false.

State 5 is a final state of the loan approver peer. Therefore, when
the state is 5, the loop is terminated.

Using this automatically generated specification, we can check
the LTL properties about the global behavior of the composite web
service using the conversation model. The LTL properties are not
generated automatically, they have to be specified by the user. An
LTL property is specified using the atomic properties, the boolean
logic operators (∧, ∨, ¬) and the temporal logic operators (G: glob-
ally, F: eventually, U: until). The atomic properties are predicates
on the messages. An example property for the Loan Approval
service is as follows: “Whenever a request message with a large
amount is sent, eventually an approval message (with accept field
set to true or false) will be sent.”

SPIN is a finite state model checker, and therefore, the sizes of
the channels need to be bounded. For example, in the above speci-
fication, the sizes of the channels are bounded with the size con-
stant. Bounding the sizes of the communication channels, however,
poses a problem since the verification results only hold as long as
the channel sizes remain within the set bounds. In the next section
we address this problem.

4.3 Unbounded Behavior Verification Using
the Synchronizability Analysis

Bounded verification using SPIN can only give web service de-
velopers a certain level of confidence—it cannot ensure freedom
from bugs (with respect to the specified LTL properties). On the
other hand, the general problem of model checking a composite
web service which uses asynchronous communication with unbound-
ed queues is undecidable. In [10, 11], a technique called the syn-
chronizability analysis is developed to identify asynchronously com-
municating finite state machines which can be verified automati-
cally. The main idea is to find a set of sufficient synchronizability
conditions on the control flows of the state machines, so that when
these conditions are satisfied, the state machines generate the same
set of conversations under both the synchronous and asynchronous
communication semantics. Since the LTL properties are defined
over the conversations, if these synchronizability conditions are
satisfied, the verification results obtained using the synchronous
semantics also hold for the asynchronous semantics. Note that,

756



verification of a system which consists of synchronously commu-
nicating finite state machines is decidable since the state space of
the composed system is finite. In fact, the state space of the com-
posed system can be constructed by taking the Cartesian product of
the states of the individual state machines.

The synchronizability analysis developed in [11] uses two suffi-
cient conditions to restrict the control flows of the state machines:
1) synchronous compatibility and 2) autonomous condition. Syn-
chronous compatibility condition requires that, if we construct a
state machine which is the Cartesian product of the peer interfaces,
there should not be a state in the product machine in which one
peer is ready to send a message, but the receiver for that message
is not in a state where it can receive it. The autonomous condition
requires that at any state, a peer has exactly one of the following
three choices: 1) to send, 2) to receive, or 3) to terminate. Note that
the autonomous condition still allows nondeterminism. A peer can
choose which message to send nondeterministically.

We implemented the synchronizability analysis based on the Peer
Controller Pattern. Given the communication stubs defining the
peer interfaces, we automatically check the synchronizability con-
ditions. If the composite service is synchronizable, the Promela
code with synchronous communication semantics is generated. Oth-
erwise, a reason for a condition violation is displayed. Note that,
when the synchronizability conditions are not met, bounded verifi-
cation can still be used.

The Promela code generated for a synchronizable service has
two differences from the Promela code given in Section 4.2. First,
the queue size is fixed to 0, which means that the processes syn-
chronize when exchanging messages. The other difference is the
implementation of the receive operations. Instead of inquiring the
queue contents, the messages are received first and the appropriate
action is performed depending on the message type. We need this
modification because when the channel size is 0, the channels do
not store messages. Therefore the inquiry peerQ?[messagetype,
msg] always returns false.

With the aid of the automated synchronizability analysis, we can
both reason about the global behavior with respect to unbounded
queues and improve the efficiency of the behavior verification. Since
the messages are not buffered, the state space of the specification is
reduced which can lead to a significant improvement in the behav-
ior verification.

5. BPEL GENERATION
Given a composite service whose peers are implemented based

on the Peer Controller Pattern, we generate BPEL specifications
from the peer interfaces automatically. As discussed earlier, the
peer interfaces are specified with finite state machines. In this sec-
tion, we discuss the BPEL generation from the peer interfaces.

Before creating the BPEL files, our generator creates one WSDL
specification which contains all the message type definitions and
one WSDL specification per peer defining its port type, partner link
types and bindings. These WSDL specifications are used in the
BPEL files. Then, we create one BPEL file per peer. The BPEL
specification contains partner links definitions to access other peers,
variable declarations, and behavior description of the peer. One of
the declared variables is used to store the state of the peer. We also
declare one variable per message type to store the contents of the
last message of that type.

Below we discuss the mapping of the send and receive transi-
tions to the BPEL activities. Consider the transitions originating
from a state. If these transitions are send operations, the corre-
sponding BPEL fragment consists of a switch clause which has
one case for each different send transition. The condition of each

case corresponds to the guard expression of a send transition. The
inner activity of each case block contains an assignment which
corresponds to the update condition of the send transition, an in-
voke statement, and another assignment statement that updates the
state variable, in this order.

Consider the (3, approval[risk.level = low/ accept =true], 5)
transition from the Loan Approver service. The code generated for
this transition is:

<case condition="getVariableData(’risk’, ’level’)=’low’">
<sequence>
<assign> <copy>

<from expression="’true’"/>
<to variable="approval" part="accept"/>

</copy> </assign>
<invoke partnerLink="CustomerRelations"

portType="ns1:CustomerRelationsPT"
operation="ns1:approval"
inputVariable="approval">

</invoke>
<assign> <copy>

<from expression="’5’"/> <to variable="state"/>
</copy> </assign>

</sequence>
</case>

In the case of receive transitions originating from a state, there
are two kinds of resulting code fragments. If there is a single re-
ceive transition, a receive statement is generated. For example,
for the (2,?risk,3) transition, the generated code is:

<sequence>
<receive partnerLink="RiskAssesor"

portType="ns3:RiskAssessorPT"
operation="ns2:risk" variable="risk">

</receive>
<assign> <copy>

<from expression="’3’"/> <to variable="state"/>
</copy> </assign>

</sequence>

If there are multiple receive transitions, we use the pick construct
which has one onMessage per transition. For example, the ini-
tial state of Figure 2(c), defining the interface of Risk Assessor
peer, has two outgoing receive transitions: (0, ?check, 1) and (0,
?nocheck, 2). The generated code fragment is:

<pick>
<onMessage partnerLink="LoanApprover"

portType="ns2:LoanApproverPT"
operation="ns3:check" variable="check">
<assign> <copy>
<from expression="’1’"/> <to variable="state"/>
</copy> </assign>

</onMessage>
<onMessage partnerLink="LoanApprover"

portType="ns2:LoanApproverPT"
operation="ns3:nocheck" variable="nocheck">
<assign> <copy>
<from expression="’2’"/> <to variable="state"/>
</copy> </assign>

</onMessage>
</pick>

If the peer interface is nondeterministic, we generate abstract
BPEL processes. There are three situations that requires nonde-
terminism: 1) when there are both send and receive transitions
originating from one state, 2) when the guard conditions associ-
ated with the send transitions originating from one state are not
disjoint, 3) when there are transitions originating from a final state.
We create nondeterminism by declaring an extra variable, using
opaque assignments to that variable, and making choices based on
the value of that variable. According to the BPEL 1.1 specification,
an opaque assignment to a variable sets a nondeterministic value
chosen from the value space of the variable.

The following is an excerpt from the BPEL specification gener-
ated for the peer interface of LoanApprover given in Figure 2(a).
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<process name="LoanApprover" ...>
<partnerLinks>

<partnerLink name="LoanApprover"
partnerLinkType="ns2:LoanApproverLinkType"
myRole="LoanApprover"/>

<partnerLink name="CustomerRelations"
partnerLinkType="ns1:CustomerRelationsLinkType"
partnerRole="CustomerRelations"/>

....
</partnerLinks>
<variables>

<variable name="approval"
messageType="ns0:approvalMessage"/>

<variable name="request"
messageType="ns0:requestMessage"/>

<variable name="state" type="xsd:string"/>
<variable name="exit" type="xsd:string"/>

</variables>
<sequence>

....<!--receive loan request, set ’1’ to state
and create and instance -->

<assign>
<copy><from expression="’no’"/>

<to variable="exit"/></copy>
</assign>
<while condition="exit!=’no’">

<switch>
<case condition="state=’1’">
<sequence>
...<!--send check or nocheck message -->
</sequence>

</case>
...<!--other choices -->
<case condition="state=’5’">

<assign><copy>
<from expression="’yes’"/>
<to variable="exit"/>

</copy></assign>
</case>

</switch>
</while>

</sequence>
</process>

The specification contains two special variables. The variable
state represents the current state, and the variable exit is used
for the termination condition. The process description is a while
loop that terminates depending on the value of the exit variable.
The body of the loop selects a case block based on the value of the
state variable. Each block contains a subactivity which is the cor-
responding send or receive fragment if the state is not a final state.
Otherwise, there are two possibilities: 1) if there are no transitions
originating from this final state, the local exit variable is set to
terminate the loop; 2) otherwise, there is a nondeterministic choice
between message transition activity and terminating the loop.

6. EXPERIMENTS
We implemented the Loan Approval service based on the Peer

Controller Pattern. We verified the implementation using the mod-
ular verification approach presented in this paper. In our approach,
exploiting the structure of the Peer Controller Pattern, verification
of the peer implementations with respect to their interfaces is per-
formed separately from the verification of the global behavior of
the composite web service. As we demonstrate below, this is cru-
cial for the feasibility of the automated verification of composite
web services.

During interface verification, we used JPF to check whether all
three peer implementations in the Loan Approval service obey their
behavioral contracts. During interface verification of each peer,
we used its communication stub which encodes the state machine
defining the peer interface. With the aid of our state machine im-
plementation, JPF investigates every possible execution of a peer
implementation. We also used the message stubs and a simple

Table 1: Interface Verification Performance

Peer Time (sec) Memory (MB)

CustomerRelations 8.86 3.84
LoanApprover 9.65 4.70
RiskAssessor 8.15 3.64

driver to enclose the environment of the application threads in a
peer implementation. Therefore, we were able to check each peer
implementation separately. The interface verification performance
for the Loan Approval system is given in Table 1.

We also tried to verify the whole Loan Approval service using
JPF without separating the interface and the behavior verification
steps. The first problem is that JPF cannot handle asynchronous
communication among peers. To overcome this problem, we wrote
some Java code which simulates the JAXM provider and the asyn-
chronous input queues. In this simulation, for each peer (aside from
the application thread) there is a concurrent queue instance and a
thread which is activated whenever a message arrives in the queue.
We ran JPF on this simulation program for only one session. JPF
ran out of memory without producing a conclusive result. Hence,
without using the modular approach proposed in this paper, JPF is
unable to verify properties of the Loan Approval service.

Based on our modular verification approach, we verified the global
behavior of the Loan Approval service with the SPIN model checker
using the conversation model. An example property we verified
during behavior verification is the following: “Whenever a request
message with a small amount is sent, eventually an approval mes-
sage accepting the loan request will be sent.” The behavior verifica-
tion took less than one second and used 1.49MB memory. During
the behavior verification, we observed that the reachable state space
of the Loan Approval system is finite (154 states). Independent of
the size of the message queues, during any execution, there is at
most one message in each queue at any state; therefore, increasing
the size of message queues did not increase the state space. Note
that, this experimental observation is not a proof of the fact that
the results we obtained using bounded verification will hold for the
Loan Approval service when unbounded message queues are used.
To guarantee this, we used synchronizability analysis. Our auto-
mated synchronizability analyzer identified Loan Approval service
as synchronizable. Therefore, we were able to verify Loan Ap-
proval service using synchronous communication, and since this
service is synchronizable, the verification results are guaranteed to
hold when unbounded message queues are used.

Let us consider another web service example where the number
of messages in the message queues is not bounded. This example
consists of one client and one supplier peer. The client peer places
arbitrary number of Product1 and Product2 orders. After ordering
the products, the client issues a PayRequest message. The supplier
calculates the total price and sends a bill to the client. Client sends
the payment and gets a receipt from the supplier. The state ma-

?Product1Order ?Product2Order!Product1Order !Product2Order

(a) Client

?Bill

!Payment

!PayRequest

?Receipt !Receipt

(b) Supplier

?Payment

?PayRequest

!Bill

Figure 5: Client-Supplier Example
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Figure 6: Effect of the Queue Size on the State Space

chines defining the interfaces of these peers are shown in Figure 5.
We verified the behavior of this example with different queue sizes.
As shown in Figure 6, the state space increases exponentially with
the size of the queues. In fact, the number of reachable states for
this example is infinite if unbounded queues are used. The expo-
nential growth in the state space affects the performance of SPIN
significantly. SPIN ran out of memory when the queue size was
set to 15. On the other hand, our automated synchronizability ana-
lyzer identified this example as synchronizable. Therefore, we can
verify this service by replacing asynchronous communication with
synchronous communication without changing the conversation set
generated by this composite web service. With synchronous com-
munication there are only 68 states and the behavior verification
succeeds and uses 1.49 MB memory.

Our experiments show that the modularity in the verification pro-
cess based on the Peer Controller Pattern improves the efficiency
of the verification of composite web services significantly. We
can verify asynchronously communicating web service implemen-
tations using reasonable amount of time and memory which are
otherwise too large for a Java model checker to handle. With the aid
of the synchronizability analysis, during the behavior verification,
we can reason about the global behavior with respect to unbounded
queues and perform the behavior verification efficiently. Further-
more, the usage of the stubs during the interface verification causes
a significant reduction in the state space, thus improving the perfor-
mance of the verification process.

7. CONCLUSIONS
In this paper, we presented a verifiable design pattern for devel-

oping reliable composite web services. Based on this pattern, we
developed a modular verification approach that enables developers
to check both the global behaviors of the composite web services
(behavior verification) and the conformance of peer implementa-
tions to their interfaces (interface verification). We showed that the
global behavior of a composite web service can be verified using
the SPIN model checker, by automatically translating the peer in-
terfaces to a Promela specification. By adapting the synchronizabil-
ity analysis proposed in [11], we verified conversations of compos-
ite web services with respect to unbounded queues and improved
the efficiency of the behavior verification. We showed that the in-
terface verification can be performed with the program checker JPF
using the peer interfaces as stubs for the communication compo-
nent. Since these stubs are finite state machines and abstract the
asynchronous messaging, we achieved a significant improvement
in the efficiency of the interface verification. Another benefit of
the presented approach is the explicit specification of the peer in-
terfaces, which can be used to improve interoperability. To support
this, we automatically generated BPEL specifications from the peer
interfaces.
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