
Compiling XSLT 2.0 into XQuery 1.0

Achille Fokoue, Kristoffer Rose, Jérôme Siméon, Lionel Villard
IBM T.J. Watson Research Center

P.O.Box 704, Yorktown Heights
NY 10598, USA

{achille,krisrose,simeon,villard}@us.ibm.com

ABSTRACT
As XQuery is gathering momentum as the standard query language
for XML, there is a growing interest in using it as an integral part
of the XML application development infrastructure. In that context,
one question which is often raised is how well XQuery interoper-
ates with other XML languages, and notably with XSLT. XQuery
1.0 [16] and XSLT 2.0 [7] share a lot in common: they share
XPath 2.0 as a common sub-language and have the same expres-
siveness. However, they are based on fairly different programming
paradigms. While XSLT has adopted a highly declarative template
based approach, XQuery relies on a simpler, and more operational,
functional approach.

In this paper, we present an approach to compile XSLT 2.0 into
XQuery 1.0, and a working implementation of that approach. The
compilation rules explain how XSLT’s template-based approach
can be implemented using the functional approach of XQuery and
underpins the tight connection between the two languages. The
resulting compiler can be used to migrate a XSLT code base to
XQuery, or to enable the use of XQuery runtimes (e.g., as will soon
be provided by most relational database management systems) for
XSLT users. We also identify a number of areas where compati-
bility between the two languages could be improved. Finally, we
show experiments on actual XSLT stylesheets, demonstrating the
applicability of the approach in practice.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

General Terms
Languages, Standardization

Keywords
XSLT, XQuery, XML, Web services.

1. INTRODUCTION
As XQuery 1.0 [3] gets closer to recommendation, developers

are starting to consider it as a viable alternative platform for XML
application development. As a result, the question of how XQuery
fits with the existing XML infrastructure becomes a crucial one. In
particular, how to use XQuery together with existing XSLT-based
applications is often a crucial question. In this paper we describe
an approach to compile XSLT transformations into XQuery, and an

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

implementation based on that approach. This provides a practical
solution for using XQuery and XSLT jointly in a way that is both
effective and efficient.

Despite of their similarities, understanding the precise relation-
ship between XSLT and XQuery is not as easy as it seems. On
the one hand, XSLT 2.0 [7] and XQuery 1.0 [3] share many char-
acteristics. Both have XPath 2.0 [1] as a subset and are based on
a common data model [5]. Both are functional languages with-
out side-effects, and both are Turing-complete. On the other hand,
XSLT and XQuery are based on fairly different designs. XSLT re-
lies on a highly declarative template-based approach which gives
the ability to easily extend existing programs or merge programs
together. XQuery is based on a purely functional approach, which
gives more direct control to the user but is somewhat more opera-
tional.

Since they have the same expressive power, one could argue that
either XSLT or XQuery could be used for any given application.
Another option would be to rely solely on the fact that XQuery and
XSLT share a common data model. However, experience suggests
a need for tighter coupling between those technologies. First of all,
even if the languages target two different user communities, mod-
ern applications will increasingly require expertise from both. In
addition, certain applications are more easily written with one lan-
guage or the other. For instance, joins are very naturally expressed
using XQuery’s “FLWOR” expressions, while XML to HTML con-
version is still often easier to write using XSLT’s template-based
approach. Finally, some popular systems will support only one of
those two languages, but not the other. For instance, all popular
database management systems [4] are planning to support XQuery,
but not always XSLT, while some popular editors and libraries sup-
port XSLT but not XQuery. For all those reasons, there is a strong
need to develop technology which can provide a tight coupling be-
tween the two languages.

The main contribution of this paper is an approach to compile
XSLT 2.0 stylesheets into XQuery 1.0, which provides the foun-
dations for a tight coupling between the languages. The compiler
covers almost the complete XSLT 2.0 language, and we provide
experiments with our current implementation that show that the ap-
proach is practical and effective. Because of space limitations, we
concentrate on explaining the compilation rules for the core of the
compiler, notably how to compile XSLT’s template based approach
to XQuery’s functional approach. We also identify key problems in
making the compiler complete, which often relate to specific se-
mantic incompatibilities between the two languages. For most of
those problems, practical solutions are proposed and have been im-
plemented.

One of the strengths of the proposed approach is that the result-
ing compiler can be used for a variety of practical needs. It can be

682

used by XQuery developers who may want to migrate an existing
code base to XQuery. It can be used by XSLT developers who may
want to write applications in XSLT, while running those applica-
tions on top of an existing XQuery run-time, such as provided by
relational database systems. It can also be used as a component in
providing a common XQuery-XSLT infrastructure, which in turn
can be used to enable the development of common optimizations,
as well as the ability to call templates from XQuery expressions, or
vice versa.

The key technical contributions in the paper are:

• We provide detailed compilation rules from the template-
based approach of XSLT 2.0 into XQuery’s functional ap-
proach. The rules are designed in order to provide the most
natural compilation, so that the resulting program can easily
be understood by an experienced XQuery programmer.

• Covering the complete XSLT language is difficult due to its
size and complexity. We identify the fragments of the lan-
guage that are the most challenging to compile into XQuery,
and provide some corresponding solutions. In some cases,
we identify concrete locations for which the alignment be-
tween XSLT 2.0 and XQuery 1.0 could be improved.

• This approach has been implemented in a running proto-
type. We describe the architecture of that prototype and pro-
vide experiments which demonstrate the feasibility of the ap-
proach. Our current prototype runs a very large fragment of
a full set of XSLT conformance tests, and has been tested on
a number of non-trivial stylesheets.

The paper is organized as follows. In section 2, we illustrate the
compilation approach on a simple example. In Section 3, we give
the translation rules for the heart of the compiler. In Section 4, we
focus on the most complex detailed issues that must be addressed
to support the complete language. We describe the implementation
of our XSLT to XQuery compiler and present experiment results
in Section 5. Finally we conclude and give some perspectives in
Section 7.

2. APPROACH AND EXAMPLE
In this section, we illustrate our approach by describing the com-

pilation of a simple XSLT stylesheet into XQuery, and use that ex-
ample to explain some of the key technical challenges and how to
address them.

2.1 Therecipe example
Figure 1 shows a simple recipe stylesheet inspired by the Sarvega

XSLT benchmark [11]. This stylesheet formats a single recipe
XML document to HTML.

An XSLT stylesheet is composed of templates. Each template
associates a pattern that matches against certain nodes to the eval-
uation of an expression. When the node currently being processed
matches a given match pattern, its associated template is evaluated
to create a fragment of the output document. For instance, the very
first rule in Figure 1 matches arecipe element and creates anhtml
element with abody within it. The content of thebody element is
then composed of: ah1 header, which is obtained by applying the
templates to the childrentitle elements within therecipe, a list
of ingredients, and the description for the preparation. The rest of
the stylesheet contains the remaining templates for the other ele-
ments within arecipe.

The template based approach of XSLT is similar to a functional
approach in the sense that templates operate without side effects

<xsl:stylesheet>
<xsl:template match="recipe">
<html>
<body>
<h1><xsl:apply-templates select="title"/></h1>
<xsl:apply-templates select="ingredient"/>
<xsl:apply-templates select="preparation"/>

</body>
</html>

</xsl:template>
<xsl:template match="ingredient">
<xsl:param name="num" select="count(ingredient)"/>
<xsl:value-of select="@name"/>

<xsl:apply-templates

select="ingredient[position() le $num]">
<xsl:with-param name="num" select="$num - 1"/>

</xsl:apply-templates>
<xsl:apply-templates select="preparation"/>

</xsl:template>
<xsl:template match="preparation">
<xsl:apply-templates select="step"/>

</xsl:template>
<xsl:template match="step">
<xsl:value-of select="text()|node()"/>

</xsl:template>
</xsl:stylesheet>

Figure 1: Recipes stylesheet.

over their input parameters. However, there are also some impor-
tant differences. Notably, templates are not called explicitly within
the stylesheet, instead, thexsl:apply-templates expression is
applying the whole set of templates on the selected nodes. The
actual template being triggered is decided using a set of rules spec-
ified as part of the semantics of XSLT. In case of conflicts, XSLT
provides a resolution mechanism based on template priority that al-
ways selects a unique template. On top of this built-in semantics,
the user can partially control how the templates are triggered using
the notion ofmode. It can associate a given template to a mode,
and calls thexsl:apply-templates expression with a particular
mode.

2.2 Compilation approach
The close relationship between XSLT and XQuery makes some

of the compilation easy. Notably XQuery and XSLT share XPath
2.0 as a subset.1 In addition, XPath 2.0 expressions are used only in
specific locations within a stylesheet, which facilitates their iden-
tification during compilation into XQuery. Note that the reverse
translation would be more difficult because XQuery can arbitrarily
compose XPath expressions with other kinds of expressions. On
first approximation, compiling an XPath 2.0 expression to XQuery
1.0 is essentially applying the identity function. As we will see,
this is not entirely true, since some care is needed to make sure
the resulting XPath expression will operate over the proper input
context. Nonetheless, the principle applies, which facilitates the
translation, and makes the resulting XQuery easier to read and edit
for a programmer.

Dealing with the rule-based execution model of XSLT is the
main challenge that must be tackled when compiling stylesheets
to XQuery. First, althoughxsl:apply-templates may resem-
ble a function call, its semantics does not correspond to explicit
function calls, but instead relies on a kind of dynamic dispatch
based on pattern matching, template priority, import precedence,
and modes. Second, the notions of pattern matching and implicit
context item at each point of the evaluation of a stylesheet do not
exist in XQuery. Third, template parameters, as opposed to XQuery

1Note that we do not consider here the compilation of XSLT 1.0,
which would require the treatment of backward compatibility is-
sues with XPath 1.0 [1].

683

function parameters , may be optional. In this section, we focus
on how our compilation addresses these three issues by translat-
ing thexsl:template andxsl:apply-templates instructions
in the example of Figure 1.

Fortunately, with the proper care, the template-based approach
of XSLT can be implemented using XQuery user-defined functions.
The main idea here is to create an explicit function for each tem-
plate, and to replace eachxsl:apply-templates instruction by
an XQuery function call to the generated XQuery function perform-
ing the proper explicit dynamic dispatch.

For each kind of XSLT components, we apply the following
compilation principles:

• XQuery variables are used to model the XSLT context.

• Relative XPath expressions that implicitly depend on the cur-
rent context item, position or size are translated into equiva-
lent absolute expressions (prefix by either a function call or
a variable) that do not depend on the implicit context.

• XSLT match patterns are translated into an equivalent com-
bination of standard XPath expressions with conditionals.

• XSLT templates definitions are compiled into XQuery user-
defined functions.

• xsl:apply-templates are compiled into function calls to
a generated XQuery function which consists of a combina-
tion of XQuery’s conditional expressions to model XSLT’s
dynamic dispatch, and calls to the appropriate XQuery func-
tion for the corresponding templates.

2.3 Step by step translation
In the rest of the section, we illustrate each of those principles on

concrete examples extracted from therecipe stylesheet. In what
follows, we will use the namespace prefixt2q for variables and
functions used by our compiler.

Context and relative path expressions
XSLT uses a notion of context to implicitly pass parameters be-
tween templates during the evaluation. XQuery also supports a no-
tion of context. However, that context cannot be bound explicitly.
In order to deal with that issue, and also avoid possible wrong inter-
action between the XSLT context and the XQuery context, we use
explicit variables to model the XSLT context. Those variables are
$t2q:dot for the context item,$t2q:pos for the context position,
and$t2q:last for the context size.

Each relative path expression within the original stylesheet must
be prefixed by the appropriate bindings to the context variables. For
example, the relative path expressiondescription is translated
into $t2q:dot/description. How the input context is passed
to the path expression must pay attention to the actual way that
expression is constructed. For instance, the translation for the ex-
pressioncount(ingredient/ingredient) is the slightly more
complex:

count($t2q:dot/ingredient/ingredient)

Here, the input parameter is passed on the path within the function
call.

Match patterns
The notion of match pattern does not exist in XQuery. Therefore
the compiler translates match patterns into equivalent XPath ex-
pressions byreversingthe pattern. A node matches a pattern if it
belongs to the list of nodes that this pattern can select.

For instance, the match patternrecipe is translated into the path
expressionexist(self::recipe), which returns true iff the in-
put node is an elementrecipe.

One subtlety is that to obtain the right semantics without nega-
tively impacting performance, the patterns need to be reversed. For
instance, a pattern:recipe/title has to be reversed into a path
expression of the following form:

exist(self::title[parent::recipe])

The more complex XPath expression

people/person[@name="John Doe"]//phone

is reversed into

exist(self::phone[

ancestor::person[@name="John Doe"]/

parent::people])

The detailed translation of patterns can be somewhat involved in
some cases. Attribute patterns must not be translated into an at-
tribute axis as it would not match an input node of type attribute,
but return attributes of that input note. Using the self axis would
not work either, since it would only select the current node if it is
an element. Therefore,@name is translated into the more complex

exist((.)[. instance of attribute("name")])

Similarly, the pattern@*:name is translated into the more explicit

exist((.)[(. instance of attribute())

and (local-name(.) eq "name")])

Finally, special attention must be paid to the translation of patterns
containing steps containing position predicates. For example,

people/person[2]/address

is matched by the address of the second person. The simple trans-
lation

self::address[parent::person[2]/parent::people]

would be wrong, as it would not match any elements (because
parent::person[2] would not select any elements). A correct
translation must recover the position by going up then down the
tree, as follows:

exist(self::address[parent::person[

parent::node()/person[2]=.]/parent::people])

Templates
Templates are translated into equivalent XQuery functions. The
signature of these functions includes the context node, the context
position, the context size and the list of parameters declared in the
template. For example, the following template

<xsl:template match="collection/description">
<xsl:value-of select="text()"/>

</xsl:template>

is translated to

declare function t2q:template1(
$t2q:dot as node(),
$t2q:pos as xs:integer,
$t2q:last as xs:integer,
$t2q:mode as xs:string)

684

{
(text {string-join(

for $t2q:d in data($t2q:dot/child::text())
return ($t2q:d cast as xs:string),’ ’)})

} ;

Template application
Dealing with xsl:apply-templates is the most complex part
of the translation. The evaluation of thexsl:apply-templates
instructions consists of first evaluating the XPath selection asso-
ciated to it and second looking for a template that matches the
selected nodes. All templates with the same mode attached to
thexsl:apply-templates instruction are considered. Whenever
several templates match the same node, then the winner is the one
with the highest priority. Basically, the translation consists of the
following steps:

• Definition of the XQueryapplyTemplates function which
implement the processing described above, i.e., looking for
the correct template function to call.

• The translation of eachxsl:apply-templates instruction
is an XQuery function call to a genericapplyTemplates
function, this for each node selected by the XPath selection
associated with thexsl:apply-templates instruction.

TheapplyTemplates function can be broken down in two main
pieces: template ordering and parameter binding. We first describe
these two pieces and then we put them together.

Dealing with priority
The search for the template to instantiate depends on the template’s
priority and mode. Templates are ordered according to their import
precedence and priority. The latter is either specified by the user
through thepriority attribute on the template or computed by
analyzing the syntax of the template’s pattern [7,§6.4]. Templates
are picked up according first to their import precedence and then
their priority, both statically known.

Dealing with parameters binding
An important mismatch between XQuery function calls and XSLT’s
xsl:apply-templates is that the latter can be called with im-
plicit parameters. For example, the evaluation of the instruction

<xsl:apply-templates select="ingredient"/>

may pass the default value of parameter"num" implicitly to the
evaluation of the"ingredient" template. Default function pa-
rameters do not exist in XQuery. Therefore, when invoking the
generated XQueryapplyTemplates function, parameters must be
fully bound, either by using the value specified in connection with
the xsl:apply-templates instruction (viaxsl:with-param)
or by using the special generated variable$UNDEFINED to indicate
that the default value of the parameter should be used. For example

<xsl:apply-templates select="ingredient"/>

without an explicit parameter in the recipe template is translated to

let $t2q:sequence := $t2q:dot/child::ingredient
return
let $t2q:last := count($t2q:sequence)
return
for $t2q:dot at $t2q:pos in $t2q:sequence
return
t2q:applyTemplates($t2q:dot, $t2q:pos,

$t2q:last,’#default’,
$t2q:UNDEFINED)

whereas

<xsl:apply-templates
select="ingredient[position() le $num]">
<xsl:with-param name="num" select="$num - 1"/>

</xsl:apply-templates>

in the ingredient template is translated to

let $t2q:sequence
:= $t2q:dot/child::ingredient[position() le $num]

return
let $t2q:last := count($t2q:sequence)
return
for $t2q:dot at $t2q:pos in $t2q:sequence
return
t2q:applyTemplates($t2q:dot, $t2q:pos,

$t2q:last,’#default’,
$num - 1)

Dealing withxsl:apply-templates
In addition to context information, the signature of the generated
XQuery applyTemplates function has as many parameters as
there are template parameters with distinct names. The position of
each of these additional parameters uniquely identify the template
parameter name it represents. Thus theapplyTemplates func-
tion has all information required to call the appropriate template
function with all its parameters bound. The following generated
XQuery fragment illustrates this:

declare function t2q:applyTemplates(
$t2q:dot as node(),
$t2q:pos as xs:integer,
$t2q:last as xs:integer,
$t2q:mode as xs:string,
$t2q:param0)

{
(: ... :)
t2q:template3(
$t2q:dot,
$t2q:pos,
$t2q:last,
$t2q:mode,
typeswitch($t2q:param0)

case $t2q:a as comment() return (
if (($t2q:a is $t2q:UNDEFINED))

then count(($t2q:dot/child::ingredient))
else $t2q:param0)
default return $t2q:param0)
(: ... :)

}

Notice the test needed to figure out whether the default parameter
value should be used.

Finally we can outline the functionapplyTemplates, which is
defined as follows (in pseudo-code):

declare function applyTemplates(
$dot as node()?,
$pos as xs:integer,
$last as xs:integer,
$mode as xs:string,
$param1,

...,
$paramN)

{
if ($mode = mode template 1

and fn:exists(select template 1))
then template1
($dot, $pos, $last, $mode,
typeswitch($param1)

685

case $a as comment() return
if ($a is $UNDEFINED)
then default value param 1 template 1
else $param1
default return $t2q:param1,
typeswitch($paramN)
case $a as comment() return
if ($a is $UNDEFINED)
then default value param N template N
else $paramN
default return $paramN

) (: end of template1 function call :)
...
else if ($mode = mode template N

and exists(select template N))
then templaten($dot, $pos, $last, $mode, ...)
else
builtInApplyTemplates($dot, $pos, $last, $mode,

$param1,..., $paramN)
}

wherebuildInApplyTemplates is a function that calls XSLT
built-in templates. TheapplyTemplates function takes as para-
meters the current context node, the current context position, the
current context size and a list ofN parameters of typeitem()*,
namely$param1,. . . , $paramN whereN is the number of distinct
names of parameters defined by templates of the style sheet. All
parameters names of a template are thus mapped into positional
names, from 1 toN.

3. FROM RULE-BASED EXECUTION TO
XQUERY FUNCTIONS

At the heart of our compiler is the ability to translate the rule-
based execution style of XSLT into the “pure” functional XQuery
approach. In this section, we formally present three kinds of trans-
lation rules that achieve this goal, following the approach described
in Section 2. First, templates are mapped into XQuery function de-
finitions. The second kind of translation rules, called XQuery Ap-
plicator Function Generators (XAFG), generates XQuery functions
that encode, in XQuery, all the implicit rules for template selection,
execution and conflict resolution. Finally, another set of translation
rules describes how XSLT applicators (xsl:apply-templates,
xsl:apply-imports andxsl:next-match) are converted into
XQuery by invoking XQuery functions generated by the XAFG
translation rules.

Notations. In this section, we formally describe the compilation
from XSLT to XQuery with a set of translation rules, in the style of
the XPath 2.0 and XQuery 1.0 Formal Semantics. Each translation
rule takes part of an XSLT 2.0 stylesheet as input, and produces part
of an XQuery expression as output. We use the following notations
for the translation rules:

[XSLT stylesheet]Const == XQuery

where Const denotes the translation function name.

3.1 From template definitions to XQuery
functions

Template definition
<xsl:template
match? = pattern
name ? = qname
priority? = number
mode? = tokens
as? = sequence-type>
<!-- Content:

(xsl:param*, sequence-constructor) -->
</xsl:template>

The constructorxsl:template defines a transformation rule
based either on a name (when the attributename is specified) and/or
on a source document (when the attributematch is specified).

Translation rules
Templates withmatch attribute can be statically and completely or-
dered according to their import precedence as defined in [7,§6.4]
and their priority (either explicitly specified, or, if absent, computed
by analysing the syntax of their match pattern as specified in [7,
§6.4]). In the remainder of this paper, we assume that templates
with match attribute have been sorted according to their import
precedence and their priority. (template1, ..., templaten)
denotes the sorted list of templates with match attributes in the in-
put stylesheet. The translation rule of the ith template is as follows:

[<xsl:template match=’pattern’ priority=’number’
mode=’token1...tokent’ as=’type’>

xsl:param1...xsl:paramn
sequence-constructor
</xsl:template>]Const

==
declare function t2q:templatei (
$t2q:dot as node(),
$t2q:pos as xs:integer,
$t2q:last as xs:integer,
$t2q:mode as xs:token,
[xsl:param1]Const,...,[xsl:paramn]Const) as type

{
[sequence-constructor]Const

}

The information required to instantiate a template must be passed
as parameters to the generated XQuery function. The current focus
is specified by the parameters$dot, for the current context node,
$pos, for the current context position, and$last, for the current
context size. The$mode parameter indicates the mode in which the
template is being instantiated. In XSLT, modes allow the process-
ing of a node many times. In XSLT 1.0, the mode in which a given
template is instantiated is always statically known, but this does no
longer hold in XSLT 2.0 where the following is valid:

<xsl:template match=’slide’ mode=’#all’>
<xsl:apply-templates mode=’#current’/>

</xsl:template>

#all denotes all possible modes;#current denotes the cur-
rent template mode. In general, it is no longer possible to stati-
cally reduce the list of templates that can be applied based upon
the mode attribute. Thus, by default, all templates need to be con-
sidered and the current mode passed as argument of the generated
XQuery functions corresponding to XSLT templates.

Finally, template parameters are translated by extracting from
their definition their name and type as follows (note that tunnel
parameters are not supported yet, see section 4):

[<xsl:param
name = qname
select? = expression
as ? = sequence-type
required? = "yes" | "no">
<!-- Content: sequence-constructor -->

</xsl:param>]Const
==

qname as sequence-type

686

If as attribute is not specified,sequence-type is replaced by
item()*.

Templates that do not specify a match attribute are translated
into XQuery functions in a similar manner, and their invocation,
throughxsl:call-template, simply corresponds to a XQuery
function call to the appropriate generated function:

[<xsl:template name=’qname’
mode=’token1 ... tokenN’ as=’type’>
xsl:param1...xsl:paramn
sequence-constructor
</xsl:template>]Const
==
declare function [.]fctname($dot as node(),
$t2q:pos as xs:integer,
$t2q:last as xs:integer,
$t2q:mode as xs:token,
[xsl:param1]Const,...,[xsl:paramn]Const,
$t2q:impPrec as xs:integer,
$t2q:priority as xs:integer) as type

{
[sequence-constructor]Const

}

where’.’ represents the template constructor being translated
and[]fctname is a function that generates unique XQuery function
names for a given XSLT instruction.

[instruction]fctname= concat(”instruction”, ” ”, $decl order)

Note that the two additional parameters of the generated func-
tion are used to explicitly passed the import precedence and prior-
ity of the current template through axsl:call-template. Note
also that as explained in Section 2.3, relative XPath expressions are
translated into equivalent expressions where the context is explicit.

3.2 Capturing applicator logic in XQuery
Generating an XQuery expression that corresponds to the body

of a given XSLT templates is just the first step toward translat-
ing XSLT stylesheets. Once the logic for selection and invoca-
tion with the right parameter values is in place, the final XQuery
function must be created. This section defines a set of translation
rules that generate, for each applicator (xsl:apply-templates
, xsl:apply-imports andxsl:next-match), an XQuery func-
tion which explicitly captures the selection, conflict resolution and
invocation logic.

Definition
The evaluation of an applicator instruction is performed in three
steps. First a selector XPath selects a sequence of nodes; then, for
each selected node, the template that is best matched by the node
is selected; finally, the selected template or a built-in template, if
no user-defined templates are matched by the selected node, is in-
voked. The applicators only differ by the set of considered tem-
plates in the second step.

For simplicity of the presentation, we only focus here on one ap-
plicator,xsl:apply-templates. In appendices B.3 and B.2, we
briefly present minor adjustments to the translation rules to handle
xsl:apply-imports andxsl:next-match.

Thexsl:apply-templates content model is:

<xsl:apply-templates
select? = expression
mode? = token>
<!-- Content:
(xsl:sort | xsl:with-param)* -->
</xsl:apply-templates>

Applicator translation rules
We give the translation rules to generate an XQuery function (re-
ferred to as an XQuery applicator function) that implements an ap-
plicator selection, along with the proper conflict resolution and in-
vocation logic.

An XQuery applicator function takes as parameters the current
context node, the current context position, the current context size,
the current mode, and a list of p parameters of typeitem()* (
param1, . . . , paramp) where p is the number of distinct names of
XSLT template parameters defined by templates withmatch at-
tribute in the input stylesheet. Basically, a parameter name of a
template is mapped to a position from 1 to p by the[]ParamName2Pos
function. The function[] Pos2ParamName is the inverse function of
[]ParamName2Pos.

The translation rule that generates an XQuery applicator function
takes as input the sequence of templates withmatch attribute in the
input stylesheet sorted according to their import precedence and
priority. The body of an XQuery apply-templates function consists
of a large nested if-then-else expression that selects the first tem-
plate whose mode matches the$t2q:mode parameter and whose
match pattern is matched by the node referenced by the$t2q:dot
parameter:

[(template1, ..., templaten)]
==
declare function t2q:applyTemplates(
$t2q:dot as node()?,
$t2q:pos as xs:integer,
$t2q:last as xs:integer,
$t2q:mode as xs:string,
$t2q:param1 as item()*,
...,
$t2q:paramp as item()*)
as item()*
{
if ($t2q:mode = [template1]mode
and exists([template1]toSelect))
then [template1]invoke
...
else if ($t2q:mode=[templaten]mode
and exists([templaten]toSelect)))
then [templaten]invoke
else
t2q:builtInApplyTemplates($t2q:dot,$t2q:pos,
$t2q:last,$t2q:mode,
$t2q:param1,...,$t2q:paramp)

};

where the rule[]mode generates a sequence of tokens corre-
sponding to modes specified by a given template. In appendix B.1,
we formally definet2q:builtInApplyTemplates() function,
which encodes all built-in templates. This translation rule does
not attempt to detect nodes matching two or more templates of the
highest import precedence and priority. This could trivially be done
by adding additional tests.

The[]toselect function is used in the previous rule to translate
the notion of match pattern, which does not exist in XQuery. The
semantics of a match pattern is specified in XSLT 2.0 [7,§5.5.3]
by the specification of a translation rule from a match pattern into
a valid XPath expression. However, the evaluation of the generated
XPath expression is inefficient because it does not simply test the
pattern on a given candidate node, but it first evaluates an absolute
XPath expression containing at least one descendant axis, and then
tests whether the candidate is in the resulting sequence. Our effi-
cient translation based on reversing pattern is illustrated in section
2.3 and is formally described in appendix A.

To complete our translation, we formally define the[]invoke

687

rule. It generates a function call to the XQuery function corre-
sponding to a given XSLT template. Unlike XSLT that allows op-
tional template parameters, in XQuery all function parameters are
mandatory. Therefore, when invoking an XQuery function, all its
parameters must be explicitly bound. To handle XSLT optional pa-
rameters, we must be able to 1) detect that an XSLT applicator has
been called without explicitly specifying the value of an optional
parameter, and 2) call the XQuery template function with the de-
fault value of the missing parameter. The former goal is reached by
always binding unspecified parameters (i.e. parameters not present
in the list ofxsl:with-param of the considered XSLT applicator)
of an XQuery applicator function call to the special global variable
$t2q:UNDEFINED. The[]invoke translation rule, specified below,
achieves the latter objective (the input template is assumed to be at
the ith position in the sorted list of templates) .

[<xsl:template name=’qname’
mode=’token1 ... tokent’ as=’type’>
<xsl:param name=’name1’ .../>
...
<xsl:param name=’namek’ .../>
sequence-constructor
</xsl:template>]invoke
(with k <= p)
==
t2q:templatei(
$t2q:dot,
$t2q:pos,
$t2q:last,
$t2q:mode,
typeswitch($t2q:param[name1]ParamName2Pos)

case $t2q:a as comment()
return

if ($t2q:a is $t2q:UNDEFINED)
then [xsl:param1]defaultValue
else $t2q:param[name1]ParamName2Pos
default
return $t2q:param[name1]ParamName2Pos,

...,
typeswitch($t2q:param[namek]ParamName2Pos)

case $t2q:a as comment()
return
if ($t2q:a is $t2q:UNDEFINED)
then [xsl:paramk]defaultValue
else $t2q:param[namek]ParamName2Pos
default
return $t2q:param[namek]ParamName2Pos)

where[]defaultValue rule generates the default value of a given
xsl:param and$t2q:UNDEFINED is defined as:

declare variable $t2q:UNDEFINED as comment()
{comment {
undeclared variable used
for node identity test
}};

[<xsl:param name=’name’ select=’expr’/>]defaultValue
==
[expr]Expr

3.3 Invoking XQuery applicator functions
After formalizing the translation rules that generate XQuery ap-

plicator functions, we are now ready to present rules that generate,
for each instance of a XSLT applicator, a function call to the appro-
priate XQuery applicator function.

These rules are as follows :

[<xsl:apply-templates select=’expr’ mode=’mode’>
xsl:with-param*

</xsl:apply-templates>]Const
==
let $t2q:sequence := [expr]Expr return
let $t2q:inner-last := count($t2q:sequence)
return

for $t2q:inner-dot
at $t2q:inner-pos in $t2q:sequence

return
t2q:applyTemplates(
$t2q:inner-dot,$t2q:inner-pos,
$t2q:inner-last,
’mode’,
[1]ParamValue(xsl:with-param*),
...,

[p]ParamValue(xsl:with-param*))

where[]ParamValue(xsl:with-param*) returns, for a given posi-
tion (recall that a position uniquely identifies a parameter name),
its value specified inxsl:with-param list if it exists; otherwise it
returns the global variablet2q:UNDEFINED. Note that if the mode
is #current, then the translation is the same except that‘mode’
is replaced by$mode. Formally,[]ParamValue(xsl:with-param*) is
defined as follows:

[<xsl:with-param name=’name’/>]name = "name"

[k]ParamValue(xsl:with-param*)
==
if ([xsl:with-param1]name = [k]Pos2ParamName)
then [xsl:with-param1]Const
else
...
if ([xsl:with-paramn]name = [k]Position2ParamName)
then [xsl:with-paramn]Const
else t2q:UNDEFINED

Appendices B.3 and B.2 show how these rules can be modified
to translate template instantiations withxsl:apply-import and
xsl:next-match.

4. INTEROPERABILITY AND ISSUES
Our translation from XSLT to XQuery highlights the differences

between XSLT and XQuery. In this section we summarize our ex-
perience with some of these.

Tunnelling parameters.XSLT 2.0 allows template parame-
ters declared with the specialtunnel=’yes’ attribute to “pass
through” to all templates that are called while the parameter bind-
ing is in effectdynamically, even through templates that do not de-
clare the parameter, including templates that are called from other
modules [7,§10.1.2].

Since the collection of tunneling parameters is known statically
for a complete stylesheet (including all the imported modules), this
can be implemented by adding as parameters the list of the current
value of all potentially tunneled parameters to all the functions gen-
erated for all templates. Unfortunately the need for the complete
stylesheet prevents separate compilation of imported stylesheets.

An alternative is to add a single “dynamic environment” parame-
ter to each template which contains a representation (in XML) of
the currently bound tunneled parameters. This, however, requires
translating parameter access into XPath expressions that select a
fragment of the dynamic environment object.

Dynamic sort specification.The xsl:sort instruction in
XSLT 2.0 permits that several of the aspects of sorting are spec-
ified using attribute value templates (AVT) computed dynamically

688

at runtime. The XQuery 1.0order by construction does not al-
low this, and does not allow dynamic composition of sort modes.
This means thatxsl:sort has to be compiled into code that tests
the values of the AVT attributes and at runtime branches to afor
expression with the appropriateorder by sort specification. Only
one attribute cannot be supported in this way: setting the collation
for sorting to a computed value cannot be translated into XQuery.

White-space stripping.Through thexsl:strip-space and
xsl:preserve-space declarations [7,§4.3], XSLT 2.0 allows
declaringper element namewhether white-space from the input
document should be preserved or not. This functionality is not
available to XQuery.

Serialization.XSLT 2.0 gives very detailed control over how
the generated output is serialized through thexsl:output and
xsl:character-map declarations. Most of this serialization con-
trol is not available in XQuery and thus these cannot be fully sup-
ported by our translation.

Finally, since thexsl:disable-output-escaping attribute
from XSLT 1.0 is optional in XSLT 2.0 and has not been considered
for the translation.

5. EXPERIMENTAL EVALUATION
The translation rules presented earlier have allowed the imple-

mentation of a XSLT 2.0 compiler into XQuery. The purpose of
this section is to describe briefly our implementation and report on
our first experiments with that implementation.

Implementation.Most of the translation rules have been im-
plemented in Java. The main instructions that have not been imple-
mented includexsl:sort, xsl:for-each-group, xsl:key and
xsl:number. Moreover issues presented in the previous section
haven’t been implemented.

The compiler architecture relies on a three stage processing. Dur-
ing the first stage, the XSLT stylesheet is parsed using a standard
SAX parser. The second stage consists of applying translation rules
that can be treated on-the-fly, when receiving events. This is no-
tably the case for thexsl:value-of or xsl:if instructions. The
instructions that cannot be treated on the fly are those which require
the full list of templates, for instancexsl:apply-templates or
xsl:next-match. Those instructions are kept in memory and
translated during the third stage.

The main advantage of such architecture is to keep the memory
consumption very low during compilation time while being fast.
Indeed experiments show a relatively low resources consumption
even for relatively big stylesheets like docbook [14].

Experiments.We have performed two kinds of experiments: on
conformance and on performance. The purpose of the conformance
experiments is to evaluate the correctness of the compiler. The
compiler has been run over the Xalan conformance testsuite [15]
which contains 1686 XSLT 1.0 test cases (it is the largest compo-
nent of the OASIS suite [10, 12]). The generated queries are then
processed using Saxon 8.0 [6]. The compiler is able to compile and
run properly 55% of the test cases. Most of test cases fail either be-
cause they include an unimplemented instruction (more than 25%)
or because Saxon crashes or produces a wrong result (more than
10%). We expect that as more mature XQuery implementations
emerge, the number of tests passed will increase accordingly.

The goal of the second experiment is to compare the performance
of the evaluation of queries produced by the compiler against the

original XSLT stylesheet. We have run several XSLT transforma-
tions from the Sarvega [11] benchmark and their XQuery equiv-
alents using Saxon 8.0. One advantage of using Saxon is that it
executes both programs using the same internal runtime. Therefore
it allows a fair comparison in particular because optimizations will
be applied on the same instruction set. However it is worth notic-
ing that Saxon currently provides better optimizations for XSLT
than for XQuery.

The figure 2 shows a summary of the experiments made on the
recipe and MathML transformations. Each transformation has been
applied over different input document sizes. The figure shows that
the XSLT transformations and the XQuery queries execute in O(n),
n being the size of the input document. This is a very promising re-
sult demonstrating that our compiler doesn’t change the algorithm
complexity. It is in part due to our efficient translation of match pat-
tern: replacing our reverse pattern approach by the naive translation
defined in [7,§5.5.3] results in a nonlinear behavior (the perfor-
mance degradation is such that, in the MathML example, Saxon is
unable to process even a 10K document). However, the figure 2 also
shows that the queries perform worse than the original stylesheet
by a constant factor. This loss of performance is mainly located
in the execution of the instructionxsl:apply-templates. In-
deed, Saxon provides an aggressive optimization for looking up the
right template to instantiate (using hashtables) whereas the gener-
ated queries tests sequentially which template function to execute.

6. RELATED WORK
At the language level, XSLT 2.0 [7] and XQuery 1.0 [3] are de-

fined in close collaboration by the W3C XSLT and XML Query
working groups. At the infrastructure level, there has not been
enough work on how to make both languages interoperate. To the
best of our knowledge, SAXON [6] is the only public implementa-
tion that supports both XQuery and XSLT. Although it is likely that
SAXON reuses as much infrastructure to support the two languages
as possible, there is little information available that describes how
this is achieved. In [9], Moerkotte describes an implementation of
XSLT on top of a database management system. That approach re-
lies on compiling XSLT into a database algebra. This makes the
approach more difficult to apply in the various application con-
texts we have been considering, where looser coupling is useful.
In addition, the way his approach covers the complete XSLT lan-
guage, notably how the specific details of its semantics are handled,
is not fully specified. In comparison, our approach is to rely on the
common features between XQuery and XSLT in order to provide a
lightweight, user-friendly, yet complete, implementation.

From a theoretical standpoint, several papers have studied the se-
mantics of XSLT. In [13], Wadler proposes a denotational seman-
tics for XSLT patterns. The approach we have described here is a
more efficient variant of the same semantics, relying on the notion
of pattern reversal. In [8, 2], Bex, Maneth and Neven propose a
precise semantics for a fairly large fragment of the XSLT language,
based on tree grammars. Part of that semantics can be used to im-
plement the template-based approach we described. However, it is
not complete, instead trying to identify a fragment of XSLT with
good complexity properties.

7. CONCLUSION
In this paper, we have presented a general method for translating

the highly declarative rule-based approach of XSLT into the purely
functional XQuery approach, leading the way to closer integration
between the two languages. Our initial experiments have shown the
feasibility of this approach by confirming that the evaluations of

689

Figure 2: Performance comparison between XSLT and XQuery (left: recipes, right: mathml)

an XSLT transformation and its generated XQuery share the same
algorithmic complexity.

However, a naive evaluation of the generated XQuery exhibits a
performance penalty of up to factor 7 compared to the initial XSLT
transform. Addressing this performance degradation constitutes an
interesting challenge. We plan to investigate how a combination
of context sensitive flow analysis and function specialization can
be applied on the generated XQuery to statically reduce the list of
considered templates in the if-then-else expression in the XQuery
applicator functions.

This work has highlighted some important differences between
the two languages. Most of them seem justified by the different
design rationales, but we could not find reasonable grounds to ac-
count for the following differences, and, therefore, we suggest that
the two working groups adopt a common solution:

• difference in white-space processing. Unlike XQuery, XSLT
allows a finer control on white space processing,

• although the two languages share the same serialization spec-
ification, unlike XSLT, XQuery does not define a processor
independent mechanism to specify serialization attributes.

8. REFERENCES
[1] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández,

M. Kay, J. Robie, and J. Siḿeon. XML path language
(XPath) 2.0. W3c working draft, World Wide Web
Consortium, July 2004.
http://www.w3.org/TR/2004/WD-xpath20-20040723.

[2] G. J. Bex, S. Maneth, and F. Neven. A formal model for an
expressive fragment of xslt. InComputational Logic 2000,
pages 1137–1151, London, UK, July 2000.

[3] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu,
J. Robie, and J. Siḿeon. XQuery 1.0: An XML query
language. W3c working draft, World Wide Web Consortium,
July 2004.
http://www.w3.org/TR/2004/WD-xquery-20040723.

[4] DB2. DB2 XML extender.
http://www-306.ibm.com/software
/data/db2/extenders/xmlext/.

[5] M. Ferńandez, A. Malhotra, J. Marsh, M. Nagy, and
N. Walsh. XQuery 1.0 and XPath 2.0 data model. W3c
working draft, World Wide Web Consortium, July 2004.
http://www.w3.org/TR/2004/
WD-xpath-datamodel-20040723.

[6] M. Kay. SAXON 8.0. SAXONICA.com.
http://www.saxonica.com/.

[7] M. Kay. XSL transformations (XSLT) version 2.0. W3c
working draft, World Wide Web Consortium, Nov. 2003.
http://www.w3.org/TR/2003/WD-xslt20-20031112.

[8] S. Maneth and F. Neven. Structured document
transformations based on XSL. InProceedings of
International Workshop on Database Programming
Languages, pages 80–98, Kinloch Rannoch, Scotland, Sept.
1999.

[9] G. Moerkotte. Incorporating XSL processing into database
engines. InVLDB, pages 107–118, Hong Kong, China, Sept.
2002.

[10] Oasis test suite for XSLT 1.0. http://www.oasis-open.org
/committees /tchome.php?wgabbrev=xslt.

[11] Sarvega XSLT benchmark study and test suite.
http://www.sarvega.com /xslt-benchmark.php.

[12] L. VanVleet, G. K. Holman, and D. Marston. Oasis
XSLT/XPath conformance committee procedures and
deliverables. http://www.w3.org/2001/01/qa-ws/pp
/ken-holman-oasis /xsltconf.htm.

[13] P. Wadler. A formal semantics of patterns in XSLT. In
Markup Languages, Philadelphia, PA, June 2001.

[14] N. Walsh. The docbook document type. Committee
specification, Oasis, July 2002.

[15] Xalan XSLT/XPath conformance test suite.
http://xml.apache.org /xalan-j /downloads.html.

[16] XQuery 1.0: An XML query language. W3C Working Draft,
Apr. 2002.

APPENDIX

A. MATCH PATTERN
[]toselectperforms the translation of a pattern into the expression

for which an existence test will be performed (by fn:exist()). The
first step in the translation consists of obtaining the Equivalent Ex-
pression (EE) defined in XSLT 2.0 [7,§5.5.3]. The EE is an XPath
expression whose first step may have attribute-or-top and child-or-
top as axis. The translation rule of an EE is as follows (EPS denotes
a step in the EE defined in [7,§5.5.3]) :

[EPS]toselect = $t2q:dot/(.)[[EPS]match]
[EPS0/.../EPSn]toselect = $t2q:dot/(.)[[EPSn]match][
[[EPSn]axis]inv::node()[[EPSn-1]match]/
.../[[EPS1]axis]inv::node()[[EPS0]match]]

690

[axis::m[P]]axis=axis
[child]inv=parent
[descendant-or-self]inv=ancestor-or-self
[attribute]inv=parent
[self]inv=self
[axis::m[P]]match=([axis]inv::node()/axis::m[P]=.)
[child-or-top::m[P]]match =if (parent::node)
then (parent::node()/child::m[P]=.)
else self::m[P][not(. instance of attribute())]
[attribute-or-top::m[P]]match=if (parent::node)
then (parent::node()/attribute::m[P] = .)
else ((. instance of attribute()) and [m[P]]test)
[id(value)]match=(id(value) = .)
[root(self::node())]match=(root(self::node())=.)
[key(name,value)]match=([key(name, value)]Const=.)
[KinTest[P]]test=(. instance of KindTest)
and exist((.)[P])
[ncn:*[P]]test=(namespace-uri(.) eq ns)
and exist((.)[P]) - where ncn resolve to ns
[*:localName[P]]test=(local-name(.) eq localName)
and exist((.)[P])
[ncn:localName[P]]test=(namespace-uri(.) eq ns)
and (local-name(.) eq localName)
and exist((.)[P]) - where ncn resolve to ns

[*[P]]test=exist((.)[P])

When the pattern is a union of patterns, then the translation is the
union of the translated patterns.

B. TEMPLATE INSTANTIATION

B.1 Built-in templates
The following XQuery function captures the semantics of select-

ing and invoking built-in templates.

declare function t2q:builtInApplyTemplates(
$t2q:dot as node()?,
$t2q:pos as xs:integer,
$t2q:last as xs:integer,
$t2q:mode as xs:string,
$t2q:param1 as item()*,...,
$t2q:paramp as item()*)
as item()*

{
if (exists($t2q:dot/self::text()
|$t2q:dot/(.)[. instance of attribute()])
then string-join(

for $t2q:d in data($t2q:dot)
return ($t2q:d cast as xs:string),’ ’)

else if (exists($t2q:dot/self::comment()
|$t2q:dot/self::processing-instruction()))
then ()
else
let $t2q:sequence := $t2q:dot/node() return
let $t2q:inner-last := count($t2q:sequence)
return
for $t2q:inner-dot
at $t2q:inner-pos in $t2q:sequence return
t2q:applyTemplates($t2q:inner-dot,
$t2q:inner-pos,
$t2q:inner-last,$t2q:mode,
$t2q:param1,...,$t2q:paramn)

};

B.2 xsl:next-match instruction
The translation rule generating the XQuery applicator function

corresponding to xsl:next-match is defined as follows:

[(template1, ..., templaten)]
==
declare function t2q:applyNextMatch(
$t2q:dot as node()?,

$t2q:pos as xs:integer,
$t2q:last as xs:integer,
$t2q:mode as xs:string,
$t2q:param1 as item()*, ...,
$t2q:paramp as item()*,
$t2q:impPrec as xs:integer,
$t2q:priority as xs:double)
)
as item()*
{
if ([template1]priority < $t2q:priority
and [template1]impPrec < $t2q:impPrec
and $t2q:mode = [template1]mode
and exists([template1]toSelect))
then [template1]invoke
...
else if ([templaten]priority < $t2q:priority
and [templaten]impPrec < $t2q:impPrec
and $t2q:mode=[templaten]mode
and exists([templaten]toSelect)))
then [templaten]invoke
else
t2q:builtInApplyTemplates($t2q:dot,$t2q:pos,
$t2q:last,$t2q:mode,
$t2q:param1,...,$t2q:paramp)

};

where []priority generates the priority of a template and []impPrec

its import precedence. The additional parameters ($t2q:impPrec
and$t2q:priority indicate the import precedence and priority
of the current template. They are used in body of the generated
function to restrict the set of considered templates.

The translation rule for each xsl:next-match instruction is as fol-
lows:

[<xsl:next-match select=’expr’ mode=’mode’>
xsl:with-param*
</xsl:next-match>]Const
==
let $t2q:sequence := [expr]Expr return
let $t2q:inner-last := count($t2q:sequence)
return

for $t2q:inner-dot
at $t2q:inner-pos in $t2q:sequence

return
t2q:applyNextMatch(
$t2q:inner-dot,$t2q:inner-pos,
$t2q:inner-last,
’mode’,
[1]ParamValue(xsl:with-param*),...,
[p]ParamValue(xsl:with-param*),
[.]currentTemplateImpPrec,
[.]currentTemplatePriority)

where [.currentTemplateImpPrec(resp. [.]currentTemplatePriority) generates the
import precendence (resp. the priority) of the current template
at the location of the invocation of xsl:next-match if it is stati-
cally known; otherwise (e.g. if xsl:next-match is invoked inside
a named template), it generates the variable $t2q:impPrec (resp.
$t2q:priority), which is always used to indicate the import prece-
dence (resp. the priority) of the current template.

B.3 xsl:apply-imports instruction
The translation ofxsl:apply-imports follows the same prin-

ciples presented forxsl:next-match. In addition to parame-
ters of$t2q:applyTemplates, the XQuery applicator function
implementingxsl:apply-imports logic specifies a parameter
that indicates the import path of the stylesheet module where the
xsl:apply-import is invoked. This is used to restrict the list of
considered templates.

691

