
WEESA - Web Engineering for Semantic Web Applications

Gerald Reif
Distributed Systems Group

Vienna University of
Technology

Argentinierstrasse 8
1040 Vienna, Austria

reif@infosys.tuwien.ac.at

Harald Gall
Department of Informatics

University Zurich
Winterthurstrasse 190

8057 Zurich, Switzerland
gall@ifi.unizh.ch

Mehdi Jazayeri
Distributed Systems Group

Vienna University of
Technology

Argentinierstrasse 8
1040 Vienna, Austria

jazayeri@infosys.tuwien.ac.at

ABSTRACT
The success of the Semantic Web crucially depends on the
existence of Web pages that provide machine-understandable
meta-data. This meta-data is typically added in the seman-
tic annotation process which is currently not part of the Web
engineering process. Web engineering, however, proposes
methodologies to design, implement and maintain Web ap-
plications but lack the generation of meta-data. In this pa-
per we introduce a technique to extend existing Web en-
gineering methodologies to develop semantically annotated
Web pages. The novelty of this approach is the definition of
a mapping from XML Schema to ontologies, called WEESA,
that can be used to automatically generate RDF meta-data
from XML content documents. We further show how we in-
tegrated the WEESA mapping into an Apache Cocoon trans-
former to easily extend XML based Web applications to se-
mantically annotated Web application.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Information Storage and
Retrieval; D.2 [Software]: Software Engineering

General Terms
Design

Keywords
Web Engineering, Semantic Web, Semantic Annotation, On-
tology

1. INTRODUCTION
The existence of semantically annotated Web pages is cru-

cial to bring the Semantic Web to life. But it is still costly
to develop and maintain Web applications that offer both:
human-understandable information that can be displayed by
a Web browser and machine-understandable meta-data that
can be processed by computers.

Semantic annotation addresses this problem and aims to
turn human-understandable content into a machine-under-
standable form by adding semantic markup [7]. Many tools
have been developed that support the user during the anno-

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

tation process. But still, the annotation process is a separate
task and is not integrated in the Web engineering process.

Web Engineering focuses on the systematic and cost ef-
ficient development and evolution of Web applications [6].
The outcome of the Web Engineering process are Web ap-
plications that provide Web pages that can be displayed in a
Web browser but these applications lack semantic markup.
In this paper we show how existing XML-based Web en-
gineering methodologies can be extended to engineer se-
mantically annotated Web pages. In the remainder of this
paper we call Web applications that not only offer human-
understandable content but also semantic meta-data Seman-
tic Web applications.

The contribution of this paper is the conceptual defini-
tion and prototype implementation of a mapping from XML
Schema to ontologies that allows the efficient design of Se-
mantic Web applications based on existing Web engineering
artifacts. The mapping can then be used to automatically
generate RDF descriptions from XML content documents.
We call this approach WEESA (WEb Engineering for Se-
mantic web Applications). To our knowledge, WEESA is
the first approach that integrates semantic annotation in
the Web engineering process. In this paper we show the
integration of WEESA into an Apache Cocoon transformer
[4] and the use of this transformer to develop Semantic Web
applications.

The remainder of this paper is structured as follows. Sec-
tion 2 briefly introduces semantic annotation. Section 3 in-
troduces XML-based Web engineering. Section 4 explains
the idea of using an XML Schema – ontology mapping to
generate RDF descriptions from XML documents. Section 5
shows the implementation, and Section 6 the integration of
the mapping into a Cocoon transformer. Section 7 discusses
related work, Section 8 presents the case study and tool
support, and Section 9 gives an outlook on future work and
concludes the paper.

2. SEMANTIC ANNOTATION
The aim of semantic annotation is to transform documents

into machine-understandable artifacts by augmenting them
with meta-data that describes their meaning. In the Se-
mantic Web, this meta-data description is done using the
Resource Description Framework (RDF) that references the
concepts defined in an ontology. Ontologies formally de-
fine concepts used in a domain and the relationship between
these concepts. An ontology is defined in an ontology defi-
nition language such as RDFS, DAML+OIL, or OWL.

722



When adding semantic meta-data to documents, one faces
several problems [13]:

• Annotating documents with Semantic markup is a time
consuming task and has to be performed in addition
to the authoring process.

• The authors that annotate the documents are typically
not the ones who profit from the existence of meta-
data. This reduces the author’s motivation to annotate
Web pages.

• The granularity of the information found in the doc-
ument does not meet the needs of granularity in the
ontology. Several information items that can be found
in the document might be needed to compute the value
that fits a property in the ontology.

• Looking at Web pages that provide RDF meta-data, so
called Semantic Web pages, we recognize that impor-
tant parts of the content are stored two times. First,
in HTML format that is displayed to the user via the
Web browser, second in the RDF description. This re-
dundancy leads to inconsistency problems when main-
taining the content of the Web page. Changes always
have to be done consistently for both types of infor-
mation.

• Many Web pages are not static documents but are gen-
erated dynamically e.g. using a database. Annotating
dynamic documents leads to performing the same task
over and over for a specific pattern of documents.

Several annotation tools have been proposed to overcome
the problems listed above. Early tools such as the SHOE
Knowledge Annotator [8] mainly concentrated on avoiding
syntactic mistakes and typos when referencing ontologies.
Current tools such a CREAM/OntoMat [7] are sophisticated
authoring frameworks that support the user while writing
and annotating the document and help maintaining the gen-
erated meta-data. Still, the annotation process is not inte-
grated in the engineering process of a Web application as
proposed by the Web engineering community.

3. XML-BASED WEB PUBLISHING
Web Engineering focuses on the systematic and cost ef-

ficient design, development, maintenance, and evolution of
Web applications [6]. Most Web engineering methodologies
are based on separation-of-concerns to define strict roles in
the development process and to enable parallel development
[9]. The most frequently used concerns are the content, the
graphical appearance, and the application logic. When we
plan to design Web applications that in addition offer se-
mantic markup we have to introduce a new concern, the
meta-data concern.

Most Web engineering methodologies use XML and XSLT
for strict separation of content and graphical appearance.
XML focuses only on the structure of the content, whereas
XSLT is a powerful transformation language to translate
an XML input document into an output document such
as again an XML document, HTML, or even plain text.
Many Web development frameworks such as Cocoon [4] or
MyXML [10] exist that use XML and XSLT for separation-
of-concerns.

mapping

generate

Ontology

RDF descriptionXML document

XML Schema

generate
via XSLT included in the <head> tag

HTML page

uses termsvalid

Design Level

Instance Level

WEESA

definition

Figure 1: Design and instance level

Based on this technology, editors responsible for the con-
tent only have to know the structure of the XML file and
the allowed elements to prepare the content pages. Design-
ers, responsible for the layout of the Web application, again
only have to know the structure and elements of the XML
file to write the XSLT stylesheets. Finally, programmers
responsible for the application logic have to generate XML
documents (or fragments) as output. An XML Schema de-
fines exactly the structure and the allowed elements in an
XML file that is valid according to this schema. Therefore,
XML Schema can be seen as a contract the editors, designers
and programmers have to agree on [9].

Since XML is widely used in Web engineering, our ap-
proach to engineer Semantic Web applications uses the XML
content to generate the RDF meta-data description from a
Web page. We also use the XML Schema as a contract and
map the elements defined in the schema to concepts defined
in an ontology. Our goal is to use the structure and the
content of the XML document to fill the RDF triples with
data.

In the proposed approach, the XML document is the basis
for the HTML page as well as for the RDF description. This
helps to overcome the inconsistency problem pointed out in
the Section before.

4. MAPPING XML SCHEMA TO
ONTOLOGIES

In our WEESA mapping we use the content of an XML
document to derive its RDF meta-data description. In the
design phase of the Web application, however, we have no
XML documents at hand. But we have the XML Schema
definition that provides us with information about the struc-
ture of valid XML documents. We use this information to
define a mapping from XML elements to concepts used in
an ontology. Figure 1 shows the definition of the WEESA
mapping on the design level and how this mapping is used
at instance level to automatically generate RDF meta-data
from XML documents.

In Section 2 we introduced the granularity problem when
annotating documents. We face the same problems when
defining the WEESA mapping. It is possible that the con-
cept of an XML element/attribute can be mapped one-to-
one to a concept defined in an ontology. In general, however,
this will not be the case. Therefore we propose to dynami-
cally compute the missing information from the information
available in the XML document. In some cases processing

723



is needed to reformat the element’s content to match the
datatype used in the ontology. In other situations it might
be necessary to use the content of more than one XML ele-
ment to generate the content for the RDF description.

For demonstration purpose, in this paper we take the fic-
tive MyTunes online CD store as illustrative example. My-
Tunes offers for each artist a Web page with their albums
and for each album a page with the album details. Some
XML elements such as the artist name or the track titles
can be mapped one-to-one to properties defined in the cor-
responding class of the ontology. Other properties defined
in the ontology such as the total play time of an album can
not be found in the XML document but calculated from the
play-times of each single track. In this case some additional
processing is needed to generate the information required by
the ontology from the data provided by the XML document.
Our MyTunes application offers in addition a list of live per-
formances for each artist. Therefore an XML document with
the begin time and the duration of the performance is pro-
vided. The ontology, however, uses a different way to express
the performance times. It defines properties for the begin
and end time of a performance in the event class. Therefore
the content of the begin time and the duration element have
to be processed to match the two properties.

Another possibility to address the mismatch in granular-
ity between the XML elements and the ontology concepts is
to adjust the XML Schema definition in the design phase of
the Web application. The structure of the XML document
could be adopted to the kind of information needed by the
given ontology. But this would lead to several problems: (1)
Some information needed for the Web page might be lost.
(2) Over time a new ontology can become the standard on-
tology for the domain of the Web application. Therefore, the
XML Schema - ontology mapping should be flexible enough
to allow to change the used ontology later in the life cycle of
the Web application. The change of the ontology would re-
sult in the change of the XML Schema which represents the
contract all parties agreed on. This would yield in the re-
design of the whole Web application. (3) It is possible that
we have to define the mapping for already existing XML
documents and do not have the possibility to change the
schema. Therefore, a flexible way to map the content of one
or more XML elements to the information required by the
used ontology is needed. How this mapping can be imple-
mented is shown in the following section.

5. IMPLEMENTATION
The generation of RDF meta-data based on XML content

is done in two steps. First, in the design phase for each XML
Schema, a mapping to the ontologies is defined. Second, for
each XML page the mapping rules defined in the previous
step are applied to generate the RDF representation.

5.1 Defining the mapping
The starting point of the mapping is on the one hand the

XML Schema that acts as a contract in the development
process and on the other hand the ontologies to be used.
The XML Schema provides us with the information of the
structure of a valid XML document and the elements be-
ing used. This information can be used to define XPath [3]
expressions to select an element or attribute from an XML
document. Once an element/attribute is selected, its con-
tent is mapped to a position in a RDF triple.

� �
<?xml version="1.0" encoding="UTF -8"?>
<album id="1234">

<artist >Alanis Morissette</artist >
<name>Alanis Unplugged</name>
<price>9.99</price>
<tracks >

<track number="1">
<name>You Learn</name>
<time>4:21</time>

</track>
<track number="2">

<name>Joining You</name>
<time>5:09</time>

</track>
<track number="3">

<name>No Pressure over Cappuccino</name>
<time>4:41</time>

</track>
<!-- ... -->
<track number="12">

<name>Uninvited</name>
<time>4:37</time>

</track>
</tracks >

</album>� �
Figure 2: XML document for an album.

The goal of the mapping definition is to fill the subject,
predicate and object of RDF triples with data. In the map-
ping definition various ways exist to specify the content of
the RDF triples: (1) a constant value, (2) an XPath ex-
pression, (3) the return value of a Java method, and (4) a
resource reference. In the following we describe each of these
ways in more detail.

(1) A constant value can be, for example, the URI refer-
ence to a concept defined in the ontology. (2) An XPath
expression is used do select the content of an element/at-
tribute. In this case, a RDF triple is generated for each
XPath match. (3) The content of more than one element/
attribute might be needed to compute the information to
match a property in the ontology or a datatype conversion
has to be performed. We use Java methods for this purpose.
These methods take the content of one or more elements/at-
tributes or constants as input parameters and return a string
value as content for a RDF triple. In the mapping definition
we can define that the Java method has to be called for each
XPath match and a triple for each match is generated, or
that all XPath matches are handed over as a Vector to the
Java method and only one RDF triple is generated.

(4) Unique resource identifiers are needed to fill the sub-
ject. Since most XML documents provide more information
that is related to the same resource, we offer the possibility
to define a resource identifier that can later be referenced
to fill the RDF triples. The mapping also provides the pos-
sibility to define anonymous resources. They are used for
resources that never need to be referred to directly from out-
side the RDF description. To define an anonymous resource
in the mapping, the resource is labeled to be anonymous.

Figure 2 shows an example XML document for an album
in our MyTunes CD store. This example is used to demon-
strate the use of the four ways to specify the content for the
RDF triples as described above.

A WEESA mapping definition (see Figure 3) consists of
two sections. The first section defines the resource identi-
fiers that can later be used. The second section defines the
subject, predicate, and object of the actual RDF triples.

724



� �
1 <?xml version="1.0" encoding="UTF -8"?>
2 <mapping xmlns="http://www.infosys.tuwien.ac.at/WEESA#">
3 <resources>
4 <resource id="album">
5 <method >
6 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.addPrefix</name>
7 <param const="http:// example.com/album#" type="java.lang.String"/>
8 <param xpath="/album/@id" type="java.lang.String"/>
9 </method >

10 </resource >
11 <resource id="track" anonymous="yes" var="track_id" xpath="/album/tracks/track/@number"/>
12 </resources>
13 <triples>
14 <triple >
15 <subject ref="album"/>
16 <predicate const="http://www.w3.org /1999/02/22 -rdf -syntax -ns#Type"/>
17 <object const="http:// example.com/MyTunes#Album" resource="yes"/>
18 </triple >
19 <triple >
20 <subject ref="album"/>
21 <predicate const="http:// example.com/MyTunes#hasTitle"/>
22 <object xpath="/album/name/text()"/>
23 </triple >
24 <triple >
25 <subject ref="album"/>
26 <predicate const="http:// example.com/MyTunes#totalTime"/>
27 <object >
28 <method >
29 <name>at.ac.tuwien.infosys.weesa.wf.MappingLib.sumTimes </name>
30 <param xpath="/album/tracks/track/time/text()" type="java.util.Vector" xresultAsVector="yes"/>
31 </method >
32 </object >
33 </triple >
34 <triple >
35 <subject ref="album"/>
36 <predicate const="http:// example.com/MyTunes#hasTrack"/>
37 <object ref="track"/>
38 </triple >
39 <triple >
40 <subject ref="track"/>
41 <predicate const="http://www.w3.org /1999/02/22 -rdf -syntax -ns#Type"/>
42 <object const="http:// example.com/MyTunes#Track" resource="yes"/>
43 </triple >
44 <triple >
45 <subject ref="track"/>
46 <predicate const="http:// example.com/MyTunes#trackNumber"/>
47 <object const="$$ track_id $$"/>
48 </triple >
49 <triple >
50 <subject ref="track"/>
51 <predicate const="http:// example.com/MyTunes#playTime"/>
52 <object xpath="/album/tracks/track[@number=’$$ track_id $$’]/time/text()"/>
53 </triple >
54 <triple >
55 <subject ref="track"/>
56 <predicate const="http:// example.com/MyTunes#trackTitle"/>
57 <object xpath="/album/tracks/track[@number=’$$ track_id $$’]/name/text()"/>
58 </triple >
59 </triples>
60 </mapping>� �

Figure 3: WEESA mapping definition for the album example.

725



� �
Class: Artist Class: Track

->hasArtistName ->trackTitle
->hasAlbum (range: Album) ->playTime

->trackNumber

Class: Album Class: Event
->hasTitle ->hasEventName
->hasTrack (range: Track) ->hasLocation
->totalTime ->beginTime
->year ->endTime� �

Figure 4: Ontology used for our MyTunes example.

Figure 3 shows the WEESA mapping definition for our
album example. At the beginning of the mapping we de-
fine the resources (lines 3-12). In the first resource with the
id="album" attribute we define an XPath expression to se-
lect the id attribute of the album element in Figure 2. The
respective XPath expression is /album/@id. The content of
the attribute is then handed over to a Java method. The
method name is defined in line 6. In this case the Java
method adds a prefix to the attribute value to generate a
resource identifier. The parameters for the method are de-
fined in lines 7 and 8. The first parameter is a constant used
for the prefix and the second parameter is the XPath expres-
sion to select the attribute. The return value of the method
is then used as the content in the RDF triple whenever the
resource with the id="album" is referenced.

In the resource with the id="track" (line 11) we show
how an anonymous resource can be defined. This is done
using the anonymous="yes" attribute. In this case for each
XPath match an anonymous resource is generated.

Once we have defined the resources, we can start defin-
ing the RDF triples. This is done in the triples section
(lines 13-59). In the first triple (lines 14-18) the subject
uses the ref="album" attribute to reference the resource
with the id="album". In the predicate we use the rdf:Type

constant to define the class the subject is an instance of.
The object of this triple is the URI reference to the class in
the ontology (http://example.com/MyTunes#Album). The
resource="yes" attribute is used to indicate that the value
of the object should be interpreted as a RDF resource. The
default interpretation would be a literal. Our sample on-
tology is shown in Figure 4. (For reasons of clarity, we do
not use the OWL Syntax in the example, but use a trivial
textual syntax instead.)

The following triples in our example mapping fill the prop-
erties of the #Album class. The predicate defines the name
of the property and the object the value. The xpath at-
tribute of the object element defines the XPath expres-
sion that has to be evaluated. The object element can
also contain a method element to define the Java method
to compute the content of the object. Lines 28-31 show
the use of a Java method where all XPath matches are
handed over as a Vector to the method indicated by the
xresultAsVector="yes" attribute.

In some cases we need additional information to select a
specific element/attribute by an XPath expression. When
an XML document consists of multiple elements with the
same name at the same hierarchy level we need a technique
to select a specific one. For this purpose we use variables. In
line 11 we use the var attribute to define the track id vari-
able. This variable can be used in any constant or XPath ex-

� �
recurisveMapping(resourceSet)
if resourceSet is empty
generateTriples()
return

forall resource in resourceSet
if there are XPath matches

resourceStack.push(all XPath matches)
stackHash.put(resource , resourceStack)

while (stack is not empty)
xpath_match = stack.pop()
content = processContent(xpath_match)
globaleResourceHash.put(resource , content)
if resource defines variable

globaleVariableHash.put(variable , xpath_match)
recursiveMapping(resDependencyHash.get(resource ))

else
recursiveMapping(empty Set)� �

Figure 5: Pseudo-code for processing the WEESA
mapping.

pression using the $$ escape sequence at the beginning and
the end of the variable name. The variable is replaced at
runtime with the actual value. Variables can be defined to-
gether with the xpath attribute in resource definitions only.

At the end of the triples section we show that anonymous
resources can be used as any other resource in the triple
definition. In the triple defined in lines 34-38 the object
uses the reference to the anonymous resource track. The
following triples define the class and the properties for this
resource and show the use of the track id variable in the
WEESA mapping.

So far we have shown how the WEESA mapping is defined.
The following section shows how this mapping can be used
to generate RDF descriptions from XML documents.

5.2 Generating the RDF Description
When a Web page is queried, the corresponding XML

document is fetched and the XSLT transformation is used
to generate the HTML page. Second, the RDF description
has to be generated and included into the <head> tag of
the HTML document. To generate this description all map-
pings defined for the XML document have to be executed.
Therefore, the XPath expressions have to be evaluated on
this document and the result is either directly used to fill
a position in a RDF triple that is defined in the mapping
or is handed over to a Java method first. If the XPath ex-
pression matches multiple elements/attributes in the XML
document the procedure has to be repeated for each match
or the matches are handed over to the Java method as a
Vector.

The pseudo-code in Figure 5 shows the principle steps
that have to be applied to process the WEESA mapping
definition. Before the recursiveMapping() method can be
called all dependencies between the defined resources have
to be analyzed and stored in the global resDependencyHash.
A resource R1 is dependent on resource R2 if R1 uses a
variable that is defined in R2 or R1 is used as object in
a triple with the subject R2. In this case R2 has to be
processed before R1 can be resolved. The second condition
is necessary since triples that relate two resources (such as
defined in lines 34-38) can only be generated if the values for
both resources have been processed. The initial parameter

726



Figure 6: Snippet from the generated RDF graph.

for the recursiveMaping() method is the Set of resources
that do not depend on any other resources and can therefore
be processed directly.

For better understanding we use the MyTunes example
mapping from Figure 3 to illustrate the execution of the
pseudo-code. We start with analyzing the resource depen-
dencies and find out that the triple defined in lines 34-38 uses
the resource album as subject and track as object. Follow-
ing the rule defined above, track depends on the resource
album. This leaves us with album as the only independent
resource.

Now the method recursiveMapping() is called with album

as parameter. Since the resourceSet is not empty the pro-
cessing continues with the two nested loops. In the outer
loop the XPath expression is executed on the XML docu-
ment and the matches are put on the stack. In our example
the XPath /album/@id has only one match: 1234.

If there are XPath matches the inner loop is processed. In
the inner loop the XPath matches are taken from the stack,
the processContent() method is called, the variables are
assigned their values, and a recursive method call is done to
process all resources that depend on the current resource/
variable environment. The processContent() method takes
the XPath matches as parameter and computes the con-
tent for the resource as defined in the mapping. If a Java
method is defined, it causes the method call and uses the
return value as content. If there are no more dependent re-
sources the recursive call is done with an empty Set. This
causes the call of the generateTriples() method. The
generateTriples() method iterates through all triples de-
fined in the mapping and generates an instance for those
where the required resources and variables are defined in
the globalVariableHash and globalResourceHash.

Coming back to our example, in the inner loop we take the
first match (1234) from the stack, call the Java method de-
fined in line 6, compute the content for the resource (http:
//example.com/album#1234), and do the recursive method
call. The resourceSet for the recursive call contains the
track resource since it depends on the author resource as
explained above. In the recursive method call the execu-
tion of the XPath expression returns with a match for each
track on the album and in the inner loop all the matches are
processed. Since no other resource depends on the track re-
source the recursive call is done with and empty Set and the
generateTriples() method is called. A part of the gener-

ated RDF graph for our example can be found in Figure 6.
There are two known limitations to the current WEESA

implementation: (1) If a method call is defined that takes
several XPath expressions as parameter, we do not generate
all permutations of the matches of the XPath expressions.
Instead we use the iter="yes" attribute to indicate over
which XPath matches should be iterated. For the other
parameters we use the first XPath match. (2) Because of the
dependency rule between resources WEESA cannot generate
RDF graphs that include circles. In this case no independent
resource can be found to start the recursion.

6. WEESA AS COCOON TRANSFORMER
In the previous section we introduced the WEESA map-

ping and illustrated how this mapping can be used to gener-
ate RDF meta-data from XML documents. In this section
we show how we integrated WEESA into Cocoon transform-
ers and how to use these transformers in a Cocoon Web
application.

Apache Cocoon [4] is a component based Web develop-
ment framework that uses XML/XSLT for separation-of-
concerns. Cocoon uses component pipelines to build Web
applications where each component on the pipeline is spe-
cialized on a particular operation.

Figure 7 shows the pipeline of a typical Cocoon Web appli-
cation. Each pipeline consists of a generator, an arbitrary
number of transformers, and a serializer. A user request
causes the generator to read XML from a data source and
produces as output a stream of SAX events representing the
XML document. This output is the input of a transformer.
A transformer takes the SAX events, does some transforma-
tion (e.g. XSLT transformation), and the results are again
SAX events. This events can then be taken by another trans-
former or a serializer. In a typical Cocoon Web application
the business logic (e.g. SQL queries, Java code) is processed
by the transformers at the beginning of the pipeline. The
output of the business logic is an XML Schema valid XML
document which fulfills the contract defined in the Web en-
gineering process. This document is then taken by the XSLT
transformer which uses the XSL stylesheet to produce the
HTML page. The serializer finally takes the SAX events and
processes them into a character stream for client consump-
tion. The steps of a conventional Cocoon Web application
are shown in Figure 7 as white pipeline components.

In the case of a Semantic Web application we introduce
two new steps to the pipeline. Since we need the Schema
valid XML document for the XSLT transformation and for
the WEESA meta-data generation, we have two choices. We
can either integrate WEESA in a modified XSLT transformer
that generates RDF and HTML or we can split up the
pipeline. In our approach we choose to split up the pipeline
using the WriteDOMSession transformer. This transformer
takes the input document and writes it first as DOM into the
servlet session, and second as SAX events to its output. This
is how the pipeline is split up and the XML document can
be reused later in the pipeline. After the HTML page is gen-
erated by the XSLT transformer the WEESAReadDOMSession

transformer takes the DOM-XML from the session and uses
the WEESA mapping definition to generate the RDF meta-
data representation. The meta-data is then added in the
<head> tag of the HTML page. The serializer finally delivers
the HTML+RDF page to the client. The additional steps
are shown in Figure 7 as light gray pipeline components.

727



SessionTransformer
WEESAReadDOM

XSLT Transformer

Transformer
WriteDOMSession

Transformer

Transformer

Generator XML Source

HTML + RDFSerializer

Cocoon Pipeline

DOM

SAX Events

SAX Events

SAX Events

SAX Events

SAX Events

SAX Events

Session

HTML + RDF

Schema valid XML document

Schema valid XML document

Busines Logic:
XSP, JSP, Filter,
SQL, etc.

WEESA Mapping
Definition

XSL Stylesheet

HTML

Figure 7: WEESA meta-data generation in the Co-
coon pipeline.

Embedding the RDF/XML meta-data in the <head> tag
of a HTML document, however, breaks HTML 4.01 and
XHTML validity [14]. The recommended approach is to
not embed RDF/XML in HTML/XHTML but rather to use
the <link> element in the <head> element of the HTML/X-
HTML to point at a separate RDF/XML document [15].
The problem of embedding RDF/XML in HTML is exten-
sively discussed in [12]. Using the <link> element, the ref-
erence in our example looks as follows:

<link rel="meta" type="application/rdf+xml"

href="album1234.rdf"/>

We also support this way of associating RDF with HTML
using the WEESA transformer. This second type of trans-
former, the WEESA transformer, takes the XML document as
input from the pipeline and produces RDF/XML as out-
put. This output is then taken by a serializer and sent to
the client. In this case the pipeline for the HTML page
is unchanged, only the <link> element has to be added to
the Web page. The pipeline for the RDF generation looks
similar to that for HTML. Using the <link> tag has the
advantage that the RDF description has to be generated on
request only. This, however, has the drawback, that the
schema valid XML document has to be generated a second
time.

7. RELATED WORK
To our knowledge not much work has been done to inte-

grate the Semantic annotation process into Web engineering.
In [13], the authors suggest an extension of the Web Site De-
sign Model (WSDM). In this approach object chunk entities
which are artifacts in the Web application design process are

mapped to concepts in the ontology. The WSDM extension
also enables the annotation of dynamic pages. Mismatches
in granularity are tackled with the help of intermediate on-
tologies which can only be used to concatenate object chunks
and does not allow any further flexibility to address the gran-
ularity problem.

There exists other related work that is not directly re-
lated to Web engineering but analyzes the structure of an
XML document to access the semantic of the content. The
Meaning Definition Language (MDL) defines what an XML
document may mean in terms of a UML class model, and de-
fines how that meaning is encoded in the nodes of the XML
document [16]. It enables tools and users to access XML at
the level of its meaning rather than its structure. A different
approach is taken in [1]. There the DTD and XPath is used
to establish a mapping between XML fragments and ontol-
ogy concepts. Both approaches do not support variables in
the mapping definition, and do not offer the flexibility to
further process the XML content in Java methods to better
match the ontology requirements.

There is further related work in the area of Semantic
annotation. CREAM/OntoMat [7] is a Semantic annota-
tion framework that offers several annotation methods such
as manual annotation, authoring of annotated documents,
semiautomatic annotation, and the annotation of dynamic
pages. This flexible approach is, however, not integrated in
the Web engineering process.

In the area of interpreting XML as RDF data several ap-
proaches exist. In [11], XML documents are interpreted as
RDF data via a RDF Schema to enable machines to in-
terpret XML unambiguously as a set of statements in the
RDF data model. The round-tripping tool between XML
and RDF [2] allows to directly interpret XML documents
with a RDF model using the XML Schema as basis for de-
scribing how XML is mapped into RDF and back. In [5] the
idea is that every element/attribute name maps to a RDF
property, viewing the structure of the XML document as re-
lational model between parent nodes and their children. All
these approaches rely on the equality of the XML element/
attribute names and those of the class/property names in
the ontology. This, however, cannot be guaranteed, since
ontologies are often defined by third parties.

8. CASE STUDY AND TOOL SUPPORT
We have evaluated WEESA in the annual Vienna Interna-

tional Festival1 (VIF) industry case study. VIF is a database
supported Web application that comprises a ticket shop,
over 60 event descriptions, reviews, and an archive over the
last 52 years. The experiences of VIF shows that WEESA
is well suited to develop Semantic Web applications. How-
ever, since WEESA only uses the structure to identify the
concepts in the XML document, free-text and mixed con-
tent can not be annotated. Natural language understanding
would be needed to do so. To our experience, this is not a
problematic limitation since the concepts that can be found
in many ontologies can also be found in the structure of an
XML document.

The VIF case study further showed that database keys
should be accessible in the XML documents to be able to
generate unique resource identifiers for the RDF representa-
tion. The database keys help to ensure that the same identi-

1http://www.festwochen.at

728



fier is used for the same resource throughout the whole Web
application.

At the moment we define the mapping files by hand. To
get a broader acceptance, tool support is needed to de-
fine the mapping. Currently we develop a tool that takes
an XML Schema and automatically generates the maximal
valid tree structure for this schema. Elements/attributes
can then be selected and the XPath expression is generated.
On the other hand, the class hierarchy and the properties
defined in the ontology are graphically displayed. In ad-
dition we present a list of available Java methods that can
be used to further process the element’s/attribute’s content.
This can then be used to define the mapping in a GUI via
drag&drop.

The prototype implementation of the WEESA mapper and
the WEESA transformer can be downloaded under:
http://www.infosys.tuwien.ac.at/WEESA

9. CONCLUSION AND FUTURE WORK
The deployment of the Semantic Web requires Web ap-

plications that are semantically annotated. Authoring Web
pages that offer data and meta-data is a costly task and
has the potential risk of inconsistencies in documents. But
inconsistent data weakens the acceptance of the Semantic
Web. Therefore, support is needed not only for designing
but also for maintaining Semantic Web applications.

This paper presented the WEESA approach to develop Se-
mantic Web applications that is based on established Web
Engineering methodologies. WEESA uses the same XML
documents as source for the HTML page and the RDF rep-
resentation. In the design phase, we define a mapping from
XML Schema documents to ontologies. This mapping can
then be used to automatically generate RDF descriptions
from XML documents. Our approach enables developers to
reuse existing Web engineering artifacts to generate seman-
tically tagged Web applications.

Based on our experiences gained from the first prototype
and the case study we plan to revise the WEESA mapping.
The next version of WEESA should overcome the limitations
listed at the end of Section 5.2. The use of XPath 2 might
help to simplify the mapping definition. We will further
investigate the possibilities to use WEESA’s flexible mapping
approach to map between ontologies and to use WEESA for
ontology mediation.

Our approach focuses on the generation of the RDF rep-
resentation of individual Web pages. Looking at the meta-
data description of a single Web page, however, gives only
a very limited view of the information offered by a Web ap-
plication. For querying and reasoning purpose it would be
better to have the whole meta-data model of the Web ap-
plication at hand. Therefore, we plan to accumulate meta-
data descriptions from Web pages at server side to obtain
the meta-data model of the whole Web application. This
model can be offered for querying or for download in one
stream in contrast to to the current gatherers that open a
new connection for each page. Based on this idea we plan to
harvest meta-data models form Semantic Web applications
to build the knowledge base of a Semantic Search Engine.

Acknowledgements
We thank Pascal Fenkam and Engin Kirda for their valuable
comments and suggestions for improving the paper.

10. REFERENCES
[1] B. Amann, I. Fundulaki, M. Scholl, C. Beeri, and

A.-M. Vercoustre. Mapping XML fragments to
community web ontologies. In Proceedings 4th Int.
Workshop on the Web and Databases, 2001.

[2] S. Battle. Poster: Round-tripping between XML and
RDF. In International Semantic Web Conference
(ISWC), Hiroshima, Japan, November 2004. Springer.

[3] J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0. W3C Recommendation, 16 November
1999. http://www.w3.org/TR/xpath.

[4] The Apache Cocoon project homepage, Last visited
February 2005. http://cocoon.apache.org/.

[5] M. Ferdiand, C. Zirpins, and D. Trastour. Lifting xml
schema to owl. In 4th International Conference on
Web Engineering, pages 354–358, Munich, Germany,
July 2004.

[6] M. Gaedke and G. Graef. Development and evolution
of web-applications using the webcomposition process
model. In International Workshop on Web
Engineering at the 9th International WorldWide Web
Conference, Amsterdam, the Netherlands, May 2000.

[7] S. Handschuh and S. Staab. Annotation of the shallow
and the deep web. In S. Handschuh and S. Staab,
editors, Annotation for the Semantic Web, volume 96
of Frontiers in Artificial Intelligence and Applications,
pages 25–45. IOS Press, Amsterdam, 2003.

[8] J. Heflin and J. Hendler. Searching the web with
SHOE. In Artificial Intelligence for Web Search.
Papers from the AAAI Workshop, pages 35–40, Menlo
Park, CA, 2000. AAAI Press.

[9] C. Kerer. XGuide - Concurrent Web Development
with Contracts. PhD thesis, TU Vienna, 2003.

[10] C. Kerer and E. Kirda. Web engineering, software
engineering and web application development. In 3rd
Workshop on Web Engineering at the 9th World Wide
Web Conference, pages 135 – 147, Amsterdam, the
Netherlands, May 2000. Springer-Verlag.

[11] M. Klein. Using RDF Schema to interpret XML
documents meaningfully. In S. Handschuh and
S. Staab, editors, Annotation for the Semantic Web,
volume 96 of Frontiers in Artificial Intelligence and
Applications. IOS Press, Amsterdam, 2003.

[12] S. B. Palmer. RDF in HTML: Approaches, June 2002.
http://infomesh.net/2002/rdfinhtml/index.html.

[13] P. Plessers and O. D. Troyer. Annotation for the
semantic web during website development. In 4th
International Conference on Web Engineering, pages
349–353, Munich, Germany, July 2004.

[14] W3C: Frequently Asked Questions about RDF: How
do I put some RDF into my HTML pages?, September
2004. http://www.w3.org/RDF/FAQ/#How.

[15] W3C: RDF issue tracking: Issue faq-html-compliance:
The suggested way of including RDF meta data in
HTML is not compliant with HTML 4.01 or XHTML,
January 2004. http://www.w3.org/2000/03/rdf-
tracking/#faq-html-compliance.

[16] R. Worden. Meaning Definition Language (MDL),
Version 2.06, July 2002.
http://www.charteris.com/XMLToolkit/Downloads/
MDL206.pdf.

729


