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ABSTRACT
Design of high performance Web servers has become a recent
research thrust to meet the increasing demand of network-
based services. In this paper, we propose a new Web server
architecture, called multi-threaded PIPELINED Web server,
suitable for Symmetric Multi-Processor (SMP) or System-
on-Chip (SoC) architectures. The proposed PIPELINED
model consists of multiple thread pools, where each thread
pool consists of five basic threads and two helper threads.
The main advantages of the proposed model are global in-
formation sharing by the threads, minimal synchronization
overhead due to less number of threads, and non-blocking
I/O operations, possible with the helper threads.

We have conducted an in-depth performance analysis of
the proposed server model along with four prior Web server
models (Multi-Process (MP), Multi-Thread (MT), Single-
Process Event-Driven (SPED) and Asynchronous Multi-Pro-
cess Event-Driven (AMPED)) via simulation using six Web
server workloads. The experiments are conducted to inves-
tigate the impact of various factors such as the memory size,
disk speed and numbers of clients. The simulation results
indicate that the proposed PIPELINED Web server archi-
tecture shows the best performance across all system and
workload parameters compared to the MP, MT, SPED and
AMPED models. Although the MT and AMPED models
show competitive performance with less number of proces-
sors, the advantage of the PIPELINED model becomes ob-
vious as the number of processors or clients in an SMP/SoC
machine increases. The MP model shows the worst perfor-
mance in most of the cases. The results indicate that the
proposed server architecture can be used in future large-scale
SMP/SoC machines to boost system performance.
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1. INTRODUCTION
Improving the performance of Web servers has become

a critical issue to cope with the increasing use of network-
based services. The critical nature of many online trans-
actions and distributed service, provided through SOAP,
mandates design of high performance Web servers since such
servers are anticipated to be the bottleneck in hosting network-
based services [20]. Three techniques have been proposed
and adopted to improve the performance of a Web server[8];
(i) software scale-up, (ii) hardware scale-up and (iii) cluster-
based scale-up.

Several software and hardware scale-up techniques have
been proposed to enhance the performance of single node
servers. Typically, a software based approach attempts to
improve a Web server’s cache hit ratio, and thus, minimize
the disk access latency in satisfying user requests. It has
been observed that by employing a larger data cache [12,
6, 8] and suitable cache replacement techniques [7], server
throughput can be significantly improved. On the other
hand, a hardware scale-up provides additional computing
facility by adding more processor and memory to a single
system. Finally, the cluster-based solution is aimed at pro-
viding a cost-effective solution by utilizing a cluster of ho-
mogeneous or heterogeneous nodes under a single domain
name. Commercial servers like Google and e-Bay have used
this technique quite effectively [3].

Although cluster-based Web servers seem a viable solution
from performance, scalability and economic standpoints, this
is certainly not the only choice, and any application spe-
cific design should exploit the novelty of the state-of-the-
art architectural trend. The motivation of this paper relies
on this context, and attempts to see how the server design
can benefit from the architectural innovations. Towards this
goal, we focus on two types of high performance architec-
tures that can be used in designing Web servers; Symmetric
Multi-Processors (SMPs) and System-on-Chip (SoC) archi-
tectures.

Recently, a Dual-Core CPU [15] is released by Intel and
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AMD to target the high-performance server market. Four
and Eight core SMPs are expected to be released soon. In
addition, with the advent in deep sub-micron technology,
SoC architectures have become a reality, and by the end
of the decade, SoCs with billions of transistors are likely
to dominate the high performance computing landscape [5,
10, 4]. With technology scaling down to 35nm, it would
be possible to fabricate SoCs with up to 32/64 processors.
Hence, we expect that many Web servers will be employed
on a SoC system to provide high-performance throughputs.

To our knowledge, there is little research on designing
SMP/SoC-based Web servers. PalChaudhuri et al. [14]
conducted a performance comparison of Web server archi-
tectures for SMP systems. They proposed a coordinated
AMPED (Co-AMPED) model with multiple AMPED pro-
cesses. The experiments on a 4-way SMP machine revealed
that multiple AMPED servers suffered from scalable per-
formance. This study, in our opinion, provides a limited
view since it does not conduct an in-depth analysis of ex-
isting Web server models to understand the limitations, so
that an efficient server model can be used in the SMP envi-
ronment. Furthermore, there is no study that examines the
performance and scalability implications in the SoC domain.

To understand the performance implications of current
server architectures, we first analyze the memory usage of
four server architectures; Multi-Process (MP) [18], Multi-
Thread (MT) [18], Single-Process Event-Driven (SPED) [21]
and Asynchronous Multi-Process Event-Driven (AMPED)
[13]. This is done through measuring the memory require-
ments of Flash (AMPED model) [13] and Apache [18] Web
servers on a Sun solaris machine. This analysis is then ex-
tended to three other architectures (MP, MT and SPED).
The data cache and cache overhead analysis of the four mod-
els in an SMP/SoC environment reveals that the MT server
model is ideal in providing a large data cache per server
to enhance throughput. However, the synchronization over-
head of this model can be significant with a large number of
threads. Thus, an MT model with small number of threads
should provide high throughput in SMP/SoC-based servers.

Based on this rationale, we propose a new Web server ar-
chitecture, called a multi-threaded PIPELINED Web server,
for SMP or SoC systems in this paper. A PIPELINED Web
server consists of multiple pipelined thread pools, each of
which is composed of 5 basic threads and 2 helper threads.
The main advantage of the proposed model is that a thread
can share the global information (i.e. data cache, path trans-
lation structure, etc.) with other threads. Thus, like the
MT model, it needs relatively small memory to maintain
the global information. However, unlike the MT model, it
can alleviate the synchronization overhead by limiting the
total number of threads to 7 × N , where N is the num-
ber of processors. In addition, by utilizing separate helper
threads, the main 5 threads do not block for I/O operations,
and thus, it helps in boosting performance.

We have developed a detailed simulator to analyze the
performance of four prior server models and the proposed
model. We have conducted exhaustive performance analysis
by varying several parameters such as the number of proces-
sors in the SMP/SoC system, memory size, and number of
clients with six Web server traces; Penn State CSE [17], UC
Berkeley [11], Penn State [16], Clarknet [2], WorldCup98 [1]
and NASA [2] workloads.

The main conclusions of this paper are the following: First,

our proposed PIPELINED Web server architecture shows
the best performance across various environments and work-
loads compared to the MP, MT, SPED and AMPED models.
The MP model is the worst performance due to available
small data cache size per process. Second, the AMPED
and SPED Web servers suffer from decreasing data cache
size with more number of processors in an SMP/SoC ma-
chine due to little sharing of global information. Third,
the MT model can provide competitive throughput as the
PIPELINED model with smaller system configurations, and
less number of clients. However, as the number of processors
as well as the number of clients increases, the PIPELINED
model becomes a clear winner. All these results indicate
that the PIPELINED server model is a viable candidate for
deploying server architectures in SMP/SoC machines.

The rest of this paper is organized as follows: In Section
2, we provide a summary of all prior Web server architec-
tures. Section 3 analyzes the memory requirements of Web
server models. The multi-threaded PIPELINED Web server
architecture is presented in Section 4. Section 5 narrates the
simulator design and workload used for performance anal-
ysis. The performance results are analyzed in Section 6,
followed by the concluding remarks in the last Section.

2. WEB SERVER ARCHITECTURES
Generally, an HTTP server consists of six request pro-

cessing steps. The first step is the accept client connection,
which accepts an incoming connection from a client based
on the socket operations. Second, the read request opera-
tion reads and parses an HTTP request from the client’s
connection. Third, the find file operation checks whether
the requested file exists in the file system, and the client has
appropriate permissions. Fourth, the send response header
step sends an HTTP response header to the client through
a socket connection. Next, the read file operation reads the
requested data from the file system or from the memory
cache. Finally, the send data step transmits the requested
content to the client. Especially, for larger files, the read file
and send data steps are repeated (shown by the self loop in
Figure 1) until all of the requested contents are transmitted
[13].

Four HTTP server architectures have been proposed in
the literature as shown in Figure 1. The Multi-Process (MP)
model, as shown in Figure 1 (a), has a process pool and each
process is assigned to execute the basic steps associated with
servicing a request. Since multiple processes are employed,
many HTTP requests can be served concurrently. However,
the disadvantage of this model is the difficulty to share any
global information (e.g.: shared cache information) among
the processes, since each process has its own private address.
An MP-based Web server needs more memory to maintain
the same cache size per process compared to other server
models. Thus, the overall performance of this model is ex-
pected to be lower than that of other models [12, 6].

The Multi-Thread (MT) model, in the other hand, con-
sists of multiple kernel threads with a single shared address
space. In Figure 1 (b), each thread takes care of a client’s
request and performs the request processing steps indepen-
dently. The advantage of this model is that the threads can
share any global information. Especially, the data cache is
shared among all threads. However, not all Operating Sys-
tems (OSs) support kernel threads, and sharing the data
cache information among many threads may lead to high
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Figure 1: Web Server Architectures

synchronization overhead. The widely used Apache Web
server was originally designed as an MP model. Later, it
is enhanced to support both MP and MT models, since the
MT model tends to yield better performance than the MP
model [18].

Next, Figure 1 (c) shows a Single-Process Event-Driven
(SPED) Web server architecture that uses non-blocking I/O
operations. SPED can avoid context-switching and synchro-
nization overheads among threads or processes, because it is
a single Web server process. This model is implemented by
the Zeus Technology [21]. However, the non-blocking I/O
operations in this model are actually blocked [13] when it
performs disk-related operations due to the limitations of
current OSs. This is the reason why SPED doesn’t show
better results than the MT model for disk-bound workload
[13].

The last architecture is the Asynchronous Multi-Process
Event-Driven (AMPED) model [13], which has been pro-
posed to alleviate the weakness of the SPED model. Figure
1 (d) depicts the AMPED server architecture, which consists
of one main Web server process and multiple helper pro-
cesses to mainly handle I/O operations. As this model has
multiple helper processes to serve disk-oriented requests, the
main Web server process only serves cache-hit requests. If
there is a cache miss, the main process forwards the request
to a helper process, and then, the helper process fetches
the data from the disk and sends it back to the main pro-
cess by Inter-Process Communication (IPC). Especially, us-
ing the mmap operation in the AMPED model, additional
data copying between a Web server and the helper processes
can be removed.

All these server models were originally proposed for single
CPU systems. The scalability of these server architectures
has not been examined for SMP/SoC systems.

3. MEMORY ANALYSIS
In this section, we analyze the memory requirements for

the four Web server models on an SMP or SoC machine.
We define three terms to conduct the memory analysis.

First, we use system memory as the maximum available
main memory for a Web server, although normally system
memory is referred as the main memory. For example, if
the size of main memory is 100MBytes and an OS uses
10MBytes, then the system memory is 90MBytes. Next,
the available memory space for caching the Web contents
is called the data cache. Finally, we refer to all additional
memory spaces as cache overhead which is equal to sys-

tem memory - data cache. This includes memory overhead
for the Web server to maintain the data cache (e.g. name,
size, and path translation of cached contents).

3.1 Memory Usage in Flash Web servers
First, to show the scalability problem of the AMPED

model, we measure the total memory usage of a Flash Web
server by varying the number of servers in a single node.
The total memory usage (i.e. system memory) is the sum of
the cache overhead and data cache in a Web server. The
cache overhead of a Flash Web server consists of several
terms. First, the major component of the cache overhead is
the space required for maintaining the information of cached
files, and it is 850Bytes per file. If we assume that the av-
erage Web file size is 15KBytes [13] and the data cache is
100MBytes, the maximum number of the cached web files is
approximately 6800. Then, the cache overhead to maintain
100MBytes of data cache is approximately 5MBytes. Sec-
ond, since the maximum number of path translation entries
in a Flash Web server is 6000 and the average size of a path
translation entry is about 125Bytes, path translation con-
sumes around 0.7MBytes. Third, two helper processes in
a Flash Web server, read and path translation helpers, con-
sume additional 3MBytes [13]. Thus, besides the data cache,
a Flash Web server needs an additional 8.7MBytes to main-
tain the 100MBytes data cache in the main memory. While
this cache overhead seems small for a single AMPED server
process, it increases linearly with the number of servers.
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Figure 2: Memory Usage of the Flash Web servers
(AMPED Model)

Figure 2 shows the memory usage as a function of the
number of AMPED-based Flash Web servers in a single
node. To examine the cache overhead, we fix the data cache
size to 100MBytes and 200MBytes and increase the num-
ber of servers from 1 to 8 in a node. We measured the
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memory usage using the system monitoring tool in a sin-
gle CPU Sun Solaris machine. In Figure 2 (a), for a sin-
gle Web server, the cache overhead is only around 5MBytes
for 100MBytes of data cache. However, when the num-
ber of Web servers is eight, the cache overhead becomes
120MBytes, which is even larger than the data cache size.
Figure 2 (b) shows that when the number of the Web servers
is eight, the cache overhead becomes almost 200MBytes with
200MBytes of data cache. This high overhead is attributed
to the fact that processes cannot share the global informa-
tion. The reason why the cache overhead in Figure 2 (b) is
larger than in Figure 2 (a) is that a Web server has more
cached files in the data cache due to a larger data cache size.

This experiment clearly shows that the cache overhead in
Flash Web servers is a major bottleneck.

3.2 Memory Usage in Other Web Server
Architectures

Based on the previous memory usage results of the Flash
Web server, we analyze the cache overhead in other Web
server architectures.

In an MP model, each node has typically 16 to 32 pro-
cesses, and each process should have its own data cache.
Thus, the data cache size per process reduces accordingly. In
addition, each server process needs space for the cache over-
head to maintain the data cache.

Since threads in an MT model can share the global cache
information, the memory requirement should not change sig-
nificantly with an increase in the number of threads. To ver-
ify this, we increased the number of threads in an Apache
Web server [18] from 25 to 50, and measured the memory
usage. Each thread consumed about 25KBytes in the MT
model configuration. In addition, we ran a simple multi-
threaded barrier program and varied the number of threads
from 10 to 1000. We measured the memory usage as we
increased the number of threads. We observed that the ad-
ditional memory requirement is only 10KBytes per thread.

However, the problem with the MT model is the syn-
chronization overhead among threads. When the number
of threads increases, the synchronization overhead becomes
non-negligible. This overhead can be a major bottleneck
in a large-scale SMP or SoC node. Since usually the num-
ber of threads per CPU is 32 or 64 and these types of ma-
chines can have 16 to 64 Processing Elements (PEs), the
total number of threads, T, can be in hundreds or thou-
sands. These threads compete to access the cached contents
and path translation information, which needs to be syn-
chronized.

Since the SPED Web server architecture is basically sim-
ilar to the AMPED model, both the models have similar
cache overhead. The main difference between the two mod-
els is the helper processes in the AMPED model. Due to
the memory requirements of the two helper processes, the
AMPED model needs additional 3MBytes compared to the
SPED model.

3.3 cacheoverhead in Web Server
Architectures

Now, we calculate the cache overhead of prior four server
models in an SMP or SoC system. Here, we assume that all
Web servers have the same cache structure.

Assuming 16 or 32 server processes per CPU in an MP
model, the total number of the processes, P, could be very

high in an SMP or SoC system. In the SPED and AMPED
models, one Web server process usually runs in one node,
while Zeus [21] recommends to launch two server processes
for better performance. In an SMP or SoC machine, we may
launch one Web server process per CPU. In the MT-based
model, there is only one Web server process, no matter how
many threads are running.

Based on this, we compute the cache overhead to main-
tain the cache information in each server architecture in Ta-
ble 1, when system memory size is known. Since we as-
sume that the size of an average Web file is 15KBytes [9],
the number of files that can be cached is file entries =
data cache size/15KBytes. The memory requirement for
keeping the information of these entries is file entries ×
850Bytes, since the average size to maintain each cache el-
ement is about 850Bytes in a Flash Web server. The total
cache overhead of an MP-based Web server is file entries×
850×N ×P , where N is the number of processing elements,
and P is the number of Web server processes per CPU. We
ignore the memory space for the path translation, because
this value is relatively small.

In an MT-based Web server, the total memory usage of
the server model does not change significantly. The cache ov-
erhead can be calculated as file entries × 850Bytes + T ×
25KBytes, since one thread in the Apache server consumes
25KBytes. In the SPED-based Web server, the cache ov-
erhead is file entries×850Bytes×N , if we assume that we
launch a single Web server per CPU. In an AMPED-based
Web server, since read and name translation helpers con-
sume about 3MBytes per server, the total cache overhead
becomes file entries × 850Bytes × N + 3MBytes × N .

3.4 data cache in Web Server Architectures
In this subsection, we calculate the available data cache

of four server architectures, where the available data cache
for the Web contents is system memory − cache overhead.
Since the available data cache size affects the performance
of a Web server, we can predict a server’s performance based
on the calculated data cache values. In this experiment, we
examine the relationship between data cache size, number
of PEs (or CPUs) and system memory.

Figure 3 shows the variation of available data cache as
a function of PEs and the system memory. Figure 3 (a)
depicts that the data cache size in an MP model reduces
drastically when the number of PEs increases. Because of
this reduced data cache space, the cache hit ratio of an MP-
based server would be low, which in turn would affect the
latency and throughput due to frequent disk accesses.

In Figure 3 (b), the data cache for the MT-based Web
server is almost constant because there is only one Web
server process, and a thread can share cache information
with other threads. However, as we will see later, the perfor-
mance of the MT model might suffer from high synchroniza-
tion overhead as the number of threads increases. Figures
3 (c) and (d) show that the data caches of the SPED and
AMPED servers reduce when the number of PEs increases.
It is attributed to the non-sharing nature of the global in-
formation. An interesting observation is that the available
data cache size in the AMPED model shrinks more com-
pared to the SPED model, because the helper processes in
the AMPED model consume more additional memory.
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Web Server Architecture cache overhead (Bytes)
Multi-Process Model file entries × 850 × N × P
Multi-Thread Model file entries × 850 + T × 25K
Single-Process Event-Driven Model file entries × 850 × N
Asynchronous Multi-Process Event-Driven Model file entries × 850 × N + 3M × N

Table 1: cache overhead in Web Server Architectures, where file entries is the number of cached files, N is the
number of processing elements, P is the number of Web server processes per processing element, and T is
the total number of threads
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Figure 3: data cache Size in Web Server Architectures

4. A MULTI-THREADED PIPELINED WEB
SERVER ARCHITECTURE

In this section, we propose a new Web server architecture,
called multi-threaded PIPELINED Web server, which takes
advantage of the MT model, but mitigates the synchroniza-
tion overhead by limiting the number of threads. Figure 4
depicts the architecture of the multi-threaded PIPELINED
HTTP server. In the proposed server, each basic operation
of an HTTP request is mapped on to a thread. First, an
accept connection thread takes care of a connection from a
user, and forwards this request to a read request thread. The
read request thread parses the request, and then, the find
file request thread checks whether the request is in a path
translation cache. If it is located in the path translation
cache, the find file request thread gives it to a send header
thread. Otherwise, it forwards the request to a path transla-
tion helper thread. Next, the send header thread sends the
response header to the client. Finally, the read file and send
data threads send the requested data to the client. If the
file size is large, these threads repeat (shown by the loop in
Figure 4) the process, until the file is sent. Due to its sim-

ilarity to the PIPELINED model in computer architecture,
we call this model a PIPELINED Web server.

We refer to these five basic processing threads and two
helper threads as a pipelined thread pool. A PIPELINED
Web server can have multiple pipelined thread pools. Two
helper threads are dedicated to handle the I/O operations.
One is the path translation helper thread, which converts a
request’s URL to a system path to the requested file. The
other is a read helper thread, which reads the requested file
from a disk, when a cache miss occurs. Whenever an I/O
operation is required, the thread passes the request to one
of the helper threads, and it handles the next request im-
mediately. Whenever a helper thread completes an I/O op-
eration, it sends back the response to the proper thread.

The most important characteristic of this model is that
there is only one Web server process, even though there are
multiple pipelined thread pools. While there will be one
pipelined thread pool in a single CPU, a pipelined thread
pool can be launched on each CPU in an SMP or SoC system
and the threads can share the global information. Since the
data cache size in a single process model (i.e. the MT model)
is larger than that in other models in a multi-CPU environ-
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ment, the proposed model needs relatively small memory to
maintain the global information compared to the SPED and
AMPED models.

The main reason why the proposed model is suitable for
an SMP/SoC environemnt is because of almost constant
data cache size (Figure 3 (e)). There might be multiple
processes of the SPED or AMPED model in an SMP/SoC
system. These multiple Web processes should have their
own private cache, and thus, it significantly reduces the
data cache size as shown in Figures 3 (c) and (d).
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Figure 4: Architecture of the Multi-Threaded
PIPELINED Web Server

Moreover, the PIPELINED model can alleviate the syn-
chronization overhead, one of the drawbacks of the MT
model. The total number of threads in the proposed model is
7×N , while it will be 64 (or 32) ×N in the MT model, where
N is the number of processors. In addition, the threads in
the MT model are likely to compete with each other to ac-
cess the shared information (i.e. data cache and path trans-
lation cache). However in a pipelined thread pool, since
each thread plays a different role, the contention can be
mitigated.

Unlike the MT model, we also adapt helper threads to
prevent a thread being blocked due to an I/O operation.
Without the helper threads, a pipelined thread pool can-
not proceed before completing the blocking I/O operation.
Thus, when a cache miss occurs, the read file thread forwards
this request to a read helper thread. The helper thread sends
back the static contents to the thread after reading it from
a disk.

Next, we analyze the cache overhead and data cache sizes
of a multi-threaded PIPELINED server. The cache over-
head = file entries×850Bytes+7×N ×25KBytes. Figure
3 (e) shows the data cache size variation of this architecture
when the number of PEs (N) and system memory are varied.
The memory requirement of this model is marginally smaller
than that of the MT model, since the number of threads
in the proposed model is around 10 times less than that
of the MT model and these two models have only a single
Web server process. Thus, due to large data cache size, we
expect better performance in the proposed model than other
models.

5. A SIMULATION TESTBED
In this section, we present a simulator for analyzing the

five Web server models and summarize the six traces used
in performance evaluation.

5.1 Simulator
We have developed a simulator platform, which can model

the MP, MT, SPED, AMPED and PIPELINED server ar-
chitectures. The simulator receives the number of PEs and
the system memory size as input parameters. The client
module reads a request from a trace file, and sends the re-
quest to the Web server. The main part of the simulator
is the Web server module. Whenever a request arrives, the
Web server module processes the HTTP basic operations.
In our experiment, the client sends a next request as soon
as the previous request is completed. Since disk latency is
a critical factor in quantifying server performance, we mod-
eled two hard drives from the Western Digital Technologies
[19] and the hard drive specifications are depicted in Table
2. Throughput (number of completed requests per second)
is the objective function analyzed in this paper.

Hard Drives
Model Fast Slow
Capacity (GBytes) 36.7 80
Average Latency (ms) 2.99 5.35
Rotational Speed (RPM) 10,000 5,400
Data Transfer Rate (MBits/s) 1200 594

Table 2: Performance Parameters of Two Hard
Drives

We extracted performance-related parameters from a Flash
Web server through measurements, and summarizes them in
Table 3. Average Entry Size for the cache in Table 3 repre-
sents the memory required for maintaining the information
of a cached file, and Average Access Latency for the cache
is the required time to check whether the requested data
is in the data cache. Average Entry Size for path trans-
lation is memory required to map the requested file to an
actual path on a disk, Number of Entries is the maximum
number of entries in path translation cache, and Average
Access Latency for the path translation cache is the time to
look up the directory of the cached files and map from the
requested file names to actual files on a disk. Average Mem-
ory Usage is memory consumption per helper process in the
AMPED model [13] and Average Memory Consumption is
memory required per thread in MT and PIPELINED mod-
els [18]. Average Connection Overhead is the overhead for a
TCP connection between a client and a server, and Average
Transmit Latency is the network latency to transmit data.
Finally, Context Switching Overhead is the time to switch
between two kernel threads in MT and PIPELINEd models.

5.2 Workload
We use six trace-based workloads with different charac-

teristics for performance analysis;, Penn State CSE [17], UC
Berkeley[11], Penn State (PSU) [16], Clarknet [2], NASA [2]
and WorldCup98 [1]. Table 4 shows the detail characteristics
of the six traces including the number of files, average file
size, number of requests and data set size. The main trace
used in the experiments is Penn State CSE [17]. The aver-
age file size of Penn State CSE trace is 124.3KBytes, which
is much larger than the average file size of other workloads.
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Logs Number of Files Average File Size Number of requests Data Set Size
Penn State CSE 48079 124.3KBytes 1395148 5.7GBytes
UC Berkeley 511189 9.84KBytes 1383211 4.8GBytes
Penn State 139894 15.7KBytes 8853333 2.1GBytes
Clarknet 28864 14.2KBytes 2978121 320MBytes
NASA 9129 27.6KBytes 3147684 208MBytes
WorldCup98 13236 15.3KBytes 7000000 158MBytes

Table 4: Main Characteristics of the WWW Server Traces

Cache Average Entry Size 850Bytes
Average Access Latency 13.5µs

Path Average Entry Size 125Bytes
Translation Number of Entries 6000
Cache Average Access Latency 6.16µs
Helper Average Memory Usage 1.5MBytes
Network Average Connection Overhead 129µs

Average Transmit Latency 24µs
per 512Bytes

Thread Average Memory Consumption 25KBytes
Context Switching Overhead 5µs

Table 3: Measured Parameters from a Flash Web
server

The reason is that it has many course material and multi-
media files. The total data set size is about 5.7GBytes. We
chose this as the main trace because it has a large data set
to fit into an SMP or SoC system. The UC Berkeley trace
[11] has the unique characteristics of very low spatial local-
ity and the smallest average file size in all workloads. The
characteristics of the other traces are listed in Table 4.

5.3 Simulator Validation
We have validated our simulator using a real trace, by

comparing to the results of the Flash Web server, reported
in [13]. While the authors in [13] used two workloads, they
conducted most of results in their experiments by the trace
of Rice University Computer Science. However, we decide to
use the Clarknet [2] workload because we couldn’t get this
workload. Since both these workloads have different locality,
the results are likely to be different. The Rice University
CS trace [13] has a very high locality. It means that an
MP model can have comparable throughput to those as MT,
SPED and AMPED server models. In contrast, the Clarknet
has less locality, compared to the CS trace in [13]. It implies
that an MP model will show less throughput compared to
other models, when the data cache size is smaller than data
set size.

We choose two experiments in [13], to verify our simulator.
In the first validation experiment, the data set size is var-
ied from 20MBytes to 150MBytes, and we set the number of
clients to 64. These configurations are the same as the Flash
Web server study [13]. In [13], the system memory size was
128MBytes, but the actual data cache size might be around
100MBytes, since the bandwidth significantly dropped after
the 100MBytes data set size and the Solaris OS itself con-
sumes around 30MBytes. Hence, we set the data cache size
to 100Mbytes in this experiment. We use a slow disk model,
since the results in [13] were measured in 1999. We mea-
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Figure 5: Simulator Validation

sured bandwidth (Mb/s) as the performance metric, which
was used in [13]. As Figure 10 in [13] showed that the band-
width dropped after the data set size is 100MBytes, our
result in Figure 5 (a) also shows the similar trend. The in-
teresting point is that the MP bandwidth in our result is
different from that in [13]. This is because the Clarknet
workload has less spatial locality than the Rice University
CS trace.

In the second validation experiment, we varied the number
of clients, while the data set size is fixed at 90MBytes, and
the other configurations are the same as the first validation.
In Figure 5 (b), the results exhibit the similar trend, as
reported in [13], while the bandwidth of the MP model drops
slowly after 200 clients. As we expected, the MP model has
less bandwidth/throughput than the results in [13] due to
low spatial locality of the Clarknet trace.

6. PERFORMANCE ANALYSIS
In this section, we present the performance comparison of

the five Web server architectures under a variety of workload
and system parameters. The performance analysis is done in
detail through a series of experiments. In all experiments, we
use a warm-up period of 5000 seconds to avoid the transient
phase.

6.1 Impact of Workload
First, we show the performance results with various work-

loads. We use six traces, listed in Table 4. Since the Penn
State CSE and UC Berkeley workloads have very large data
set size, we use 4GBytes as the system memory for the Penn
State CSE [17] and 3.5GBytes for UC Berkeley workload.
We set 1.5GBytes as system memory for the Penn State
trace [16], 220MBytes for the Clarknet trace, 110MBytes for
the WorldCup98 trace, and 150MBytes for the NASA work-
load [2]. We set the system memory to 70 ∼ 75% of the to-
tal data set size to compare each workload’s characteristics,
while the number of clients is fixed at 1000. We used a simple
program to measure the locality of the traces, by fixing the
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Figure 6: Performance Comparison among Web Server Architectures with Several Workloads

date set size and data cache size. From our measurements,
Table 5 presents the locality when the data cache size is
given. For example, 4GBytes data cache in Penn State CSE
trace has 99.6% locality, while 3.5GBytes data cache in UC
Berkeley trace shows only 88.3%.

Wrokload data cache Size (Bytes) Locality (%)
Penn State CSE 4G 99.6
UCB 3.5G 88.3
Penn State 1.5G 99.47
Clarknet 220M 99.5
WorldCup98 110M 99.9
NASA 150M 99.82

Table 5: Spatial Locality of the Workloads

Figure 6 shows that the proposed PIPELINED Web server
outperformed all prior Web servers except with the World-
Cup98 trace, when we vary the number of CPUs/Processing
Elements (PEs) on an SMP/SoC machine. With the World-
Cup98 trace, the MT server shows competitive performance
as the PIPELINED server. On the other hand, the MP
model shows the worst throughput across all traces. Since
the MP model requires more space for the cache overhead
and this overhead increases as the number of the PE in-
creases, it suffers from high cache miss ratio, and the disk
becomes the performance bottleneck.

In Figure 6 (a), the PIPELINED model shows up to 30%
improvement in throughput compared to the MT, SPED and
AMPED models. The performance difference between the
PIPELINED model and the other models increases with the
number of processors. This is because of the higher cache
hit ratio of the PIPELINED Web server. The MT model has
high synchronization overhead and this overhead increases
as the number of threads increases. The AMPED and SPED
models have more cache overhead than the PIPELINED and
MT models because they share the global information. The
AMPED model needs 8 times more cache overhead than the
PIPELINED model for 16 processors. Thus, the available
data cache in the AMPED and SPED models decreases as
the number of PEs increases. In addition, since the SPED
model cannot handle the disk access efficiently, it yields
poorer performance than the AMPED model.

Figure 6 (b) shows the results of the UC Berkeley work-
load. As shown in Table 4, it has relatively low spatial
locality compared to other traces. While the average file
size is the smallest among the traces, its data set size is
very large and the number of the requests is the highest.

Thus, it needs a large data cache to prevent frequent disk
accesses, and the performance also depends on how a Web
server can handle small contents efficiently. In Figure 6 (b),
the PIPELINED model noticeably outperformed all other
models. The reason that the AMPED and SPED models do
not show good performance is that the smaller data cache
hurts performance more than the other trace files due to the
low spatial locality ratio of UCB trace. However, with up
to 3 PEs, the AMPED model shows the best performance
because it can efficiently handle the disk-bound request [13],
and can avoid the context switch overhead compared to the
PIPELINED and MT models.

Although the MT model guarantees a large data cache,
each thread handles many requests. Since the size of the
contents in the trace is small, it results in high synchroniza-
tion overhead. In addition, during disk accesses, the threads
in the MT model are blocked. Therefore, the MT model
does not have the benefit of increasing concurrency like with
other trace files. The PIPELINED Web server, unlike the
other models, can handle these requests very efficiently due
to helper threads, and thus, is a very good candidate when
the workload shows very low spatial locality.

With the Penn State trace, the PIPELINED model is
the best performer in Figure 6 (c) when number of PEs
is greater than 8, while the SPED and AMPED models
have comparable performance with the PIPELINED model
with up to 8 PEs. As the number of PEs increases, total
cache overhead size in SPED and AMPED models increases
but data cache size per process in these models decreases
moderately, because processes can’t share global informa-
tion. Thus, throughput in these models significantly drops
beyond 9 PEs. The MT model shows lower throughput than
the PIPELINED model. This is because the synchroniza-
tion overhead among threads increases due to high cache
hit ratio. We skip the result of the Clarknet trace due to
its similarity with the Penn State trace. The NASA and
WorldCup98 traces have the smallest data set size and sys-
tem memory. As the number of processors increases, the
reduction of the data cache size can affect the throughput
more than other traces, due to the small system memory
size. The characteristics of the WorldCup98 trace are that
it has not only the smallest data set among all workloads,
but also has the highest spatial locality. Thus, the through-
put in Figure 6 (d) is the highest among all workloads. Since
the MT model does not suffer from high disk accesses due to
the smallest data set size, it shows comparable performance
to the PIPELINED model. We omit the result of NASA
trace, since it shows similar trend as the WorldCup98 trace.
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Figure 7: Performance Comparison of Web Server Architectures by Varying system memory with the Penn
State CSE trace

6.2 Impact of Data Cache Size
In this experiment, we examine the impact of data cache

by varying the system memory, when the number of clients
is fixed at 1000. The workload used for this experiment is
the Penn State CSE. Figure 7 (a) depicts the throughput
results of the five Web server architectures when the sys-
tem memory is 1GBytes, while the data set size of the trace
is about 5.7GBytes. In this experiment, the Web servers
incur large number of cache misses due to the small cache
size. Thus, the throughputs of all Web servers are bounded
by the disk speed. In other words, the throughput is not
scalable as the number of PEs increases. The PIPELINED
model shows the best throughput among these five mod-
els, while the performance of the MP model is the worst,
as expected. The throughputs of the AMPED and SPED
models increase until the number of PEs is 5, and decrease
after that. An increase in the number of PEs reduces the
data cache, consequently causing more disk accesses. More
PEs in the MT and PIPELINED models doesn’t reduce the
data cache significantly, and thus, they yield stable through-
puts.

The throughput results with 2 GBytes and 3 GBytes as
system memory size are plotted in Figures 7 (b) and 7 (c), re-
spectively. The performance difference among the PIPELI-
NED, AMPED and SPED models is more evident as the
system memory increases. Since the cache miss rate is de-
creased, the throughputs of all servers improved drastically.
However, the disk is still the bottleneck in the SPED and
AMPED model, when the number of PEs is greater than 12
in Figure 7 (c). Results with 4GBytes system memory are
depicted in Figure 6 (a). In Figure 7 (d), all servers except
the MP model benefit from the large cache, because the disk
operation is not the bottleneck any more. The PIPELINED
model shows 32% throughput improvement compared to the
MT model. The results of this section indicate that the
cache size has a great impact on the throughput for all Web
server architectures. We observed similar results with other
workloads, and the proposed Web server had better through-
put across all cases of system memory.

6.3 Number of Clients
In this experiment, we vary the number of clients to exam-

ine the scalability issue in terms of the number of concurrent
connections. We chose the Penn State CSE workload, and
the system memory size is fixed to 2GBytes. Other work-
load results are omitted due to space limitation. In Figure 8
(a), when the number of clients is 500, the PIPELINED and
MT models are the best performers, while the PIPELINED
model shows slightly better throughput than the MT model

(up to 12%). Figure 8 (b) depicts the throughputs with
1500 clients, where the performance difference between the
PIPELINED and MT models becomes more pronounced.
The throughput difference gap is about 18% and 26%, in
Figures 8 (c) and (d), respectively.

The results indicate that when the number of clients in-
creases, the PIPELINED model outperforms the MT model.
This is because the MT model needs many active threads
to satisfy the requests. The synchronization overhead of
the threads in the MT model with 2500 clients increased
by 20% (measured as queuing time at the synchronization
point) compared to with 500 clients. In addition, the mem-
ory consumption of these threads increases, and thus, avail-
able data cache size of a server reduces. While the memory
consumption of the MT model is only 25KBytes per thread,
it can affect the system performance, when the number of
threads becomes high. The MP model in all these cases
exhibits the worst performance.

7. CONCLUSIONS
Design of high performance Web servers is essential for

providing adequate support to the increasing demand of
Internet-based services. Although several server models have
been proposed towards this goal, very little attention has
been paid in exploring the server design space with SMP
and SoC architectures. In this paper, we have investigated
the design of a multi-threaded PIPELINED architecture,
suitable for SMP/SoC machines.

To understand the performance implications of current
server models, we measured the memory overhead of a Flash
Web server in a Sun Solaris machine, and based on this mea-
sured data analyzed the data cache and cache overhead of
the prior MP, MT, SPED and AMPED models. The analysis
revealed that a multi-threaded server model with small num-
ber of threads is ideal for providing high performance. The
proposed multi-threaded PIPELINED Web server consists
of multiple thread pools, where each thread pool is com-
posed of 5 basic threads and 2 helper threads. The main
advantage of the proposed model is that the threads can
share the global information such as data cache and path
translation structure. Thus, like the MT model, it needs
relatively small memory to maintain the global information.
However, unlike the MT model, it can alleviate the synchro-
nization overhead by limiting the total number of threads to
7×N , where N is the number of processors in an SMP/SoC
machine. In addition, by utilizing separate helper threads,
the main threads do not block for I/O operations, thereby
helping in improving performance.
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Figure 8: Performance Comparison of Web server models by Varying the Number of Clients with the Penn
State CSE trace

A simulation-based performance analysis of the prior four
server models and the proposed PIPELINED model with six
Web server traces shows that the proposed server architec-
ture can deliver the best performance across various system
configurations and workloads. The MT and AMPED mod-
els are close competitors with the PIPELINED model for
several system configurations, specifically when the number
of processors is small. However, the proposed model out-
performed the MT and AMPED designs as the number of
clients or the number of processors increased. Furthermore,
while the MT, SPED and AMPED models suffered due to
low application locality and inadequate system memory, the
proposed model exhibited good throughput across all ex-
perimental conditions. The MP model, as expected, is the
worst performer.

These results indicate that the PIPELINED server archi-
tecture is a viable design option for SMP/SoC machines.
We plan to implement the proposed model in an SMP ma-
chine. In addition, we will analyze the performance impact
of dynamic Web contents on the proposed model.
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