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ABSTRACT
In this paper we present the Cataclysm server platform for handling ex-
treme overloads in hosted Internet applications. The primarycontribution
of our work is to develop a low overhead, highly scalable admission control
technique for Internet applications. Cataclysm provides several desirable
features, such as guarantees on response time by conducting accurate size-
based admission control, revenue maximization at multiple time-scales via
preferential admission of important requests and dynamic capacity provi-
sioning, and the ability to be operational even under extremeoverloads.
Cataclysm can transparently trade-off the accuracy of its decision making
with the intensity of the workload allowing it to handle incoming rates of
several tens of thousands of requests/second. We implement a prototype
Cataclysm hosting platform on a Linux cluster and demonstrate the benefits
of our integrated approach using a variety of workloads.

Categories and Subject Descriptors
D.4.7 [Software]: Operating Systems—Organization and Design;
D.4.8 [Software]: Operating Systems—Performance

General Terms
Performance, Design, Experimentation

Keywords
Internet application, Overload, Sentry

1. INTRODUCTION
During the past decade, there has been a dramatic increase in the

popularity of Internet applications such as online news, online auc-
tions, and electronic commerce. It is well known that the workload
seen by Internet applications varies over multiple time-scales and
often in an unpredictable fashion Certain workload variations such
as time-of-day effects are easy to predict and handle by appropriate
capacity provisioning [10]. Other variations such as flash crowds
are often unpredictable. On September 11th, 2001, for instance,
the workload on a popular news Web site increased by an order
of magnitude in thirty minutes, with the workload doubling every
seven minutes in that period. Similarly, the load on e-commerce
retail Web sites can increase dramatically during the final days of
the popular holiday season.
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WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

In this paper, we focus on handling extreme overloads seen by
Internet applications. Informally, an extreme overload is a scenario
where the workload unexpectedly increases by up to an order of
magnitude in a few tens of minutes. Our goals are (i) to design a
system that remains operational even in the presence of an extreme
overload and even when the incoming request rate is several times
greater than system capacity, and (ii) to maximize the revenue due
to the requests serviced by the application during such an overload.
We assume that Internet applications or services run on ahosting
platform—essentially a server cluster that rents its resources to ap-
plications. Application providers pay for server resources, and in
turn, are provided performance guarantees, expressed in the form
of a service level agreement (SLA). A hosting platform can take
one or more of three actions during an overload: (i) add capacity
to the application by allocating idle or under-used servers, (ii) turn
away excess requests and preferentially service only “important”
requests, and (iii) degrade the performance of admitted requests in
order to service a larger number of aggregate requests.

We argue that a comprehensive approach for handling extreme
overloads should involve a combination of all of the above tech-
niques. A hosting platform should, whenever possible, allocate
additional capacity to an application in order to handle increased
demands. The platform should degrade performance in order to
temporarily increase effective capacity during overloads. When no
capacity addition is possible or when the SLA does not permit any
further performance degradation, the platform should turn away ex-
cess requests. While doing so, the platform should preferentially
admit important requests and turn away less important requests to
maximize overall revenue. For instance, small requests may be
preferred over large requests, or financial transactions may be pre-
ferred over casual browsing requests.

We present the design of the Cataclysm server platform to achieve
these goals. Cataclysm is specifically designed to handle extreme
overloads in Internet applications and differs from past work in two
significant respects.

First, since an extreme overload may involve request rates that
arean order of magnitude greater than the currently allocated ca-
pacity, the admission controller must be able to quickly examine
requests and discard a large fraction of these requests, when neces-
sary, with minimal overheads. Thus, the efficiency of the admission
controller is important during heavy overloads. To address this is-
sue, we propose very low overhead admission control mechanisms
that can scale to very high request rates under overloads. Past work
on admission control [6, 8, 21, 24] has focused on the mechan-
ics of policing and did not specifically consider thescalability of
these mechanisms. In addition to imposing very low overheads, our
mechanisms can preferentially admit important requests during an
overload and transparently trade-off the accuracy of their decision

740



Cataclysm servers for S1 Cataclysm servers for S2

Cataclysm Control Plane

 Cataclysm
    Sentry

N
uc

le
us

re
qu

es
ts

 

re
qu

es
ts

A
pp

lic
at

io
n

 c
om

po
ne

nt

 clients across the Internet

 Cataclysm
    Sentry

Request Policing

Load Balancing

           Provisioning

OS Kernel

Nucleus

Free Server Pool

Figure 1: The Cataclysm Hosting Platform Architecture.

making with the intensity of the workload. The trade-off between
accuracy and efficiency is another contribution of our work and en-
ables our implementation to scale to incoming rates of up to a few
tens of thousands of requests/s.

Second, our dynamic provisioning mechanism employs a G/G/1-
based queuing model of a replicable application in conjunction with
online measurements to dynamically vary the number of servers al-
located to each application. A novel feature of our platform is its
ability to not only vary the number of servers allocated to an appli-
cation but also other components such as the admission controller
and the load balancing switches. Dynamic provisioning of the latter
components has not been considered in prior work.

We have implemented a prototype Cataclysm hosting platform
on a cluster of twenty Linux servers. We demonstrate the effective-
ness of our integrated overload control approach via an experimen-
tal evaluation. Our results show that (i) preferentially admitting
requests based on importance and size can increase the utility and
effective capacity of an application, (ii) our admission control is
highly scalable and remains functional even for arrival rates of a
few thousand requests/s, and (iii) our solution based on a combina-
tion of admission control and dynamic provisioning is effective in
meeting response time targets and improving platform revenue.

The rest of this paper is organized as follows. Section 2 provides
an overview of the proposed system. Sections 3 and 4 describe
the mechanisms that constitute our overload management solution.
Section 5 describes the implementation of our prototype. In Section
6 we present the results of our experimental evaluation. Section 7
presents related work and Section 8 concludes this paper.

2. SYSTEM OVERVIEW
In this section, we present the system model for our Cataclysm

hosting platform and the model assumed for Internet applications
running on the platform.

2.1 Cataclysm Hosting Platform
The Cataclysm hosting platform consists of a cluster of com-

modity servers interconnected by a modern LAN technology such
as gigabit Ethernet. One or more high bandwidth links connect
this cluster to the Internet. Each node in the hosting platform can
take on one of three roles: cataclysm server, cataclysm sentry, or
cataclysm control plane (see Figure 1).

Cataclysm Servers: Cataclysm servers are nodes that run Inter-
net applications. The hosting platform may host multiple applica-
tions concurrently. Each application is assumed to run on a subset

of the nodes, and a node is assumed to run no more than one appli-
cation at any given time. A subset of the servers may be unassigned
and form thefree server pool. The number of servers assigned to an
application can change over time depending on its workload. Each
server also runs the cataclysm nucleus—a software component that
performs online measurements of application-specific resource us-
ages, which are then conveyed to the other two components that we
describe next.

Cataclysm Sentry: Each application running on the platform is
assigned one or more sentries. A sentry guards the servers assigned
to an application and is responsible for two tasks. First, the sentry
polices all requests to an application’s server pool—incoming re-
quests are subjected to admission control at the sentry to ensure that
the contracted performance guarantees are met; excess requests are
turned away during overloads. Second, each sentry implements a
layer-7 switch that performs load balancing across servers allocated
to an application. Since there has been substantial research on load
balancing techniques for clustered Internet applications [17], we do
not consider load balancing techniques in this work.

Cataclysm Control Plane: The control plane is responsible for
dynamic provisioning of servers and sentries in individual applica-
tions. It tracks the resource usages on nodes, as reported by cata-
clysm nuclei, and determines the resources (in terms of the number
of servers and sentries) to be allocated to each application. The
control plane runs on a dedicated server and its scalability is not of
concern in the design of our platform.

2.2 Model for Internet Applications
The Internet applications considered in this work are assumed

to be inherently replicable. That is, the application is assumed to
run on a cluster of servers, and it is assumed that running the ap-
plication on a larger number of servers results in an effective in-
crease in capacity. Many, but by no means all, Internet applica-
tions fall into this category. Vanilla clustered Web servers are an
example of a replicable application. Multi-tiered Internet applica-
tions are partially replicable. A typical multi-tiered application has
three components: a front-end HTTP server, a middle-tier applica-
tion server, and a back-end database server. The front-end HTTP
server is easily replicable but is not necessarily the bottleneck. The
middle-tier—a frequent bottleneck—can be implemented in dif-
ferent ways. One popular technique is to use server-side script-
ing such as Apache’sphp functionality, or to use cgi-bin script-
ing languages such asperl. If the scripts are written carefully to
handle concurrency, it is possible to replicate the middle-tier as
well. More complex applications use Java application servers to
implement the middle-tier. Dynamic replication of Java application
servers is more complex and techniques for doing so are beyond the
scope of this paper. Dynamic replication of back-end databases is
an open research problem. Consequently, most dynamic replica-
tion techniques in the literature, including this work, assume that
the database is sufficiently well provisioned and does not become a
bottleneck even during overloads.

Given a replicable Internet application, we assume that the ap-
plication specifies the desired performance guarantees in the form
of a service level agreement (SLA). An SLA provides a description
of the QoS guarantees that the platform will provide to the applica-
tion. The SLA we consider in our work is defined as follows:

Avg resp time R of adm req=

8

>

<

>

:

R1 if arrival rate∈ [0, λ1)
R2 if arrival rate∈ [λ1, λ2)
. . .
Rk if arrival rate∈ [λk−1,∞)

(1)
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Arrival rate Avg. resp. time
for admitted requests

< 1000 1 sec
1000-10000 2 sec
> 10000 3 sec

Table 1: A sample service-level agreement.

The SLA specifies the revenue that is generated by each request
that meets its response time target. Table 1 illustrates an example
SLA.

Each Internet application consists ofL(L ≥ 1) request classes:
C1, . . . , CL. Each class has an associated revenue that an admit-
ted request yields—requests of classC1 are assumed to yield the
highest revenue and those ofCL the least. The number of re-
quest classesL and the function that maps requests to classes is
application-dependent. To illustrate, an online brokerage Web site
may define three classes and may map financial transactions toC1,
other types of requests such as balance inquiries toC2, and ca-
sual browsing requests from non-customers toC3. An application’s
SLA may also specify lower bounds on the request arrival rates that
its classes should always be able to sustain.

3. CATACLYSM SENTRY DESIGN
In this section, we describe the design of a cataclysm sentry. The

sentry is responsible for two tasks—request policing and load bal-
ancing. As indicated earlier, the load balancing technique used in
the sentry is not a focus of this work, and we assume the sentry
employs a layer-7 load balancing algorithm such as [17]. The first
key issue that drives the design of the request policer is to maxi-
mize the revenue yielded by the admitted requests while providing
the following notion ofclass-based differentiation to the applica-
tion: each class should be able to sustain the minimum request rate
specified for it in the SLA. Given our focus on extreme overloads,
the design of the policer is also influenced by the second key is-
sue ofscalability—ensuring very low overhead admission control
tests in order to scale to very high request arrival rates seen during
overloads. This section elaborates on these two issues.

3.1 Request Policing Basics
The sentry maps each incoming request to one of the classes

C1, ..., CL. The policer needs to guarantee to each class an ad-
mission rate equal to the minimum sustainable rate desired by it
(recall our SLA from Section 2). It does so by implementing leaky
buckets, one for each class, that admit requests confirming to these
rates. Requests confirming to these leaky buckets are forwarded
to the application. Leaky buckets can be implemented very effi-
ciently, so determining if an incoming request confirms to a leaky
bucket is an inexpensive operation. Requests in excess of these
rates undergo further processing as follows. Each class has a queue
associated with it (see Figure 2); incoming requests are appended to
the corresponding class-specific queue. Requests within each class
can be processed either in FIFO order or in order of their service
times. In the former case, all requests within a class are assumed
to be equally important, whereas in the latter case smaller requests
are given priority over larger requests within each class. Admitted
requests are handed to the load balancer, which then forwards them
to one of the cataclysm servers in the application’s server pool.

The policer incorporates the following two features in its pro-
cessing of the requests that are in excess of the guaranteed rates to
maximize revenue.

(1) The policer introducesdifferent amounts of delay in the pro-

cessing of newly arrived requests belonging to different classes.
Specifically, requests of classCi are processed by the policer once
everydi time units (d1 = 0 ≤ d2 ≤ . . . ≤ dL); requests ar-
riving during successive processing instants wait for their turn in
their class-specific queues. These delay values, determined period-
ically, are chosen to reduce the chance of admitting less important
requests into the system when they are likely to deny service to
more important requests that arrive shortly thereafter. In Section
3.4 we show how to pick these delay values such that the proba-
bility of a less important request being admitted into the system
and denying service to a more important request thatarrives later
remains sufficiently small.

(2) The policer processes queued requests in the decreasing or-
der of importance—requests inC1 are subjected to the admission
control test first, and then those inC2 and so on. Doing so ensures
that requests in classCi are given higher priority than those in class
Cj , j > i. The admission control test—which is described in detail
in the next section—admits requests so long as the system has suf-
ficient capacity to meet the contracted SLA. Note that, if requests
in a certain classCi fail the admission control test, all queued re-
quests in less important classes can be rejected without any further
tests.

Observe that the above admission control strategy meets one of our
two goals—it preferentially admits only important requests during
an overload and turns away less important requests. However, the
strategy needs to invoke the admission control test on each indi-
vidual request, resulting in a complexity ofO(r), wherer is the
number of queued up requests. Further, when requests within a
class are examined in order of service times instead of FIFO, the
complexity increases toO(r · log(r)) due to the need to sort re-
quests. Since the incoming request rate can be substantially higher
than capacity during an extreme overload, running the admission
control test on every request or sorting requests prior to admission
control may be simply infeasible. Consequently, in what follows,
we present two strategies for very low overhead admission control
that scale well during overloads.

We note that a newly arriving request imposes two types of com-
putational overheads on the policer—(i) protocol processing and
(ii) the admission control test itself. Clearly, both these compo-
nents need to scale for effective handling of overloads. When proto-
col processing starts becoming bottleneck, we respond by increas-
ing the number of sentries guarding the overloaded application—a
technique that we describe in detail in Section 4.2. In this section
we present techniques to deal with the scalability of the admission
control test.

3.2 Efficient Batch Processing
One possible approach for reducing the policing overhead is to

process requests inbatches. Request arrivals tend to be very bursty
during severe overloads, with a large number of requests arriving
in a short duration of time. These requests are queued up in the ap-
propriate class-specific queues at the sentry. Our technique exploits
this feature by conducting a single admission control test on an en-
tire batch of requests within a class, instead of doing so for each
individual request. Such batch processing can amortize the admis-
sion control overhead over a larger number of requests, especially
during overloads.

To perform efficient batch-based admission control, we define
b buckets within each request class. Each bucket has a range of
request service times associated with it. The sentry estimates the
service time of a request and then hashes it into the bucket cor-
responding to that service time. To illustrate, a request with an
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estimated service time in the range(0, s1] is hashed to bucket 1,
that with service time in the range(s1, s2] to bucket 2, and so on.
By defining an appropriate hashing function, hashing a request to a
bucket can be implemented efficiently as a constant time operation.

Bucket-based hashing is motivated by two reasons. First, it groups
requests with similar service times and enables the policer to con-
duct a single admission control test by assuming that all requests
in a bucket impose similar service demands. Second, since suc-
cessive buckets contain requests with progressively larger service
times, the technique implicitly gives priority to smaller requests.
Moreover, no sorting of requests is necessary—the hashing implic-
itly “sorts” requests when mapping them into buckets.
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Figure 2: Working of the cataclysm sentry. First, the class a
request belongs to is determined. If the request confirms to the
leaky bucket for its class, it is admitted to the application with-
out any further processing. Otherwise, it is put into its class-
specific queue. The admission control processes the requests
in various queues at frequencies given by the class-specific de-
lays. A request is admitted to the application if there is enough
capacity, else it is dropped.

When the admission control is invoked on a request class, it con-
siders each non-empty bucket in that class and conducts a single
admission control test on all requests in that bucket (i.e., all re-
quests in a bucket are treated as a batch). Consequently, no more
thanb admission control tests are needed within each class, one for
each bucket. Since there areL request classes, this reduces the ad-
mission control overhead toO(b ·L), which is substantially smaller
than theO(r) overhead for admitting individual requests.

Having provided the intuition behind batch-based admission con-
trol, we discuss the hashing process and the admission control test
in detail. In order to hash a request into a bucket, the sentry must
first estimate theinherent service time of that request. The inherent
service time of a request is the time needed to service the request
on a lightly loaded server (i.e., when the request does not see any
queuing delays). The inherent service time of a requestR is de-
fined to be

Sinherent = Rcpu + α · Rdata (2)

whereRcpu is the total CPU time needed to serviceR, Rdata is
the IO time of the request (which includes the time to fetch data
from disk, the time the request is blocked on a database query, the
network transfer time, etc.), andα is an empirically determined
constant. The inherent service time is then used to hash the request
into an appropriate bucket—the request maps to a bucketi such that
si ≤ Sinherent ≤ si+1.

The specific admission control test for each batch of requests

within a bucket is as follows. Letβ denote the batch size (i.e., the
number of requests) in a bucket. LetQ denote the estimated queu-
ing delay seen by each request in the batch. The queuing delay is
the time the request has to wait at a cataclysm server before it re-
ceives service; the queuing delay is a function of the current load
on the server and its estimation is discussed in Section 3.5. Letη
denote the average number of requests (connections) that are cur-
rently being serviced by a server in the application’s server pool.
Then theβ requests within a batch are admitted if and only if the
sum of the queuing delay seen by a request and its actual service
time does not exceed the contracted SLA. That is,

Q +

„

η +

‰

β

n

ı«

· S ≤ Rsla (3)

whereS is the average inherent service time of a request in the
batch,n is the number of servers allocated to the application, and
Rsla is the desired response time. The term

`

η + d β

n
e
´

· S is an
estimate of theactual service time of thelast request in the batch,
and is determined by scaling the inherent service timeS by the
server load—which is the number of the requests currently in ser-
vice, i.e.,η, plus the number of requests from the batch that might
be assigned to the server i.e,d β

n
e.1 Rather than actually computing

the mean inherent service time of the request in a batch, it is ap-
proximated asS = (si + si+1)/2, where(si, si+1] is the service
time range associated with the bucket.

As indicated above, the admission control is invoked for each
class periodically—once everydi time units for newly arrived re-
quests of classCi. The invocation is more frequent for impor-
tant classes and less frequent for less important classes, that is,
d1 = 0 ≤ d2 ≤ . . . ≤ dL. Since a request may wait in a bucket
for up todi time units before admission control is invoked for its
batch, the above test is modified as

Q +

„

η +

‰

β

n

ı«

· S ≤ Rsla − di (4)

In the event this condition is satisfied, all requests in the batch
are admitted into the system. Otherwise requests in the batch are
dropped.

Observe that introducing these delays into the processing of cer-
tain requestsdoes not cause a degradation in the response time of
the admitted requests because they now undergo a more stringent
admission control test as given by (4). However, these delays would
have the effect of reducing the application’s throughput when it is
not overloaded. Therefore, these delays should be changed dynam-
ically as workloads of various classes change. In particular, they
should tend to 0 when the application has sufficient capacity to han-
dle all the incoming traffic. We discuss in Section 3.4 how these
delay values are dynamically updated. Techniques for estimating
parameters such as the queuing delay, inherent service time, and
the number of existing connections are discussed in Section 3.5.

3.3 Scalable Threshold-based Policing
We now present a second approach to further reduce the policing

overhead. Our technique trades efficiency of the policer for accu-
racy and reduces the overhead to a few arithmetic operations per
request. The key idea behind this technique is to periodicallypre-
compute the fraction of arriving requests that should be admitted in
each class and then simply enforce these limits without conducting

1Note that we have made the assumption of perfect load balancing
in the admission control test (3). One approach for capturing load
imbalances can be to scaleη andn by suitably chosen skew fac-
tors. These skew factors can be based on measurements of the load
imbalance among the replicas of the application.
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any additional per-request tests. Again, incoming requests are first
classified and undergo an inexpensive test to determine if they con-
firm to the leaky buckets for their classes. Confirming requests are
admitted to the application without any further tests. Other requests
undergo a more lightweight admission control test that we describe
next.

Our technique uses estimates of future arrival rates and service
demands in each class to compute athreshold, which is defined to
be a pair (classi, fraction padmit). The threshold indicates that
all requests in classes more important thani should be admitted
(padmit = 1), requests in classi should be admitted with probabil-
ity padmit, and all requests in classes less important thani should
be dropped (padmit = 0). We determine these parameters based
on observations of arrival rates and service times in each classes
over periods of moderate length (we use periods of length 15 sec).
Denoting the arrival rates to classes1, . . . , L by λ1, . . . , λL and
the observed average service times bys1, . . . , sL, the threshold (i,
padmit) is computed such that

j=i
X

j=1

λjsj ≥ 1 −

j=L
X

j=1

λmin
j sj (5)

and

padmit · λisi +

j=i−1
X

j=1

λjsj < 1 −

j=L
X

j=1

λmin
j sj (6)

whereλmin
j denotes the minimum guaranteed rate for classj.

Thus, admission control now merely involves applying the in-
expensive classification function on a new request to determine
its class, determining if it confirms to the leaky bucket for that
class (also a lightweight operation), and then using the equally
lightweight thresholding function (if it does not confirm to the leaky
bucket) to decide if it should be admitted. Observe that this ad-
mission control requires estimates of per-class arrival rates. These
rates are clearly difficult to predict during unexpected overloads.
However, it is possible to react fast by updating our estimates of
the arrival rates frequently. Our implementation of threshold-based
policing estimates arrival rates by computing exponentially smoothed
averages of arrivals over 15 sec periods. We will demonstrate the
efficacy of this policer in an experiment in Section 6.3.

The threshold-based and the batch-based policing strategies need
not be mutually exclusive. The sentry can employ the more ac-
curate batch-based policing so long as the incoming request rate
permits one admission control test per batch. If the incoming rate
increases significantly, the processing demands of the batch-based
policing may saturate the sentry. In such an event, when the load
at the sentry exceeds a threshold, the sentry can trade accuracy
for efficiency by dynamically switching to a threshold-based polic-
ing strategy. This ensures greater scalability and robustness during
overloads. The sentry reverts to the batch-based admission control
when the load decreases and stays below the threshold for a suffi-
ciently long duration. We would like to note that several existing
admission control algorithms such as [8, 11, 24] (discussed in Sec-
tion 7) are based on dynamically set thresholds such as admission
rates and can be implemented as efficiently as our threshold-based
admission control. The novel feature in our approach is the flexi-
bility to trade-off the accuracy of admission control for its compu-
tational overhead depending on the load on the sentry.

3.4 Analysis of the Policer
In this section we show how the sentry can, under certain as-

sumptions, compute the delay values for various classes based on
online observations. The goal is to pick delay values such that the

probability of a newly arrived request being denied service due to
an already admitted less important request is smaller than a desired
threshold.

Consider the following simplified version of the admission con-
trol algorithm presented in Section 3.2: Assume that the application
runs on only one server—it is easy to extend the analysis to the case
of multiple servers. The admission controller lets in a new request
if and only if the total number of requests that have been admit-
ted and are being processed by the application does not exceed a
thresholdN . Assume the application consists ofL request classes
C1, . . . , CL in decreasing order of importance. We make the sim-
plifying assumption of Poisson arrivals with ratesλ1, . . . , λL, and
service times with known CDFsFs1

(.), . . . , FsL
(.) respectively.

As before,d1 = 0. For simplicity of exposition we assume that
the delay for classC2 is d, and∀i > 2, di+1 = ki · di, (ki ≥ 1).
Denote byAi the event that a request of classCi has to be dropped
at the processing instantm · di, (m > 0) and there is at least one
request of a less important classCj , (j > i) still in service. Clearly,

Pr(A1) = 0 andPr(AL) = 0.

We are interested in ensuring

∀i > 1, P r(Ai) < ε, 0 < ε < 1. (7)

Consider1 < i < L. For Ai to occur, all of the following must
hold: (1) Xi: at least one request of classCi arrives during the
period [(m − 1) · di, m · di], (2) Yi: the number of requests in
service at timem · di is N , (3) Zi: at least one of the requests
being serviced belongs to one of the classesCi+1, . . . , CL. We
have,

Pr(Ai) = Pr(Xi ∧ Yi ∧ Zi)

During overloads, we can assume that the number of requests
in service would beN with a high probabilitypdrop. The policer
will record pdrop over short periods of time. Also,Xi andZi are
independent. This lets us have

Pr(Ai) ≈ Pr(Xi) · pdrop · Pr(Zi) (8)

Pr(Xi) = 1 − e−λi·di (9)

Denote byZj
i , (i < j ≤ L) the event that at least one of the

requests being serviced at timem·di belongs to the classj. Clearly,

Pr(Zi) =

j=L
X

j=i+1

Pr(Zj
i ) (10)

Let us now focus on the termPr(Zj
i ). The eventZj

i is the dis-
junction of the following events, one for eachl, (l > 0): P l

j : at
least one request of classj arrives during the period[m · di − (l +
1) · dj , m · di − l · dj ] and Ql

j : at least one request of classj is
admitted at the processing instantm ·di− l ·dj and Rl

j : the service
time of at least one admitted request is long enough so that it is still
in service at timem · di. As in Equation (9),

Pr(P l
j ) = 1 − e−λj ·dj (11)

ConsiderRl
j . During an overload each admitted request com-

petes at the server with (N -1) other requests during most of its life-
time. A fair approximation then is to assume that a request takesN
times its service time to finish. Therefore, we have,

Pr(Rl
j) = 1 − Fsj

„

l · dj

N

«

(12)

We approximateQl
j using the following reasoning. During over-

loads, a request of classCj will be admitted at processing instant
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t only if the number of requests in service at timet is less thanN
(the probability of this is approximated as(1 − pdrop)) and no re-
quest of a more important classCh arrived during[t − dh, t]. That
is,

Pr(Ql
j) ≈ (1 − pdrop)

h=j−1
Y

h=1

e−λhdh (13)

Combining Equations (8)-(13), we get the following approxima-
tion. Pr(Ai),

Pr(Ai) ≈ pdrop(1 − pdrop)(1 − e−λidi)·
Pj=L

j=i+1
(1 − e−λjdj )

Qh=j−1

h=1
e−λhdh

P

∞

l=1

“

1 − Fsj

“

ldj

N
)
””

The above approximation ofPr(Ai) provides a procedure for
iteratively computing thedi values using numerical methods. We
pick delay values that make the term on the right hand side smaller
than the desired boundε for all i. This in turn guarantees that the
inequalities in (7) are satisfied.

3.5 Online Parameter Estimation
The batch-based and threshold-based policing algorithms require

estimates of a number of system parameters. These parameters
are estimated using online measurements. The nuclei running on
the cataclysm servers and sentries collectively gather and maintain
various statistics needed by the policer. The following statistics are
maintained:

• Arrival rate λi: Since each request is mapped onto a class at
the sentry, it is trivial to use this information to measure the
incoming arrival rates in each class.

• Queuing delay Q: The queuing delay incurred by a request
is measured at the cataclysm server. The queuing delay is
estimated as the difference between the time the request ar-
rives at the server and the time it is accepted by the HTTP
server for service (we assume that the delay incurred at the
sentry is negligible). The nuclei can measure these values
by appropriately instrumenting the operating system kernel.
The nuclei periodically report the observed queuing delays
to the sentry, which then computes the mean delays across
all servers in the application’s pool.

• Number of requests in service η: This parameter is measured
at the cataclysm server. The nuclei track the number of ac-
tive connections serviced by the application and periodically
report the measured values to the sentry. The sentry then
computes the mean of the reported values across all servers
for the application.

• Request service time s: This parameter is also measured at
the server. The actual service time of a request is measured
as the difference between the arrival time at the server and
the time at which the last byte of the response is sent. The
measurement of the inherent service time is more complex.
Doing so requires instrumentation of the OS kernel and some
instrumentation of the application itself. This instrumenta-
tion enables the nucleus to compute the CPU processing time
for a request as well as the duration for which the requested
is blocked on I/O. Together, these values determine the in-
herent service time (see Equation 2).

• Constantα: The constantα in Equation 2 is measured using
offline measurements on the cataclysm servers. We execute

several requests with different CPU demands and different-
sized responses under light load conditions and measure their
execution times. We also compute the CPU demands and the
I/O times as indicated above. The constantα is then esti-
mated as the value that minimizes the difference between the
actual execution time and the inherent service time in Eq. 2.

The sentry uses past statistics to estimate the inherent service
time of an incoming request in order to map it onto a bucket. To do
so, the sentry uses a hash table for maintaining the usage statistics
for the requests it has admitted so far. Each entry in this table con-
sists of the requested URL (which is used to compute the index of
the entry in the table) and a vector of the resource usages for this re-
quest as reported by the various servers. Requests for static content
possess the same URL every time and so always map to the same
entry in the hash table. The URL for requests for dynamic content,
on the other hand, may change (e.g., the arguments to a script may
be specified as part of the URL). For such requests, we get rid of the
arguments and hash based on the name of the script invoked. The
resource usages for requests that invoke these scripts may change
depending on the arguments. We maintain exponentially decayed
averages of their usages.

4. PROVISIONING FOR CATACLYSMS
Policing mechanisms may turn away a significant fraction of the

requests during overloads. In such a scenario, an increase in the ef-
fective application capacity is necessary to reduce the request drop
rate. The cataclysm control plane implements dynamic provision-
ing to vary the number of allocated servers based on application
workloads. The application’s server pool is increased during over-
loads by allocating servers from the free pool or by reassigning
under-used servers from other applications. The control plane can
also dynamically provision sentry servers when the incoming re-
quest rate imposes significant processing demands on the existing
sentries. The rest of this section discusses techniques for dynami-
cally provisioning cataclysm servers and sentries.

4.1 Model-based Provisioning for Applications
We use queuing theory to model the revenue obtained from as-

signing a certain number of servers to a replicable application under
a given workload. Our model does not make any assumptions about
the nature of the request arrival processes or the service times. Our
abstraction of a single replica of a service is a G/G/1 queuing sys-
tem for which the following bound is known [13]:

λ ≥

»

E[S] +
σ2

a + σ2
b

2 · (E[R] − E[S])

–

−1

(14)

HereE[R] is the average response time,E[S] is the average service
time, λ is the request arrival rate,ρ = λ · E[S] is the utilization,
andσ2

a andσ2
b are the variance of inter-arrival time and the vari-

ance of service time respectively. It should be pointed out that a
number of similar models for simple, replicable applications have
been proposed in recent work ([7, 19, 22]) and any of these could
potentially be used by our provisioning algorithm. The compar-
ison of our model with these other models is not relevant to our
current discussion of overload management and therefore beyond
the scope of this work. Modeling of more complex, multi-tiered
Internet applications is part of our ongoing research.

Inequality (14) is used by the provisioning mechanism to deter-
mine the number of servers needed by an application to sustain a
given request arrival rate. The dynamic provisioning mechanism
normally operates in apredictive fashion. It is invoked periodically
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(once every 30 minutes in our prototype) and uses the workload ob-
servations in the past to predict future request arrival rates. It then
determines a partition of servers among the applications that would
maximize the expected revenue during the next period. Since the
focus of this paper is on scalable admission control, we omit the
details of our workload prediction and server allocation algorithms
here [20].

Since overloads are often unanticipated, a sentry of an over-
loaded application can dynamically invoke the provisioning mech-
anism whenever the request drop rate exceeds a certain pre-defined
value. In such a scenario, the provisioning mechanism operates in
a reactive mode to counter the overload. The mechanism moni-
tors deviations in the actual workload from the predicted workload
and uses these to detect overloaded applications. It allocates addi-
tional servers to the overloaded applications—these servers may be
from the free server pool or underutilized servers from other appli-
cations. Undesirable oscillations in such allocations are prevented
using two constraints: (i) a limit of∆ is imposed on the number
of servers that can be allocated to an application in a single step
in the reactive mode and (ii) a delay ofδ time units is imposed on
the duration between two successive invocations of the provision-
ing mechanism in the reactive mode (δ is set to 5 minutes in our
prototype). Recall that our SLA permits degraded response time
targets for higher arrival rates. The provisioning mechanism may
degrade the response time to the extent permitted by the SLA, add
more capacity, or a bit of both. The optimization drives these de-
cisions, and the resulting target response times are conveyed to the
request policers. Thus, these interactions enable coupling of polic-
ing, provisioning, and adaptive performance degradation.

4.2 Sentry Provisioning
In general, allocation and deallocation of sentries is significantly

less frequent than that of cataclysm servers. Further, the number of
sentries needed by an application is much smaller than the number
of servers running it. Consequently, a simple provisioning scheme
suffices for dynamically varying the number of sentries assigned to
an application. Our scheme uses the CPU utilization of the existing
sentry servers as the basis for allocating additional sentries (or deal-
locating active sentries). If the utilization of a sentry stays in excess
of a pre-defined thresholdhighcpu for a certain period of time, it
requests the control plane for an additional sentry server. Upon re-
ceiving such requests from one or more sentries of an application,
the control plane assigns each an additional sentry. Similarly, if
the utilization of a sentry stays below a thresholdlowcpu, it is re-
turned to the free pool while ensuring that the application has at
least one sentry remaining. Whenever the control plane assigns (or
removes) a sentry server to an application, it repartitions the appli-
cation’s servers pool equally among the various sentries. The DNS
entry for the application is also updated upon each allocation or
deallocation; a round-robin DNS scheme is used to loosely parti-
tion incoming requests among sentries. Since each sentry manages
a mutually exclusive pool of servers, it can independently perform
admission control and load balancing on arriving requests; the SLA
is collectively maintained by virtue of maintaining it at each sentry.

5. IMPLEMENTATION CONSIDERATIONS
We implemented a prototype Cataclysm hosting platform on a

cluster of 20 Pentium machines connected via a 1Gbps ethernet
switch and running Linux 2.4.20. Each machine in the cluster runs
one of the following entities: (1) an application replica, (2) a cat-
aclysm sentry, (3) the cataclysm provisioning, and (4) a workload
generator for an application. We discuss implementation of the
Cataclysm sentry and provisioning.

Cataclysm Sentry: We usedKernel TCP Virtual Server (ktcpvs)
version 0.0.14 [14] to implement the policing mechanisms described
in Section 3.ktcpvs is an open-source, Layer-7 load balancer im-
plemented as a Linux module. It accepts TCP connections from
clients, opens separate connections with servers (one for each client)
and transparently relays data between these. We modifiedktcpvs to
implement all the sentry mechanisms described in Sections 3 and
4. The details of our implementation can be found in [20].

Cataclysm Provisioning: Cataclysm provisioning was imple-
mented as a user-space daemon running on a dedicated machine.
At startup, it reads information needed to communicate with the
sentries and information about the servers in the cluster from a
configuration file. The sentries gather and report various statistics
needed by the provisioning algorithm periodically. The provision-
ing algorithm can be invoked in the reactive or predictive modes
as discussed in Section 4. After determining a partitioning of the
cluster’s servers among the hosted applications, the provisioning
daemon uses scripts to remotely log on to the nodes running the
sentries to enforce the partitioning.

6. EXPERIMENTAL EVALUATION
In this section we present the experimental setup followed by the

results of our experimental evaluation.

6.1 Experimental Setup
The cataclysm sentries were run on dual-processor 1GHz ma-

chines with 1GB RAM. The cataclysm control plane (responsi-
ble for provisioning) was run on a dual-processor 450MHz ma-
chine with 1GB RAM. The machines used as cataclysm servers
had 2.8GHz processors and 512MB RAM. Finally, the workload
generators were run on machines with processor speeds varying
from 450MHz to 1GHz and with RAM sizes in the range 128MB-
512MB. All machines ran Linux 2.4.20. In our experiments we
constructed replicable applications using theApache 1.3.28 Web
server with PHP support enabled. The file set serviced by these
Web servers comprised files of size varying from 1kB to 256kB to
represent the range from small text files to large image files. In
addition, the Web servers host PHP scripts with different compu-
tational overheads. The dynamic component of our workload con-
sist of requests for these scripts. In all the experiments, the SLA
presented in Figure 1 was used for the applications. Application
requests are generated usinghttperf [16], an open-source Web
workload generator.

6.2 Revenue Maximization and Class-based
Differentiation

Our first experiment investigates the efficacy of the mechanisms
employed by the cataclysm sentry for revenue maximization and
to provide class-based differentiation to requests during overloads.
The cataclysm provisioning was kept turned off in this experiment.
We constructed a replicated Web server consisting of three Apache
servers. This application supported three classes of requests—Gold,
Silver and Bronze in decreasing order of revenue. The class of a re-
quest could be uniquely determined from its URL. The delay values
for the three classes were fixed at 0, 50, and 100 msec, respectively.
The minimum sustainable requests rates desired by all three classes
were chosen to be 0.

The workload consisted of requests for a set of PHP scripts. The
capacity of each Apache server for this workload (i.e., the request
arrival rate for which the95th percentile response time of the re-
quests was below the response time target) was determined offline
and was found to be nearly 60 requests/sec. Figure 3(a) shows
the workload used in this experiment. Nearly all the requests ar-
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Figure 3: Demonstration of the working of the admission con-
trol during an overload.

riving till t=130 sec were admitted by the sentry. Between t=130
sec and t=195 sec, the Bronze requests were dropped almost ex-
clusively. At t=195 sec the arrival rate of Silver requests shot up
and reached nearly 120 requests/sec. The admission rate of Bronze
requests dropped to almost zero to admit as many Silver requests
as possible. At t=210 sec, the arrival rate of Gold requests shot
up to 200 requests/sec. The sentry totally suppressed all arriving
Bronze and Silver requests now and let in only Gold requests as
long as the increased arrival rate of Gold requests persisted. Fig-
ure 3(c) is an alternate representation of the system behavior in this
experiment and depicts the variation of the fraction of requests of
the three classes that were admitted. Figure 3(d) depicts the perfor-
mance of admitted requests. We find that the sentry is successful in
maintaining the response time below 1000 ms.

6.3 Scalable Admission Control
We measured the CPU utilization at the sentry server for differ-

ent request arrival rates for both the batch-based and the threshold-
based admission control. Figure 4 shows our observations of CPU
utilization with 95% confidence intervals. Since we were inter-
ested only in the overheads of the admission control and not in
the data copying overheads inherent in the design of thektcpvs
switch, we forced the sentry to drop all requests after conducting
the admission control test. We increased the request arrival rates
till the CPU at the sentry server became saturated (nearly 90% uti-
lization). We observe more than a four-fold improvement in the
sentry’s scalability—whereas the sentry CPU saturated at 4000 re-
quests/sec with the batch-based admission control, it was able to
handle almost 19000 requests/sec with the threshold-based admis-
sion control.

A second experiment was conducted to investigate the degrada-
tion in the decision making due to the threshold-based admission
controller. We repeated the experiment reported in Section 6.2 (Fig-
ure 3) but forced the sentry to employ the threshold-based admis-
sion controller. The thresholds used by the admission control were
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Figure 5: Performance of the threshold-based admission con-
trol. At t=135 sec, the threshold was set to reject all Bronze
requests; at t=180 sec, it was updated to reject all Bronze and
Silver requests; at t=210 sec it was updated to also reject Gold
requests with a probability 0.5; finally, at t=390 sec, it was again
set to reject only Bronze requests.

computed once every 15 sec. Figure 5(a) shows changes in the ad-
mission rates for requests of the three classes. The impact of the
inaccuracies inherent in the threshold-based admission controller
resulted in degraded performance during periods when the thresh-
old chosen was incorrect. We observe two such periods (120-135
sec during which all Bronze requests were dropped and 190-210
sec during which all Bronze and Silver requests were dropped while
Gold requests were admitted with probability of 0.5) during which
the95th percentile of the response time deteriorated compared to
the target of 1000 msec. The response times during the rest of the
experiment were kept under control due to the threshold getting
updated to a strict enough value.

6.4 Sentry Provisioning
We conducted an experiment to demonstrate the ability of the

system to dynamically provision additional sentries to a heavily
overloaded service. Figure 6 shows the outcome of our experi-
ment. The workload consisted of requests for small static files sent
to the sentry starting at 4000 requests/sec and increasing by 4000
requests/sec every minute and is shown in Figure 6(a). If the CPU
utilization of the sentry server remained above 80% for more than
30 sec, a request was issued to the control plane for an additional
sentry. Figure 6(b) shows the variation of the CPU utilization at
the first sentry. At t=210 sec, a second sentry was added to the
service. Subsequent requests were distributed equally between the
two sentries causing the arrival rate and the CPU utilization at the
first sentry to drop. A third sentry was added at t=420 sec, when
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Figure 6: Dynamic provisioning of sentries. [S=n] means the
number of sentries is n now.

the total arrival rate to the service had reached 32000 requests/sec
overwhelming both the existing sentries.

6.5 Cataclysm Provisioning
We conducted an experiment with two Web applications hosted

on our Cataclysm platform. The total number of cataclysm servers
available in this experiment was11. The SLAs for both the ap-
plications were identical and are described in Figure 1. Further,
the SLAs imposed a lower bound of3 on the number of servers
that each application could be assigned. The default provisioning
duration used by the control plane was30 min.

The workloads for the two applications consisted of requests for
an assortment of PHP scripts and files in the size range1kB-128kB.
Requests were sent at a sustainable base rate to the two applica-
tions throughout the experiment. Overloads were created by send-
ing increased number of requests for a small subset of the scripts
and static files (to simulate a subset of the content becoming pop-
ular). The experiment began with the two applications running on
3 servers each. Sentries invoked the provisioning algorithm when
more than50% of the requests were dropped over a5 min interval.
Figures 7(a) and 7(c) depict the arrival rates to the two applica-
tions. The arrival rate for Application 1 was made to increase in a
step-like fashion starting from100 requests/sec, doubling roughly
once every5 min till it reached a peak value of1600 requests/sec.
At this point Application 1 was heavily overloaded with the arrival
rate several times higher than system capacity (which was roughly
60 request/sec per server assigned to the service as determined by
offline measurements). At t=910 sec the sentry, having observed
more than50% of the request being dropped, triggered the pro-
visioning algorithm as described in Section 4. The provisioning
algorithm responded by pulling one server from the free pool and
adding it to Application 1. At t=1210 sec, another server was added
to Application 1 from the free pool. Observe in Figure 7(a) the
increases in the admission rates corresponding to these additional
servers being made available to Application 1. The next interest-
ing event was the default invocation of provisioning at t=1800 sec.
The provisioning algorithm added all the3 servers remaining in
the free pool to the heavily overloaded Application 1. Also, based
on recent observation of arrival rates, it predicted an arrival rate
in the range1000-10000 requests/sec anddegraded the response
time target for Application 1 to 2000 msec based on its QoS table
(see Figure 1). In the latter part of the experiment, the overload
of Application 1 subsided and Application 2 got overloaded. The
functioning of the provisioning was qualitatively similar to when
Service 1 was overloaded. Figures 7(b) and 7(d) show the95th

percentile response times for the two services during the experi-
ment. The control plane was able to predict changes to arrival rates
and degrade the response time target according to the SLA result-
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Figure 7: Dynamic provisioning and admission control: Per-
formance of Applications 1 and 2. D: Default invocation of pro-
visioning, T: Provisioning triggered by excessive drops, [N=n]:
size of the server set is n now. Only selected provisioning events
are shown.

ing in an increased number of requests being admitted. Moreover,
the sentries were able to keep the admission rates well below sys-
tem capacity to achieve response times within the appropriate target
with only sporadic violations (which were on fewer than4% of the
occasions).

7. RELATED WORK
Previous work on overload control in Internet platforms spans

several areas. We briefly review prior work that is most relevant
to the Cataclysm platform and refer the reader to [20] for a more
extensive survey.

Admission Control for Internet Services: Voigt et al. [23]
present kernel-based admission control mechanisms to protect Web
servers against overloads—SYN policing controls the rate and burst
at which new connections are accepted,prioritized listen queue re-
orders the listen queue based on pre-defined connection priorities,
HTTP header-based control enables rate policing based on URL
names. Welsh and Culler [24] propose an overload management
solution for Internet services built using the SEDA architecture. A
salient feature of their solution is feedback-based admission con-
trollers embedded into individualstages of the service. A model of
a Web server for the purpose of performance control using classi-
cal feedback control theory was studied in [2]; an implementation
and evaluation using the Apache Web server was also presented in
the work. In [12], Kanodia and Knightly utilize a modeling tech-
nique calledservice envelops to devise an admission control for
Web services that attempts to provide different response time tar-
gets for multiple classes of requests. Li and Jamin [15] present
a measurement-based admission control to distribute bandwidth
across clients of unequal requirement. In [8], the authors present
an admission control solution for multi-tier e-commerce sites that
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externally observes execution costs of requests, distinguishing dif-
ferent requests types. Kamra et al. present a control theoretic ap-
proach for admission control in [11]. Abdelzaher and Bhatti [1]
propose to deal with server overloads by adapting delivered con-
tent to load conditions. This is a different kind of QoS degradation
than what we have proposed in our work, but it can be integrated
into a Cataclysm platform by defining appropriate SLAs based on
it.

In this work, we focus on the scalability of the policing mecha-
nism — an important issue during overloads — as opposed to prior
work that mostly focused on the mechanics of the policing. Further,
unlike prior work, our work has considered the trade-off between
accuracy and efficiency of policing to scale to large request rates,
as well as techniques to provision sentries.

Dynamic Provisioning in Clusters: The notion of an overflow
server pool to handle unexpected surges in workload was proposed
by Fox et al. [9]. Several efforts have addressed the problem of pro-
visioning resources at the granularity of individual servers [3, 19].
Chase et al. [4] present the Muse architecture for resource manage-
ment in a hosting center. Muse employs an economic model for dy-
namic provisioning of resources to multiple applications. Cluster-
on-demand provides mechanisms for constructing hierarchical vir-
tual clusters in an on-demand fashion [5]. Doyle et al. [7] present a
model-based utility resource management focusing on coordinated
management of memory and storage. They develop an analytical
model for a Web service with static content. Ranjan et al. [18]
make a case for multiple data centers hosting replicas of an appli-
cation. In case of one data center becoming overloaded, requests
may be diverted over a WAN to others. Our focus in this work was
on overload management within a single data center.

In this paper we showed the utility of coupling policing and
provisioning, in contrast to prior approaches that considered these
techniques in isolation.

8. CONCLUSIONS
In this paper we presentedCataclysm, a comprehensive approach

for handling extreme overloads in a hosting platform running mul-
tiple Internet services. The primary contribution of our work was
to develop a low overhead, highly scalable admission control tech-
nique for Internet applications. Cataclysm provides several desir-
able features, such as guarantees on response time by conduct-
ing accurate size-based admission control, revenue maximization
at multiple time-scales via preferential admission of important re-
quests and dynamic capacity provisioning, and the ability to be op-
erational even under extreme overloads. The cataclysm sentry can
transparently trade-off the accuracy of its decision making with the
intensity of the workload allowing it to handle incoming rates of up
to 19000 requests/second. We implemented a prototype Cataclysm
hosting platform on a Linux cluster and demonstrated its benefits
using a variety of workloads.

As part of future work, we plan to extend our overload man-
agement techniques to complex, multi-tiered Internet applications
servicing session-oriented workloads.
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