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ABSTRACT
XML (Extensible Markup Language) processing can incur
significant runtime overhead in XML-based infrastructural
middleware such as Web service application servers. This
paper proposes a novel mechanism for efficiently processing
similar XML documents. Given a new XML document as a
byte sequence, the XML parser proposed in this paper nor-
mally avoids syntactic analysis but simply matches the doc-
ument with previously processed ones, reusing those results.
Our parser is adaptive since it partially parses and then re-
members XML document fragments that it has not met be-
fore. Moreover, it processes safely since its partial parsing
correctly checks the well-formedness of documents. Our im-
plementation of the proposed parser complies with the JSR
63 standard of the Java API for XML Processing (JAXP)
1.1 specification. We evaluated Deltarser performance with
messages using Google Web services. Comparing to Piccolo
(and Apache Xerces), it effectively parses 35% (106%) faster
in a server-side use-case scenario, and 73% (126%) faster in
a client-side use-case scenario.

Categories and Subject Descriptors
I.7.2 [Computing Methodologies]: Document and Text
Processing—markup languages, standards ; D.3.4 [Software]:
Processors—run-time environments

General Terms
Performance, Design, Experimentation

Keywords
XML parsers, SAX, automata

1. INTRODUCTION
XML (Extensible Markup Language) [5] processing can be

a significant runtime overhead in XML-based infrastructural
middleware such as Web Services application servers. [28,
11, 15, 25, 8, 18] The good and bad of XML both lie in
its verboseness. For example, well-formed pairs of named
marking-up tags for XML elements contribute to its human-
friendliness and vender-neutrality, but require extra com-
putation in processing. The computation specific to XML
includes variable representations for the same tag, the han-
dling of namespaces, tolerance for multi-character encod-
ings, etc.
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This paper proposes a novel mechanism for efficiently pro-
cessing XML documents in most cases. Its notable feature
is to remember the documents processed previously and to
use those processed results to deal with a new XML doc-
ument. Incoming XML documents that share very similar
parts with previously-processed documents can be processed
very quickly with this feature. Even though this feature
adds some overhead in processing strange XML documents
(those which are not similar to the documents processed be-
fore) compared to normal XML processing, the gain from
the speed-up for similar documents can easily compensate
for the overhead where there is repetitive processing as in
situations like Web Services middleware.

Given a new XML document as a byte sequence, the XML
parser proposed in this paper, in most cases, does not an-
alyze most of the XML syntax in the document but just
compares the byte sequence with the ones that were previ-
ously processed. The parser then reuses the resultant parse
events stored during the previous processing. Only the parts
differing from the previously-processed documents are pro-
cessed in the normal way for XML parsing. It remembers
the byte sequences in a DFA (Deterministic Finite Automa-
ton), where each state transition has a byte sequence and
its resultant parse event. In addition, the parser remembers
processing contexts in DFA states so that it can partially
parse unmatched byte sequences. The parsing process nor-
mally follows state transitions in the DFA by matching byte
sequences. If no states to transit to are found, it partially
parses the unmatched byte sequence until it finds a resultant
state from which it can transit to existing states. Then it
continues to make transitions in the DFA.

The notable feature of our DFA structure is its “safety”
and “efficiency” in reusing parse events from previously-
processed XML documents. The safe reuse means that the
resultant parse events conform to the XML specification [5,
4]. Note that it must accept well-formed XML documents
and reject ill-formed ones. Efficient reuse means that it
should reuse as many parse events as possible from previous
parsing while minimizing computation costs for the reuse.
Less reuse can cause extra partial parsing, which is costly,
and higher reuse computation cost could cancel the benefits
of reuse. We need to find good trade-offs for efficient reuse,
since aggressive reuse sometimes increases the computation
cost for reuse, and vice versa. We carefully designed the
strategy for constructing DFAs so that they can find a good
trade-off point for efficiency.

Several improvements have been created for efficiently
processing XML documents using application-specific infor-
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mation available from their schemas, such as DTDs. A few
investigated optimization of lexical analysis [8, 9]. However,
schema-based techniques cannot capture the optimizations
from byte-level resemblances among documents, especially
in prefix-namespace binding and in the representations of
tags, since they are not specified in schemas. Most of the
schema-based optimization efforts are focused on higher-
level XML processing rather than on lexical analysis of XML
documents serialized as byte sequences. For an example of
XML document validation, XSM [20] uses cardinality con-
straint automata specialized by accepting schemas, but it
assumes SAX events are the input of the automata, not
low-level byte sequences.

We implemented in Java an XML parser named Deltarser
based on the described mechanism. Our SAX implemen-
tation complies with the JSR 63 [24] (Java API for XML
Processing 1.1) standard specification. We conducted some
experiments and observed its advantages over ordinary XML
parsers in certain representative scenarios which we believe
cover the majority of practical Web Service usages. Though
this paper focuses on the SAX implementation, the same
technology is easily applied to other streaming parsers. In
fact, our pull-parser implementation complies with the JSR
173 [13] (Streaming API for XML) standard specification
and we observed efficiency similar to the SAX implementa-
tion.

The rest of the paper is organized as follows: In Section 2,
we specify the overheads in XML parsing and explain why
there should be opportunities for reducing these overheads
in many practical cases. We describe the design and imple-
mentation of our XML parser, Deltarser, in Section 3 and
show its effectiveness through the experimental results in
Section 4. Finally, we conclude this paper with Section 5.

2. XML PROCESSING OVERHEAD
XML (Extensible Markup Language) [5] is heavily used

in XML-based infrastructural middleware such as Web Ser-
vices [22, 10] application servers, and its processing can be a
significant runtime overhead. The reason why the processing
overhead of XML is high lies in its verboseness.

2.1 XML Processing in Web Services
Middleware

The cost of XML parsing has a large impact on the ex-
ecution performance of recent XML-based middleware [28,
11, 15, 25, 8, 18]. XML-based middleware analyzes XML
documents to construct data objects for its application pro-
grams or for its own use. For example, a Web Service appli-
cation server for service applications in Java receives SOAP
messages encoded in XML and deserializes them into Java
objects while it reads its settings from a file, whose format
is also defined in XML by JSRs [16, 17].

Web Service middleware uses XML heavily since XML
is a key construct of Web Services. Web Services are en-
abling technologies for vender-independent distributed en-
vironments where loosely coupled servers can interconnect
to each other. In such environments, standard specifica-
tions define most of things to be written in the XML-based
languages recommended in the specifications. For example,
messages passed in Web Services are enveloped according to
SOAP [22], which is a protocol using XML for messaging.

In addition to messaging, there are a number of other
places where XML is used in Web Services middleware. For

publishing available Web Services, the services are described
in WSDL [10] (Web Services Description Language), which
specifies the format for service descriptions. Configuration
files like webservice.xml for application servers are often
described in XML, as defined in JSR 109 [16] and JSR
921 [17].

2.2 Overhead Constructs in SAX Processing
The computations specifically required to process XML

documents include tolerance for various character encodings,
variable length data, ignorable white spaces, line break nor-
malization, the handling of namespaces, and the creation of
parsed result objects. Figure 1 shows the normal processing
model in conventional XML parsers for SAX [24].

Lexical analyzer

bytes

Syntax analyzer

“ <“ “ >“QNAME
“ n:doc”

QNAME
“ xmlns:n”

“ =“ VALUE
“ uri:n1”

TEXT
“ \r\n ”

“ </“ “ >“QNAME
“ n:doc”

TEXT
“ \r\n ”

…lexical
tokens

Character encoding & line separator converter

characters

<n:doc xmlns:n=“ uri:n1” >\r\n … \r\n</n:doc>

StartTag
name=“ n:doc” , attributes={ .. }

Text
text=“ \r\n ”

EndTag
name=“ n:doc”

… Text
text=“ \r\n ”

parser
events

Namespace handling & SAX events construction

SAX
events

StartElement
name=“ n:doc”  ..

EndElement
name=“ n:doc”

…StartPrefixMapping
prefix=“ n” , uri=“ uri:n1”

StartDocument EndDocument

Figure 1: Processing stages in normal XML parsers
for SAX.

First, an XML parser needs to convert the character en-
codings, since the external encoding, the encoding format in
which an XML document is encoded, may be different from
the internal encoding, the encoding format used in a pro-
gram. For example, an XML document is often encoded in
UTF-8, while a Java program handles characters in UTF-16.
An XML parser must convert the original UTF-8 encoded
characters into UTF-16 encoded characters in order to use
the characters in the middleware or to pass them to appli-
cation programs.

Processing XML documents requires the recognition of
token delimiters like “<” and “>” [5] since XML data ob-
jects normally have varying lengths. Like most program-
ming languages, an XML document must be “parsed” to
recognize lexical tokens, even though the syntax is relatively
simple and easy to analyze. This is extra runtime overhead
compared to efficient wire formats with fixed-length struc-
tures [6].

XML allows ignorable spaces in its tags. For example, a
start tag:

<doc language="Japanese">

can also be written as:

< doc language = ’Japanese’ >

White spaces, tabs, new lines, and carriage returns are al-
lowed in many places. It means that there are a variety of
ways to express a tag with the same meaning. An XML
parser must skip such ignorable spaces. This adds an over-
head cost since it requires testing whether or not each char-
acter data is one of these ignorable characters.

The normalization of line separators is also a task handled
in an XML parser. The XML specification allows lines to
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be separated by single LF characters, by CR LF character
sequences, or by single CR characters. However, internally
these separators are always converted to single LF charac-
ters. An XML parser must detect LFs, CR LF pairs, and
CRs to convert all of them to LFs.

An XML document may use namespaces [4] to avoid col-
lisions among tag names or attribute names, so an XML
parser must handle namespaces for documents using them.
Since XML namespaces are scoped within elements, name-
space handling involves stacked map management for match-
ing each namespace prefix to its namespace URI. For exam-
ple, the nested elements:

<n:doc xmlns:n="uri:n1">

<n:title xmlns:n="uri:n2"/>

<n:item/>

</n:doc>

have the same namespace prefix “n” but they must be re-
solved to different namespace URIs, uri:n1 for doc and
item, but to “uri:n2” for title.

Finally, an XML parser needs to construct parsed result
objects so that it can pass them to its users (middleware
or application programs) through an API like SAX. For ex-
ample, with SAX 2.0 [24], an application subclass overrides
a method startElement() in the class ContentHandler. A
SAX parser is responsible for creating String objects for
its namespace, local name and qualified name parameters,
and Attributes objects for its attributes parameter to pass
them through this interface.

2.3 Opportunities and Challenges in XML
Processing

On balance, we believe there should be a lot of opportu-
nities to optimize the processing of XML documents. Even
though optimizing for general cases is hard to do, optimizing
for special cases is possible. For example, if we knew all the
messages were formed in a certain way, we could optimize
the parsing process for such XML documents.

In an environment of Web Service application servers, we
can expect that most of the messages will be generated by
machines. In particular, RPC-style request-response mes-
sages are often generated by middleware with XML serial-
izers. When accessing Web services in client code, proxy
classes and frameworks provided by middleware handle all
of the infrastructure coding. For example, a C# client uses
the .NET framework to access Web Services, and a JAX-
RPC client may use the javax.xml.rpc.Call instances im-
plemented by some particular vendor.

Though formatting styles are different for various pro-
gramming languages, implementation vendors, or versions,
the same XML serializer implementation generates the same
kind of service requests and responses with different param-
eters and return-values in very similar byte sequences. This
is because such XML serialization is performed by a certain
runtime library or by proxy code generated by a certain tool
provided by middleware or a development environment. As
a result, recurring SOAP messages often form very similar
byte sequences except for the contents of elements repre-
senting different parameter values, as long as they are sent
by application programs with the same infrastructural mid-
dleware.

A key challenge in optimizing XML processing is to pre-
serve the interoperability of the XML documents. We can

do anything in closed environments using XML as the wire
format, but it is expected that XML is mainly used in open
environments, where there may be many participants con-
forming to the XML specifications [5]. An optimized XML
parser must not reject or be broken by XML messages in
forms unexpected by the optimization.

In addition to the compatibility, another key challenge is
to make optimizations tolerant of implementation changes
in infrastructural middleware. An optimization for a limited
set of XML serializer implementations can easily be obsolete
and ineffective, since they are easily changed by new imple-
mentation versions or by new implementation vendors.

3. DELTARSER
We designed an XML parser named Deltarser, which can

efficiently and safely process XML documents similar to pre-
viously processed documents. The efficiency for similar doc-
uments applies in situations like Web Service application
servers, where middleware needs to process a lot of similar
documents generated by other middleware. In addition, the
parsing of Deltarser is “safe” in the sense that it checks the
well-formedness of the processed documents.

From the viewpoint of users, Deltarser looks just like an
XML parser implementation and has the same functionality
as normal XML parsers such as the Apache Xerces [27] im-
plementation. In fact, the SAX implementation of Deltarser
complies with JSR 63 [24], which is a standard API for XML
processing in Java. Applications or middleware using XML
parsers through the standard API can easily be changed to
use Deltarser without modifying the code.

In the best cases, given a new XML document as a byte
sequence, Deltarser does not analyze most of XML syntax
in the document, but just compares the byte sequence with
those that were already processed. The parser reuses the
processed results stored in memory for the matching parts.
Figure 2 depicts the abstract view of SAX processing with
Deltarser.

bytes

Byte sequence matcher and event diff calculator

<n:doc xmlns:n=“ uri:n1” >\r\n … \r\n</n:doc>

SAX
events

StartElement
name=“ n:doc”  ..

EndElement
name=“ n:doc”

…StartPrefixMapping
prefix=“ n” , uri=“ uri:n1”

StartDocument EndDocument

Lexical analyzer

Syntax analyzer

Character converter

SAX construction

Partial parser

Events producer

Recorded
events

Generated
events

Recorded
events

Matched
parts

Matched
parts

Different
parts

differential
information

Figure 2: Processing stages in Deltarser for SAX.

The key ideas and technologies we developed for Deltarser
are as follows:

Byte-level matching for XML processing It makes use
of byte-level matching for the most parts of the doc-
ument to be processed. Since we take the context of
the XML document into consideration, we can reli-
ably compare XML documents by only doing byte-
level matching.
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Remembering processed documents in a DFA For ef-
ficiently remembering and comparing previously pro-
cessed documents, it remembers the byte sequences of
the processed documents in a DFA (Deterministic Fi-
nite Automaton) structure. Each state transition in
the DFA has a part of a byte sequence and its resul-
tant parse event.

Partial parsing It partially processes XML parsing only
the parts that differ from the previously-processed doc-
uments. Each state of the DFA preserves a processing
context required to parse the following byte sequences.

Incremental well-formedness checking It reliably che-
cks the well-formedness of the incoming XML docu-
ments even though it does not analyze the full XML
syntax of those documents. Deltarser’s partial XML
processing for differences checks whether or not the
entire XML document is well-formed. It retains some
contextual information needed for that processing.

In the rest of this section, first, we introduce the funda-
mental framework of the automaton used to extract differ-
ences from incoming documents and how to incrementally
construct the automaton. We go on to explain how to pro-
cess the partial results. Finally, we describe how to effi-
ciently notify the applications of the SAX events.

3.1 Byte-level Matching for XML Parsing
The main action of Deltarser is byte-level comparison,

which is much faster than actual parsing. When feeding
the actual XML document to this state machine, we have
only to compare the byte sequence of each state and the
incoming document.

Applying naive byte-level comparison to XML documents
gives rise to a serious problem. We might misinterpret the
document because the byte-level representation of some XML
fragment is not uniquely interpreted based on the informa-
tion currently in view of the XML infoset, i.e., the same byte
sequence can be interpreted with different semantics, which
depend on the current context. Let us look at the following
example.

<x:a xmlns:x="ns1"> </x:a>

<x:a xmlns:x="ns2"> </x:a>

Let us focus on both of the end tags. Although they match
exactly, they have different semantics in the XML view. This
is because the namespace declarations are different.

In order to address this problem, we must take context
into consideration when matching XML documents at the
byte level. We rely on Proposition 1 below to process XML
documents.

In preparation for presenting the proposition, we define a
context, C = (E, N, D, l), which consists of E, a sequence of
elements to which it currently belongs; N , all of the name-
space definitions that are currently visible; D, all declared
entities of the document; and l ∈ {0, 1, 2, 3, 4, 5}, the loca-
tion in the document, where l = 0 means the beginning of
the document, l = 1 means either a document declaration
or a document element has not occurred, l = 2 means a doc-
ument declaration has occurred but the document element
has not, l = 3 means it is now within the document element,
l = 4 means it is now after the document element, and l = 5
means the end of the document. As a special treatment for

the uniqueness of initial and final states, when l = 0 or l = 5,
we define all the other components in the context as empty.
This treatment does not cause any problem because at the
beginning and the end of the document we do not need any
other information than l for that context.

Definition 1. Let d be an XML document, and p ∈ Integer
be the offset in bytes that points to d. By definition, C(p) is
the context of the point p.

Let us consider the following XML document.

<a xmlns:p="xxx"> <b> A </b> </a>

In this example, the context at the point of A is

E = {a, b}, N = {(prefix =′ p′, uri =′ xxx′)}, D = {}, l = 3.

Proposition 1. Let ev1 be an event and C1 be a context
that ev1 belongs to. Provided that the document from a cer-
tain point, p0, matches with the byte sequence of ev1 for its
length and C(p0) is equal to C1, then the parsed event from
p0 must be equal to ev1.

Proposition 1 is naturally inferred from the specification of
XML [5, 4].

Strictly speaking, an external entity reference is resolved
every time it is about to be parsed, which allows for the
possibility that the referred entity might have been changed.
In this paper, however, we do not take this into consideration
since it is a very unusual case. In addition, SOAP does not
allow document type declaration.

In order to simplify the character-level interpretation, we
assume the character encoding of the document is “state-
less”. Both UTF-8 (1 byte is 1 octet) and UTF-16 (1 byte
is 2 octets according to ISO/IEC 10646), which are the only
encodings XML parsers must support, satisfy this require-
ment. Stateless here means that 1) one character directly
corresponds to the certain number of bytes; and 2) an XML
special character forms a distinct one byte in the encoding.
For other encodings such as ISO/IEC 2022 variants, we can
convert them before processing a document (as the normal
parsers do). In addition, such complex encodings are rarely
used in XML, and especially for SOAP messages, because
such encodings cause many problems for interoperability[3].
Thus, this approach is not a drawback compared to other
XML parser implementations.

3.2 Representing Parsed Documents as an
Automaton

In Deltarser, each parse event and its corresponding byte-
sequence are stored in one edge of an automaton. This au-
tomaton has two major characteristics: 1) it can directly
process byte-level events; and 2) it accepts only well-formed
XML documents. Let us look into how this automaton is
constructed.

First, we represent a parsed document as a sequence of
events. Figure 3 shows the static structure of the event
classes.

Each event has a one-to-one correspondence to a fragment
of the XML document so that it has a byte representation in
the actual document. Note that a context is updated after
each event is processed, which consists of a sequence of Start-
TagEvent and all of the declared entities. From the context,
we can identify 1) what namespace declarations have been
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-byte-sequence
Event

-text
TextEvent PIEvent

EndTagEvent

StartTagEventEmptyTagEvent

-name
TagEvent

-attributes
TagWithAttributesEvent

-name
-value

Attribute

1 *

DocTypeEvent CommentEvent

NameSpaceDecl

1 *

-defined-entities
Context *11

*

EntityRefEvent

*

1

Figure 3: Static structure of an event in a UML
diagram.

declared so far; 2) the hierarchy of elements where the event
is located; 3) how to resolve entity references; and 4) which
part of the document is currently processed. This informa-
tion is an integral part of how to construct an automata.

Let us look at the following sample document.

<p:e xmlns:p="urn1">text<x a="ccc" p:b="ddd"/></p:e>

This is converted to a sequence of events as follows.

[StartTag: name="e" uri="urn1"

{Attributes: }

{NSDecls: (prefix="p", uri="urn1")}]

[Text: value="text"]

[EmptyElementTag: name="x" uri=""

{Attributes: (name="a", uri="", value="ccc")

(name="b", uri="urn1", value="ddd"}]

[EndTag: name="e" uri="urn1"]

After converting the document into events, we can con-
struct an automaton by regarding the context itself as its
state. In this step, the same contexts are unified into only
one state. The equivalence of contexts is naturally defined
as being all of the items in these context are equal, i.e., all
the element in E, all of the declared namespaces in N , all
of the entity definitions in D, and the integer value of l are
equal. We treat the initial and final states as special. The
initial state is regarded as the start of the document, i.e., l
in its context is must be 0; and the final state is regarded as
the end of the document, i.e., l in that context must be 5.

Let us look at the process step by step. First, we define
all the contexts in the document as states in the automaton.
Next, by tracking the sequence of events that come from the
actual document, we can connect these states with the event
as edges of the automaton. In this phase, events that have
the same byte representations are regarded as equal, and
we do not add duplicated connections with states, because
if byte representations and contexts are equal, then the in-
terpreted events are also equal. Finally, we mark the states
where l in the state’s context is 0 and 5 as initial and final
states, respectively. The above example can be represented
as shown in Figure 4.

3.3 Matching a Document with an Automaton
Although Deltarser compares an incoming document at

byte level, it identifies the differences at the event-level, i.e.,
whenever it finds any discrepancies at the byte level, it in-
terprets them as event-level differences.

<p:e xmlns:p="urn1"> 
E={urn1#e}, N={(prefix="p", uri="urn1")}, D={}, l=3

</p:e>

<x a="ccc" p:b="ddd"/> 

text 

Figure 4: Example directed graph that corresponds
to a parsed document.

<p:e xmlns:p="urn1">text<y/></p:e>

Figure 5: A sample XML document.

Now let us see how a similar document is actually pro-
cessed. We suppose that we have the state machine shown
in Figure 4 beforehand, and process the sample document
shown in Figure 5.

First, we set the current state to the initial state and
the current position to the head of the incoming document.
Since the only possible next state is <p:e xmlns:p="urn1">,
we compare its byte sequence with the sample document
from the current position. These are exactly the same until
the end of the state’s byte sequence, and therefore, we move
the current state to the next state,
E = {urn1#e}, N = {(prefix =′′ p′′, uri =′′ urn1′′)},
D = {}, l = 3,
and the current position to the corresponding position. At
this point, the possible next events are text,
<x a="ccc" p:b="ddd"/>, or </p:e>. In order to efficiently
compare these with the incoming document, we use a binary
search technique. Provided that the byte sequence of these
events was sorted beforehand, we can quickly find the ap-
propriate state. In this case, we select text as the accepted
event, and stay in the same state.

3.4 Updating an Automaton
Our parser incrementally modifies the original DFA by

adding new events made from the byte sequence of a new
document when it fails to match the incoming byte sequence
with the DFA. Let us consider this situation by continuing
with the example.

On continuing, the possible next events are still the same,
text, <x a="ccc" p:b="ddd"/>, or </p:e>, neither of which
matches with the incoming documents byte-sequence, <y/>.
Therefore we cannot move to any next state in the state ma-
chine. At this point, we must partially parse the document
from the last matched position. In this example, we parse
from the position immediately after text. Hence, we parse
the document from <y/></p:e> with only one event by using
the information about the last matched state. Notice that
we also have to check that the parsed result is well-formed.
In this case, we obtain a new event:

[EmptyElementTag: name="y" uri="" {Attributes: }]

After parsing it, we are able to incrementally add a new
edge. In this example, the context is still the same even after
the EmptyElementTag event. Thus, we only have to add a
connection to the same state, as shown in Figure 6.

This process eventually causes a new bifurcation in the
state machine, but it should be stressed that this bifurcation
leaves the automaton deterministic, because if these byte
sequences exactly match with each other, these events must
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<p:e xmlns:p="urn1"> 
E={urn1#e}, N={(prefix="p", uri="urn1")}, D={}, l=3

</p:e>

<x a="ccc" p:b="ddd"/> 

text 

<y/>

Figure 6: Adding a new edge as a parse event.

be exactly matching under the same context so that we do
not have to add a new edge.

In practice, since adding edges inevitably consumes some
memory, we should limit the number of edges for one state
(i.e. a context). In particular, text events, processor instruc-
tion events, or comment events all lack “patterns,” so that
many of those are not worth remembering. Our Deltarser
can limit the number of text events for each context to a
certain fixed number, denoted by Mtext.

Next, we can continue to process the rest of the document
by byte matching. The next byte-sequence is </p:e> and it
exactly matches an event in the state machine. Thus, we
can move to the final state. Since the document ends here,
we have finished the processing.

It is clear that we can efficiently process the document
with byte matching and incrementally process the document
by following the above procedure. However, is this proce-
dure safe? In other word, does it really ensure accepting
only the well-formed documents? We discuss this question
in the next subsection.

3.5 Well-formed Automata
Let us first state the conclusion. The automata con-

structed by the above procedure accepts a document only
if it is well-formed. We call such automata well-formed au-
tomata. This characteristic is essential for the safe process-
ing. In addition, suppose that the partial parser accepts all
well-formed documents, and then the automata is extended
to accept these documents.

A formal definition of a well-formed automaton is that
all of the paths in the automaton from the initial state to
the final state must correspond to a well-formed document.
Whenever the automaton remains well-formed even after it
is extended due to incremental processing, then the pro-
cessed document is certain to be well-formed by definition,
because it corresponds to a valid path from the resulting
well-formed automaton.

We do not give rigorous proof here, but sketch why the
above procedure assures the automaton remains well-formed.
Context is a key concept in the proof. Let us suppose we
have a well-formed automaton beforehand, and the partial
parser adds some events as edges in the automaton, and
then we obtain a new distinct path, which consists of the
sequence of contexts, C1, ..., Cn, and C1 and Cn must exist
in the previous automaton. This condition is guaranteed by
the fact that there is only one initial and one final state in a
well-formed automaton, so we will share at least the initial
and the final state for every well-formed document.

By Proposition 1, the interpretation of the incoming byte
sequence as XML at C1 is always the same. Therefore the
partial parser can check whether or not the incoming byte
sequence at the point of C1 is well-formed, because all of
the required information to check it (other than the incom-

ing byte sequence itself) is completely defined within the
context. Strictly speaking, to prove this statement, we have
to check all of the well-formedness rules in the specification
of XML [5, 4]. However, since we do not need any informa-
tion from farther ahead in the document during parsing to
check the well-formedness (according to the design of XML),
we can give the well-defined context anyway. Since, accord-
ing to our definition, the context has all of the information
that affects the interpretations of incoming byte-sequences,
it can always be mapped to (some other) well-defined con-
text. Therefore, we can also regard our definition as a well-
defined one.

Suppose the automaton is still well-formed after adding
C1, then we create a new context, C2, and proceed to parse
the next incoming byte sequence, and then check if it is well-
formed in C2. Inductively, we can reach Cn that comes from
the previous well-formed automaton, and after Cn, since the
interpretation of the byte sequence is exactly the same, all of
the paths after it must correspond to a part of a well-formed
automaton. Therefore all of the new paths in the extended
automaton correspond to well-formed documents.

As for the first well-formed automaton, we can construct it
by simply connecting from the initial state to the final state
with the empty element tag event of the document element.
Therefore, the above procedure insures the automaton is
well-formed.

3.6 Partial Parsing
When the incoming byte-sequence does not match with

any events in the state, we have to partially parse the docu-
ment. We require a context in order to parse the document
from an intermediate point, which is available in each state
of the state machine. The partial parser parses the byte-
sequence for one event and updates the context if required.

The partial parser has few disadvantages compared to the
typical non-partial parsers. We can instantly continue to
parse a document since the context has all of the essential
information.

Note that we have to provide a special treatment for gen-
eral entity references. According to the XML specifica-
tion Section 4.3.2 [5], if all of the entities are well-formed,
each logical and physical structure must be properly nested.
Therefore we can regard the replacement text of such an
entity reference as one event. That is, it does not alter the
context after the entity reference if it is well-formed. Even-
tually, the partial parser only has to treat an entity reference
as a distinct event, and check that its replacement text fol-
lows the constraints of well-formedness.

3.7 Notifying SAX Events
While processing an XML document, Deltarser sends SAX

events to an application as its output. To minimize the
computation cost for reuse by avoiding object construction
as much as possible, it prepares SAX event objects in their
final form when remembering the processing results to avoid
object construction.

For example, a TagWithAttributesEvent instance has an
object that implements the Attribute interface required for
SAX events. Since this object is immutable, we can safely
reuse it without duplicating it. StartTagEvent and End-

TagEvent have arrays for a startPrefixMapping SAX event
and a endPrefixMapping SAX event, respectively, both of
which are reusable. In contrast, we cannot reuse character
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arrays in TextEvent for characters SAX events because ap-
plications may alter them. Thus, Deltarser duplicates them
to send to the applications.

4. PERFORMANCE EVALUATION
This section describes a performance evaluation of our

prototype implementation. First, we conducted some fun-
damental performance analysis experiments. Then we ap-
plied it to real-world application scenarios of XML parsing
for Web services middleware.

We did performance comparisons between our parser and
two other XML parsers: Apache Xerces [27] and Piccolo [30].
Xerces is one of the most popular parsers and Piccolo is re-
garded as one of the fastest SAX parsers. The experimental
environment was using Sun Hotspot Server VM 1.4.2 on
Linux Kernel 2.4.18-14, running on an IBM IntelliStation M
Pro 6850-60J (Intel Xeon 2.4GHz CPU with 512KB cache)
with 2GB of memory.

In this experiment, we set the number of remembered text
events in each context (defined as Mtext in Section 3.4) to
1. This value is determined by our observation that most
texts fall into two classes, those that never change (so one
string is enough) and those that change almost every time
they appear (so there is no benefit from saving them).

4.1 Fundamental Performance Analysis
First, a fundamental performance analysis was conducted

by comparing the total elapsed time with the other XML
parsers in two cases. In the first case, the incoming docu-
ment is highly similar to the previously parsed document,
so the parser can skip the parsing and generation of SAX
events for a large portion of the XML message. In con-
trast, the second case is when the incoming document is
completely different from the previously parsed documents
so that the performance of our parser includes the total of
the time for parsing, for creating new automata states, and
for generating the SAX events.

We excluded the compilation time of the JIT compiler
from the measurements by running the benchmarking pro-
gram for 10,000 iterations before the measurements. In Web
Service middleware, it is expected that the stable running
state continues unchanged for a long time. Therefore, it is
more appropriate to measure the execution time after the
JIT compiler has completely compiled the code. Then we
measure the total time to perform 10,000 iterations of pars-
ing XML documents to estimate the average time for parsing
one document.

The Cost of Matching
In this way we can measure the performance when a large
number of XML documents with similar structures are ar-
riving. In other words, all of the start tags and end tags
are matched, but the text content may vary. We performed
the experiment in two cases: the case where all of the text
content is the same, and the case where the text content is
always different.

For Web Services, the structure of the request XML doc-
uments is defined in WSDL. Therefore, request documents
for the same operation are very similar if the documents are
generated by the same implementation. For example, re-
quests for a certain search operation are likely to differ only
in the text content. Hence, in this experiment, we changed
just the text content for the incoming documents.
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Figure 7: Average elapsed times for parsing an XML
document.

Figure 7 shows the results of our experiment. In this
experiment, some XML documents which include Google
search responses are used. We generated some XML doc-
uments of various sizes, from 1 KB to 64 KB, by changing
the number of search results. Then we measured the elapsed
time for 10,000 iterations, and the average time for one pars-
ing is shown in Figure 7.

“Deltarser (complete match)” and “Deltarser (element only
match)” show the complete match and the case when all of
text content has changed, respectively. When our parser re-
ceives a similar document, our parser is approximately 90%
faster than Xerces and 70% faster than Piccolo.

The Cost of Creating New Automaton Paths
Comparing to partially parsing text content, parsing ele-
ments is costly in Deltarser, since this creates new states in
the DFA. These costs are in proportion to the number of
elements that must be partially parsed.

In order to estimate the cost of partial parsing involving
state creation in a DFA, we measured the elapsed time for
applying partial parsing to a full XML document. We used
1 KB Google search response messages, which is the same
message used in the previous experiment.

We also wanted to estimate in how many times Deltarser
can compensate for the penalty of partial parsing by pro-
cessing similar documents. Therefore we parsed many struc-
turally similar documents with different text contents. This
parsing process is identical to “Deltarser (element only match)”
in the previous experiments.

Figure 8 shows the cumulative parsing times for a group
of similar documents. The x-axis is the number of similar
XML documents that were parsed.

For partially parsing and creating full states for an XML
document, it takes 2.32 ms, whereas Xerces parsing takes
0.14 ms and Piccolo parsing requires 0.08 ms. We can see
that Deltarser overtakes Piccolo with regard to the total
parsing time before 50 similar documents are processed.

Memory Usage
We also evaluated memory usage for the number of memo-
rized XML documents. For this experiment, we temporarily
modified our parser to force the automaton to store even the
same XML document as a new path. Then we measured the
memory usage when it stored many XML documents. Fig-
ure 9 shows the memory usage when many 1 KB and 5 KB
XML documents are stored. The result suggests that the
memory consumption is acceptable in such an environment.
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Figure 8: Cumulative parsing costs for a group of
similar documents.
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Figure 9: Memory consumption for storing docu-
ments.

A key assumption is that our parser is intended for server-
side machines with relatively large memories. We believe
that the result in Figure 9 shows that the memory consump-
tion is acceptable in such an environment. Even though 64
MB of heap memory are used for 800 documents, it should
be rare that one parser needs to handle hundreds of different
kinds of XML documents without any similarities. However
it would be good to have a function for discarding relatively
ineffective automaton paths. We could employ some well-
known cache replacement algorithm such as the LRU (Least
Recently Used) algorithm to do so.

4.2 An Application Benchmark
We evaluated Deltarser through scenarios based on a real-

world application, the Google Web APIs [14]. This is a
Web service that allows software developers to access a set
of services provided by Google via the SOAP and WSDL
standards. We provided scenarios for server-side and client-
side services.

The Google Web Services
Google Web Services has three services: searching, returning
a cached page, and spelling suggestions. The corresponding
request operations received by the servers are doGoogle-

Search, doGetCachedPage, and doSpellingSuggestion, and
the corresponding response operations received by the clients
are doGoogleSearchResponse, doGetCachedPageResponse,
and doSpellingSuggestionResponse, respectively.

Note that the properties of the incoming SOAP messages
are different between the server side and the client side as
regards Deltarser performance. In this scenario, a server

tends to receive different formats of incoming SOAP mes-
sages from various clients that serialize the messages with a
variety of SOAP implementations such as .NET, Axis, and
so forth. Meanwhile, the client tends to send its request to
only one SOAP container and then receives XML messages
in a specific format serialized by a single serializer imple-
mentation.

For testing the server-side scenario, mixed messages of the
three request operations were used. We assumed that the
searching service is used more frequently (60%) than the
other services (20% for each). For the client-side scenario,
our experiment used only response messages for the search-
ing service. This client scenario is reasonable since a client
does not need to use all of the services.

Message Serializers
We used two serializer implementations to generate SOAP
messages: Apache Axis and Microsoft .NET Framework.
These two serializers generate SOAP messages with different
namespace prefixes and different white spaces for identical
operations.

We provided two sets of messages to parse. The first set
includes only the Axis version of the request messages. It re-
sults in three “different” message groups, which would make
Deltarser to generate three distinct paths of state transitions
in its DFA. The second set includes both Axis and .Net ver-
sions, resulting in six different message groups.

We experimented with two sets of messages on the server-
side scenario to see the impact of the numbers of serial-
izer variations. For the client-side scenario, we only experi-
mented with the first, Axis-only set of messages.

Parameter Values
The parameter values of the three operations in the request
and response messages may vary for each message. For ex-
ample, the query keyword parameter value varies frequently
while the encoding parameter value remains in UTF-8. We
assumed that 4/10 of the parameter values in the search-
ing operation request vary frequently and that all of the
parameter values in the other two operations requests vary
frequently. (A total of 57% of the parameter values vary in
the server-side scenario.) Similarly, we assumed that 11/18
of the parameter values in the search responses varied fre-
quently. (A total of 61% of the parameter values varied in
the client-side scenario.)

Experimental Results
Figure 10 shows the throughputs of the parsers in the steady
state for each scenario. For reference and to see the best
and worst cases of parameter value variability, we measured
unrealistic message scenarios for “Deltarser (element only
match)” and “Deltarser (complete match)”, using the same
idea as in Section 4.1. Also for reference, we measured
two unrealistic server-side scenarios of “Server-side (.Net)”
and “Server-side (Axis)”. Each of these scenarios uses only
single-vender messages.

In the server-side scenarios of “Server-side (.NET and
Axis)”, Deltarser parses 106% faster than Xerces and 35%
faster than Piccolo. In the client-side scenario, Deltarser
parses 126% faster than Xerces and 73% faster than Pic-
colo. In addition, we do not see any significant negative
effects from the increased number of serializer implementa-
tion variations.
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Figure 10: Average throughputs for 100,000 docu-
ments in the server/client-side scenarios.
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Figure 11: Elapsed times for parsing XML messages
in the server-side scenario.

Figure 11 shows the elapsed times for parsing the XML
messages before the parsers get to their steady state in
the server-side scenarios. Since the client-side scenario also
shows a similar pattern, we did not present those results.

Figure 12 shows the consumed heap memory size in the
server-side scenarios. We observed an approximately 50 KB
increase for additional serializer implementation variations
by comparing “Deltarser (.NET and Axis)” to “Deltarser
(.NET)” or “Deltarser (Axis)”.

In our experiments, the creation time for new automaton
paths is included in the runtime execution time. However
the cost of creation is relatively large. It is possible to ex-
clude this overhead from the runtime execution time. For
example, we can update the automaton in a separate thread
process, or in a batched process at a time of low system load.
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Figure 12: Memory usage in the server-side sce-
nario.

5. RELATED WORK

5.1 Difference Extraction
The problem of computing similarities between two files

has been studied extensively. Efficient difference extraction
implementation is available in many programs like UNIX’s
diff command. However, it is not straight-forward to apply
it for computing the similarity of a message against multiple
messages. Moreover, we need to find similar parts extracted
from multiple messages, rather than finding a single, most
similar file.

Manber studied how to efficiently find similar files in a
large file system [21] and presented a tool called sif. While
our parser directly remembers the previously-processed doc-
uments in a DFA, sif partitions files into small parts and
then remembers their hash values computed based on their
textual representation. These hash values are used to look
up small parts of files in the file system which is identical
to a small part of a newly-given file. The purpose of these
hash values is to estimate the overall similarity of each file
in the file system to the new file.

Deltarser, however, must take account of processing con-
text for the equality of two document fragments in addition
to textual representation. Though a similar hashing tech-
nique is used for looking up identical contexts in Deltarser,
it just compares two byte sequences for looking up identical
document fragments.

5.2 Protocol Filters
Efficient network packet filters/classifiers [29, 2] often use

pattern matching in order to determine appropriate filters
applied to incoming packets. Since packet formats are not
verbose, they do not need to optimize for sender-specific
packet formats.

XML schema-based optimization techniques [20, 8, 9] cor-
respond to the packet filtering techniques in terms of XML
processing because packet formats can be regarded as sche-
mas for packets. Both do not optimize for variable wire
representation of XML messages or network packets.

5.3 Delta-encoding
Techniques for compressing a data object like a file relative

to another object is called delta-encoding [1, 19], and have
been applied to network data transmission [23, 7, 26, 12],
just to mention a few. Since delta-encoded XML documents
have explicit differential information for previously-received
documents, it is more straight-forward to reuse the results
of previous processing.

However, in order to use delta-encoding, document pro-
ducers and consumers must make some agreements with
each other for encoding methods, which are application spe-
cific. Without standard specifications and recommendations
for the encoding format, the original content of XML doc-
uments cannot extract from the encoded documents. Such
XML documents are no more interoperable in terms of the
standard specifications.

6. CONCLUDING REMARKS
This paper proposed an XML parser named Deltarser,

which has a novel mechanism for efficiently processing XML
documents in most cases of XML-based infrastructural mid-
dleware like Web Services application servers. Given a new
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XML document in a byte sequence, the XML parser pro-
posed in this paper usually does not analyze the XML syn-
tax but just compares the byte sequences with those which
have already been processed. It reuses the processed results
stored before.

The SAX implementation of our parser complies with the
JSR 63 standard, and the Java API for XML Processing
(JAXP) 1.1 specification. In an experiment with a message
for Google Web Services, it parses 126% faster than Apache
Xerces and 73% faster than Piccolo at its best.
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