
Incremental Maintenance for Materialized XPath/XSLT Views

Makoto Onizuka
NTT CyberSpace Laboratories, NTT Corporation

1-1 Hikarinooka, Yokosuka, Japan

onizuka.makoto@lab.ntt.co.jp

Fong Yee Chan
Simon Fraser University
Burnaby, B.C, Canada

fyc@sfu.ca

Ryusuke Michigami
Plala Networks Inc.

3-1-15 Ariake, Koto-ku, Tokyo, Japan

mitigami@plala.co.jp

Takashi Honishi
NTT CyberSpace Laboratories, NTT Corporation

1-1 Hikarinooka, Yokosuka, Japan

honishi.takashi@lab.ntt.co.jp

ABSTRACT
This paper proposes an incremental maintenance algorithm
that efficiently updates the materialized XPath/XSLT views

defined using XPath expressions in XP {[],∗,//,vars}. The al-
gorithm consists of two processes. 1) The dynamic execu-
tion flow of an XSLT program is stored as an XT (XML
Transformation) tree during the full transformation. 2) In
response to a source XML data update, the impacted por-
tions of the XT-tree are identified and maintained by par-
tially re-evaluating the XSLT program. This paper discusses
the XPath/XSLT features of incremental view maintenance
for subtree insertion/deletion and applies them to the main-
tenance algorithm. Experiments show that the incremental
maintenance algorithm outperforms full XML transforma-
tion algorithms by factors of up to 500.

Categories and Subject Descriptors
H.2.3 [DATABASE MANAGEMENT]: Languages; D.3.
4 [PROGRAMMING LANGUAGES]: Processors—Op-
timization

General Terms
Algorithms, Languages, Performance

Keywords
XML, XPath, XSLT, materialized view, view maintenance

1. INTRODUCTION
As users are demanding more sophisticated Internet ser-

vices, many web servers are emerging that generate dynamic
web pages from databases/files. Examples include DBLP,
flight arrival/departure information sites, EPG (electric TV
program guide) sites, and stock trading sites. Such systems
often use XPath/XSLT processors to transform the source
XML data into (X)HTML files even if XPath/XSLT process-
ing is very expensive; a more efficient solution is required.

Two features characterize such dynamic web sites: 1) web
pages access is more frequent than source data update. 2)

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10–15, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

the updated portion is, in each update operation, relatively
small compared to the source data size. For example, large
numbers of users access the flight arrival/departure infor-
mation site FlightArrivals.com (http://FlightArrivals.com/)
which stores a large amount of data, one day’s flight informa-
tion; flights are updated one by one when each flight’s status
changes (boarding/expected arrival time/arrived). There-
fore, incremental maintenance for materialized XPath/XSLT
views is a promising technique to improve web server per-
formance.

Let’s discuss below the difficulty of incremental mainte-
nance for materialized XPath and XSLT views.
XPath view maintenance An XPath expression is defined
as a sequence of location steps, each of which consists of
axis, node-test and optional predicates. The evaluation of
each location step returns, from the set of context nodes
in XML data, a set of nodes that satisfy the axis relation,
node-test and optional predicates. Since XPath permits the
use of order-sensitive axes (e.g. following), descendant and
other axes, it has higher expression power than SQL. The
bad news of these XPath axes evaluations is that, unlike the
SQL join evaluation, two nodes (records) are not sufficient
to evaluate the axis relation between them. For example,
consider the XPath expression //A//C and XML data

<A><C>NTT Cyberspace Labs.</C>

we name the node whose tag is A as a, B as b, and C as c.
The evaluation of the former part (//A) returns a and, using
it as a context node, the evaluation of the remainder (//C)
returns c. During the descendant axis evaluation of //C,
we must access not only a and c but also b that connects a
and c. This example suggests that SQL view maintenance
techniques [11] are not directly applicable to the XPath view
maintenance problem. Here, we have somewhat good news.
The labeling scheme of [16, 1], which assigns a label to each
node, enables us to evaluate all types of axis relations be-
tween nodes (e.g. a and c in the above example) without
accessing other nodes (e.g. b). Thus by applying the label-
ing scheme, the axis relation can be implemented by SQL
join, so the XPath view maintenance problem is reduced to
the SQL view maintenance problem as follows.

Let f be a location step evaluation function, r be a root
node in source XML data, D be a set of all nodes, and lsk

(1≤k≤n) is a location step of the given XPath expression.
The XPath evaluation can then be expressed as follows.

f(lsn, f(lsn−1, ..., f(ls1, {r}, D), .., D), D)

671

Let ∆d be a newly inserted set of nodes and D′ be D∪∆d.
Since the location step evaluation function f can be imple-
mented by SQL join with the labeling scheme, we obtain the
following expression by applying a differentiation step [11],

f(lsn, f(lsn−1, ..., f(ls1, {r}, D′), .., D′), D′) =

1. f(lsn, f(lsn−1, ..., f(ls1, {r}, D), .., D), D) ∪

2. f(lsn, f(lsn−1, ..., f(ls1, {r}, D), .., D), ∆d) ∪

... ∪

k. f(lsn, ..., f(lsn−k+2, ..., f(ls1, {r}, D), ..., ∆d), ..., D′) ∪

... ∪

n + 1. f(lsn, f(lsn−1, ..., f(ls1, {r}, ∆d), .., D′), D′)

Thus the XPath view can be maintained incrementally by
applying the SQL view maintenance techniques.

Unfortunately, the above solution has two problems. First,
since it is based on the relational data model, the permitted
update operations are node insertion/deletion, which does
not efficiently support subtree insertion/deletion, common
XML data update operations. Second, it materializes the
result of all location steps, so it consumes a huge amount of
memory space. For example, consider the following XPath
expression to search for papers whose author works in Japan
assuming its selectivity is very low.

//paper[author/country = "Japan"]

Figure 1: An XPath example

This example reveals that, even if the evaluated result of the
whole XPath expression is small, the intermediate node-set,
which is returned by the location step (//paper) evaluation,
becomes quite large (all papers) and can be as large as the
source XML data.
XSLT view maintenance The literature on the SQL view
maintenance problem [11] categorizes the maintenance tech-
niques from three viewpoints: view language, available data,
and modification. We consider the XSLT view problem from
the same viewpoints.

In terms of view language, XSLT has higher functionality
than SQL, and it can express a transformation that exhibits
a loss of structural information, such as removing tags. Con-
sider a materialized view with a loss of structural informa-
tion and an insertion operation on source XML data. If only
the source data and the materialized view are available, it is
impossible to identify where to update the materialized view
due to the missing structural information. Therefore, from
the available data viewpoint, the XSLT view maintenance
algorithm requires auxiliary data in general. From the mod-
ification viewpoint, we use subtree insertion/deletion, which
is permitted by XUpdate [23], and by an XML update lan-
guage [22].

Our concept is to achieve a space- and time-efficient al-
gorithm to incrementally maintain the materialized views
of XPath/XSLT by storing auxiliary data and limiting the

XPath to a practical subset XP {[],∗,//,vars}. The algorithm,
namely XTim (X[ML] T[ransformation] I[ncremental] M[ain-
tenance]) stores the dynamic execution flow of an XSLT
program (called XT-tree) which contains the context nodes
used by the XSLT templates and a materialized view. XTim
is space-efficient because it does not store the intermediate
node-sets returned by all location step evaluations. XTim is
also time-efficient because it incrementally maintains a ma-
terialized view in three steps: 1) locate the impacted parts
in the XT-tree, 2) re-evaluate the XSLT program partially

and update the impacted parts, and 3) output the main-
tained materialized view in the XT-tree. The detail of the
first step is as follows. An XT-tree, a dynamic execution
flow of an XSLT program, forms an inter-related XPath ex-
pression with their context nodes. A single update operation
updates a set of updated subtrees and we define update-path
as the path from the root node to the updated subtree of the
source XML data. Then the impacted parts in the XT-tree
are identified in a similar way as XML stream processing [7,
10]; it generates an automaton from an inter-related XPath
expression and evaluates it on the incoming XML data. But
the difference is 1) we identify the impacted XPath expres-
sions in the XT-tree by evaluating the inter-related XPath
expression on update-path, and 2) we must be aware of the
context nodes stored in the XT-tree, because an identical
XPath expression can be applied to different context nodes
resulting in different XT-nodes in the XT-tree.

1.1 Contributions
Our contributions are summarized as follows:

• We investigate the features of XPath in XP {[],∗,//} for
incremental view maintenance in response to subtree
insertion/deletion. In addition, we present the condi-
tion under which XSLT expressions inherit the above
XPath features and show how to handle those expres-
sions otherwise.

• We develop an incremental view maintenance algo-
rithm XTim based on those XPath/XSLT features.

• We discuss the extension of XTim to support the or-
dered data model and position predicates by applying
the labeling scheme of [16, 1].

• We describe experiments on typical types of XSLT
transformations and the subtree insertion of various
sizes. The results show that our algorithm significantly
outperforms existing full transformation algorithms by
factors of up to 500.

The rest of this paper is as follows. We start by illustrat-
ing a motivational example in Section 2. Section 3 defines
the fragment of XPath/XSLT specification, the XML up-
date specification, and the incremental view maintenance
problem. We investigate the incremental view maintenance
features of XPath/XSLT and present XTim in Section 4. In
Section 5, we discuss how to extend XTim to handle the
ordered data model. Section 6 reports experimental results.
Section 7 addresses related work and Section 8 concludes
the paper.

2. MOTIVATIONAL EXAMPLE
We use the author search function at DBLP web site as

our example. Indeed the search results for authors are mate-
rialized and periodically updated (See the update date of the

HTML files in http://www.informatik.uni-trier.de/̃ley/db/
indices/a-tree/a). Fig. 2 shows a fragment of DBLP XML
data (http://dblp.uni-trier.de/xml) and Fig. 3 shows an
XSLT program that generates a simplified search result con-
sisting of four XSLT templates. We use only the child axis
in the XPath expressions for simplicity. The first template
(line 1-9) outputs the given author name and constructs a ta-
ble for each year in which the author published. The second
template (line 10-16) is applied for each year and outputs

672

<dblp>
<mastersthesis mdate="2002-01-03" key="ms/Brown92">
<author>Kurt P. Brown</author>
<title>PRPL: A Database Workload Specification Language,

v1.3.</title>
<year>1992</year>
<school>Univ. of Wisconsin-Madison</school>

</mastersthesis>
<inproceedings mdate="2002-01-23"

key="conf/b/Sekerinski98">
...

Figure 2: DBLP XML data fragment

the year and applies the third template for each publication
of the author in the year specified. The third template (line
17-34) constructs a row for the publication. The first col-
umn is a link to the electric edition specified by ee tag, if
the publication has an electric edition. The second column
contains the author list, title, URL, book title, publication
year, and page number.

1:<xsl:template match="/">
2: <html><h1><xsl:value-of select="$author"/></h1>
3: <table border="1"><tbody>
4: <xsl:apply-templates

select="set:distinct(dblp/*[author=$author]/year)">
5: <xsl:sort select="." order="descending"/>
6: </xsl:apply-templates>
7: </tbody></table>
8:</html>
9:</xsl:template>

10:<xsl:template match="year">
11: <xsl:variable name="year" select="."/>
12: <tr>
13: <th colSpan="3"><xsl:value-of select="$year"/></th>
14: </tr>
15: <xsl:apply-templates

select="/dblp/*[author=$author][year=$year]"
mode="p"/>

16:</xsl:template>

17:<xsl:template match="*" mode="p">
18: <tr>
19: <td vAlign="top">
20: <xsl:if test="ee">EE</xsl:if>
21: </td>
22: <td>
23: <xsl:apply-templates select="author"/>:
24: <xsl:value-of select="title"/>
25: <A href="http://www.informatik.uni-trier.de/

~ley/{url}">
26: <xsl:value-of select="booktitle"/>
27: <xsl:text> </xsl:text>
28: <xsl:value-of select="year"/>
29: : <xsl:value-of select="pages"/>
30: </td>
31: </tr>
32:</xsl:template>

33:<xsl:template match="author">
...

Figure 3: DBLP author.xsl

Assume some conference is held and several papers are
inserted under the dblp tag in DBLP XML data. We need
to update the materialized result, however the XSLT full
transformation is very expensive because it requires evalu-
ating the XSLT program from scratch. An overview of the
incremental maintenance is given below.

1st step The XT-tree is built during the full transfor-
mation. Fig. 4 depicts a simplified XT-tree showing only

“/dblp/*[author=$author][year=$year]”

2

3

7

“/”
distinct(“dblp/*[author=$author]/year”)

1

“.” 5 …

108“ee” 9“ee” “author” “title” …

64

…

…

Figure 4: XPath expressions part in XT-tree

the inter-related XPath expression. The gray circles corre-
spond to XT-nodes generated from absolute XPath expres-
sions (line 1,15 in Fig. 3). Since the number of publications
attributed to one author is around one hundred, the result-
ing XT-tree size is kept small.

2nd step Starting from the root XT-node (node 1 in
Fig. 4), we process the inter-related XPath expression on
the update-path (/dblp). XPath expression “/” of the root
XT-node matches to “/“ of the update-path then we move
to the child XT-node (node 2). The first location step
of “dblp/*[author=$author]/year” matches “dblp” of the
update-path so we have reached the end of the update-path,
i.e. the root node of newly inserted subtree. The remainder
part “*[author=$author]/year” is evaluated on the inserted
subtree and returns a node-set of years. Since the distinct
function is used for the node-set, we construct XT-nodes
for the resulting year nodes if the XT-tree doesn’t store the
corresponding XT-nodes. For each of the constructed XT-
nodes, we evaluate the second XSLT template and continue
re-evaluating the XSLT program partially.

3rd step For each XT-node (node 4,6,...) generated from
the absolute XPath expressions, we follow the same proce-
dure as for the root XT-node. The first localtion step of
/dblp/*[author=$author][year=$year] matches the update-
path, so we have reached the root node of inserted subtree
and the remainder part *[author=$author][year=$year] is
evaluated on the inserted subtree. We then continue re-
evaluating the XSLT program partially.

4th step The XT-tree has been maintained for the update
operation, so we output the materialized view stored in the
XT-tree.

3. PREMISE

3.1 XPath
XP {[],∗,//,vars} denotes the XPath fragment that permits

predicate, wildcard, child and descendant axis, and variable
references. XP {[],∗,//} consists of expressions given by the
following grammar:

P ::= P ′|′P | Pabsolute | Prelative

Pabsolute ::= ′/′Prelative

Prelative ::= step (′/′step) ∗

step ::= axis ′::′ node−test (′[′predicate′]′) ∗

axis ::= child | descendant

node−test ::= name | @name | ∗ | @∗ | text′()′

predicate ::= P | general predicate

XPath expression (XPE) P can have disjunction (|) and be
either an absolute or a relative expression. A relative expres-
sion is a sequence of steps, each of which consists of axis,

673

node-test, and optional predicates. The XPath functions [6]
can be used in a general predicate.

Although XP {[],∗,//,vars} doesn’t permit the use of order-
sensitive axes, it is practical for general data-oriented XML
data; Typical data-oriented XML data, including the meta
data for TV program guides (MPEG7 [13], TVAnyTime [24],
P/META [20]) or digitized medical records, are not sensitive
to node order. Thus, order-sensitive axes are not used for
those XML data. In addition, we assume reverse axes (par-
ent, ancestor) are rewritten to forward axes using XPath
rewrite rules [18].

3.2 XSLT
We simplify XSLT 1.0 [5] from two viewpoints: function-

ality of XML transformations and re-writability to other
equivalent XSLT expressions.

First from the viewpoint of functionality, we do not con-
sider the following XSLT expressions since they are not es-
sential for XML transformation: modularization (xsl:apply-
import, xsl:import, xsl:include), output formatting (xsl:out-
put, xsl:preserve-space, xsl:processing-instruction, xsl:strip-
space, xsl:decimal-format,xsl:number), and other functions
(xsl:fallback, xsl:message, xsl:namespace-alias).

Second from the viewpoint of re-writability, we do not
consider the following XSLT expressions, since they can be
re-written using equivalent and more fundamental XSLT ex-
pressions. xsl:call-template, xsl:for-each can be re-written to
xsl:apply-templates with parameters and mode. xsl:when,
xsl:otherwise, xsl:choose are equivalent to a set of xsl:if.
xsl:attribute-set is equivalent to a set of xsl:attribute. xsl:key
is equivalent to an equi-join operation expressed by a pred-
icate of an XPE. In addition, the match pattern of XSLT
template (Remember match and select pattern are different
in XSLT) is simplified to permit the use of current node test,
because an XSLT template whose match pattern uses a path
expression can be re-written to two XSLT templates whose
match pattern uses a current node test. The rewriting is as
follows.

1. The first XSLT template uses the node-test of the first
step of the original XPE as the match pattern. If
the first step has predicates, they are re-written to
the xsl:if condition. The remaining part of the origi-
nal XPE is used as the select pattern of an xsl:apply-
templates.

2. The second XSLT template uses the node-test of the
last step of the original XPE as the match pattern.

3. The above two XSLT templates are connected using
the mode of xsl:template and xsl:apply-templates.

For example, an XSLT template whose match pattern is
A[B][C]/D[E]//F is re-written to the following two XSLT
templates.

<xsl:template match="A">
<xsl:if test="(.)[B][C]">

<xsl:apply-templates select="D[E]//F" mode="S1"/>
</xsl:if>

</xsl:template>
<xsl:template match="F" mode="S1">

(the content of the original XSLT template)
</xsl:template>

Our simplified XSLT also permits XPEs to use variable
references (XP {[],∗,//,vars}) and so is a more general speci-

D
(XML
data)

D
(XML
data)

M
(XT-tree)

D’D’

update

XML
view

XML
view’

M’
u (d)

Tr
(XSLT program)

d

Figure 5: Incremental view maintenance

fication of the XSLT fragment XSLT0 [4]. Appendix A of
the full paper [19] shows the syntax of the simplified XSLT.

3.3 XUpdate
We modified the XUpdate specification [23] to express

how the source data was updated1. insert(p,r) expresses
the inserted subtree r and its path p (called update-path).
Symmetrically delete(p,r) expresses the deleted subtree r
and its path p. The update-path uniquely identifies a path
from the root node of source XML data to the root node
of the updated subtree and consists of a sequence of update
steps, each of which is pair of nodeID and node name.

For example, Fig. 6 expresses an update expression in
which the third author is inserted for the paper whose nodeID
is 5.

insert(/(1,bib)/(5,paper)/(8,author),
"<author role="3rd">

<name>makoto onizuka</name>
<country>Japan</country>

</author>"

Figure 6: An XUpdate example

3.4 Problem definition
Fig. 5 depicts the problem of incremental maintenance

for materialized XPath/XSLT views which we express as

follows: “Let D be source XML data, D
′

be the modified
source XML data, Tr be an XSLT program, t(D, Tr) be a
function that evaluates Tr on D, u(d) be an XUpdate ex-
pression describing how the source data was updated2, and
M be auxiliary data constructed from D and Tr beforehand.

Our goal is to output t(D
′

, T r) by incrementally maintain-
ing M for update expression u(d).”

4. INCREMENTAL VIEW MAINTENANCE
This section investigates the XPath/XSLT features that

support incremental view maintenance (Section 4.1,4.2), then
describes the auxiliary data XT-tree (Section 4.3) and the
incremental view maintenance algorithm XTim (Section 4.4).

1When multiple parts are updated, each part is expressed
by our modified XUpdate expression.
2d is an updated subtree.

674

eval({p}, xps, p) → match(xps, p) (1)

match(xps, p) →

true if both xps and p are empty strings
false if only xps or p is empty string

(2)

match(xp1|...|xpn, p) → match(xp1, p)∨...∨match(xpn, p) (3)

match(child :: N/Rxp, H/R) →

match(Rxp, R) if N matches H
false otherwise

(4)

match(descendant :: N/Rxp, H/R) →

match(descendant :: N/Rxp, R) ∨ match(Rxp, R) if N matches H
match(descendant :: N/Rxp, R) otherwise

(5)

Figure 7: eval algorithm (XPath expression is in XP {∗,//})

To identify the impacted XPath expressions in an XT-tree
by update operations, we consider the XPath semantics that
determines if a path matches an XPath expression. Thus,
our semantics help to identify the impacted XPath expres-
sions by using a set of paths to nodes in an updated sub-
tree. We can easily extend the semantics to an inter-related
XPath expression and XTim implements the extended se-
mantics.

4.1 XPath expression
We define P as a set of paths from the root node to ev-

ery node in the source XML data. We define the XPath
evaluation algorithm eval on a single path.

Definition 4.1 eval(P, xp, p) is a Boolean function that de-
cides if the given XPath expression, xp, matches path p. The
first parameter, P , is the scope that the eval function may
refer to during the xp evaluation on p.

Accordingly, we define the XPath evaluation function evalc
on a set of paths.

Definition 4.2 Let P ′ be a subset of P , and xp be an XPath
expression. We define the XPath evaluation function on P ′

as:

evalc(P, xp, P ′) = {p | p ∈ P ′, eval(P, xp, p)}

Thus the evaluation of xp on P , all paths in the source XML
data, is expressed by evalc(P, xp, P).

Let’s consider XPath expressions without predicates first
and extend the coverage later. If xps is in XP {∗,//}, then
eval(P, xps, p) can be implemented by finite automata [7,
10] without referring to other paths in P , since xps is a
regular expression and p is a sequence of nodes with a name.
Therefore, eval(P, xps, p) = eval({p}, xps, p) and we have
the following result.

Proposition 4.3 Let xps be in XP {∗,//} and P ′ be a sub-
set of P . The evalc function on P ′ is evaluated without
reference to other paths in P .

evalc(P, xp, P ′) = evalc(P
′, xp, P ′)

Fig. 7 shows an algorithm of the eval({p}, xps, p) function

when xps ∈ XP {∗,//}. Step (1) shows eval({p}, xps, p) im-
plemented by match(xps, p). Step (2) is a termination rule
and steps (3)-(5) are recursive rules. Step (3) shows the rule
to be applied when xp is a disjunctive expression. If one of
match(xpi, p) (1≤i≤n) is true, match(xp1|...|xpn, p) returns
true. Step (4) shows the rule to be applied when the first
step axis of given XPE is child. If the node-test N of the
first step of the XPE matches the first step H of the given

path, then continue to check that the remaining part of the
XPE Rxp matches the remaining part R of the path. Oth-
erwise, the match function fails. Step (5) shows the rule to
be applied when the first step axis of XPE is descendant. If
the node-test N of the first step of the XPE matches the
first step H of the given path, then non-deterministically
continue to check that R is matched by the same XPE or
the remaining part Rxp. Otherwise, continue to check that
R is matched by the same XPE. After applying the match

function recursively, one of the two parameters of the match

becomes an empty string. Step (2) shows the rule to be ap-
plied if either of the parameters is empty. If both of them
are empty then the match returns true, otherwise if only
one them is empty then the match returns false.

Now consider XPath expressions with predicates and the
scope on source XML data that may be referred to during
view maintenance. Note update-path of an XUpdate expres-
sion is the common prefix of paths to nodes in the updated
subtree. We exploit update-path to share the process of iden-
tifying impacted XPath expressions for each path.

Theorem 4.4 (scope) Let xp be in XP {[],∗,//}, ∆P be the
set of paths to nodes in the updated subtree, and stepxp be the
top most step with predicate in xp, and stepupdate be the top
most update step in update-path that the node-test of stepxp

matches. If some path in ∆P matches the last location step
in xp or some predicate in xp, then the eval algorithm on
∆P is evaluated with reference to all paths (P”) that contain
the node indicated by stepupdate.

eval(P, xp, ∆P) = eval(P ′′, xp, ∆P)

Proof. (sketch) update-path and XPath xp are processed
by the eval algorithm in Fig. 7 until stepupdate, because there
is no step in xp with predicate until stepxp. The remaining
part of xp starting from stepxp can then be evaluated on the
subtree whose root node is indicated by stepupdate, because
the permitted child and descendant axes refer only to the
subtree.

For example, assume that the update operation expressed in
Fig. 6 makes the paper whose nodeID is 5 match the XPath
expression in Fig. 1. In this case, stepxp is //paper and
stepupdate is (5,paper), so P” becomes all paths in such sub-
tree whose root nodeID is 5. Therefore, we re-evaluate //pa-
per[author/country = ”Japan”] on the node whose nodeID
is 5 without referring to the remaining part of the source
XML data.

While Theorem 4.4 explains the scope on source during
view maintenance, an update operation does not always im-
pact materialized nodes.

675

Theorem 4.5 (unaffected) Let xp and ∆P be the same
as above, nmat be a materialized node of xp before the update
operation was commenced. If a step stepupdate in update-
path corresponds to nmat and none of the paths in ∆P match
any predicate in xp, then the update operation does not im-
pact nmat.

Proof. (sketch) update-path is processed until stepupdate

by the eval algorithm in Fig. 7 using XPath xp, because none
of the paths in ∆P match any predicate in xp. The update
operation does not impact nmat, because 1) the material-
ization of nmat indicates all predicates in xp were evaluated
as true, and that 2) none of the paths in ∆P match any
predicate in xp.

For example, assume node n whose nodeID is 5 is ma-
terialized by //paper[year>2002] and the update operation
expressed in Fig. 6 is applied to n. Theorem 4.5 is applica-
ble to this case, so we don’t need to re-evaluate the XPath
expression.

4.2 XSLT expressions
We present the condition under which XSLT expressions

inherit the XPath features described in Section 4.1 and how
to handle those expressions otherwise. There are three types
of XPath usage in XSLT expressions: xsl:apply-templates,
xsl:if, view construction as xsl:value-of, and xsl:copy-of. First
we consider XSLT expressions whose XPath expression does
not use variable/parameter; we then show how to handle
variable/parameter.

xsl:apply-templates The evaluation of xsl:apply-temp-
lates’s XPE without xsl:sort inherits the XPath features,
so we need to materialize just the node-set returned by
the XPath evaluation. When xsl:sort is specified, we need
to consider how to maintain the sorted node-set efficiently.
Our approach is to materialize the sorted pairs (node, key
value). When an update operation impacts the evaluation
of xsl:apply-templates’s XPE, we identify the position of the
impacted pair in the sorted pairs by binary search, and then
insert/delete the pair to/from the position indicated.3

xsl:if Since xsl:if is evaluated with existential quantifica-
tion, it is not sufficient for incremental view maintenance
to materialize the XPath result. We apply the counting
algorithm [12], which was originally designed for the incre-
mental maintenance of SQL views with set semantics, to the
xsl:if evaluation and store the number of nodes that satisfy
the xsl:if condition. When an update operation impacts the
xsl:if condition evaluation, we add/subtract the number of
updated nodes that satisfy/do not satisfy the xsl:if condi-
tion. If the resulting number becomes zero (indicating xsl:if
condition is evaluated as false), we delete the materialized
view of the child XSLT expression. If the resulting number
that was originally zero becomes one (indicating xsl:if con-
dition is evaluated as true), we add the materialized view of
the child XSLT expression.

view construction The evaluation of the view construc-
tion’s XPE inherits the XPath features, thus we need to
materialize just the result.

xsl:variable/param xsl:variable/param inherits XPath
features. Fig. 8 shows an example wherein variables V1...Vn

3There is an XSLT extension library that supports the dis-
tinct operation to remove duplicated values in a node-set.
We can apply the counting algorithm in the same way as
xsl:if processing.

are defined by referring to the previous variable. Since the
bound value can be seen as the input XML data for the next
variable, the final variable Vn is incrementally maintained in
the same way as described above by generating the XUpdate
expressions (u(d1),...,u(dn−1)) for the bound value.

�

��

��

����

��

	
�

�

��
	 ��
�����

��� ��� ��

���
��
�

Figure 8: Variable maintenance

4.3 XT-tree
We define the auxiliary data XT-tree for incremental view

maintenance of an XSLT program, a set of XSLT expres-
sions.

4.3.1 XT-tree structure
An XT-tree is a tree of XT-nodes each of which contains

a reference to the XSLT expression it was generated from.
An non-leaf XT-node commonly stores a sequence of refer-
ences to child XT-nodes that expresses the dynamic execu-
tion sequence of XSLT expressions.4 There are five types
of XT-node: XT-template, XT-param, XT-if, XT-node-set,
and XT-view, each of which is constructed from its corre-
sponding XSLT expression.

XT-template: An XT-template instance stores its con-
text node.

XT-param An XT-param instance is constructed for ei-
ther xsl:param or xsl:variable and stores the bound value.

XT-if An XT-if instance is constructed for xsl:if. When
the xsl:if condition is satisfied, a child XT-node is construct-
ed by evaluating the child XSLT expressions of xsl:if.

XT-node-set An XT-node-set instance is constructed for
xsl:apply-templates and stores a set of references to child
XT-templates that are constructed by the applied XSLT
templates. The set of references are sorted by the context
nodeID of the child XT-templates so as to identify, by bi-
nary search, the node position for insertion/deletion. When
xsl:sort expressions are specified, XT-node-set stores a list
of pairs (reference to child XT-node, key value) sorted by the
key value in the specified order (descending/ascending). The
node position for insertion/deletion is identified by binary
search using the node’s key value and nodeID.

XT-view An XT-view instance stores a materialized view
and is constructed for xsl:element, xsl:attribute, xsl:text,
xsl:value-of, xsl:copy, or xsl:copy-of.

For example in Fig. 9, the left part shows the source XML
data and the middle part shows the XT-tree constructed by
the XSLT program in the right part. The XT-tree indicates
that the four section nodes (depicted by the gray circles)
are used as the context of the second XSLT template.

4.3.2 XT-tree construction
The XT-tree is built during the full transformation. In

addition, we build an XT-node-set candidates to store all
XT-nodes, including the root XT-node, generated from the
XSLT expression with an absolute XPE. The optimized in-
cremental view maintenance in Section 4.4 utilizes candi-

4An XT-tree contains the applied default templates.

676

XT-treeXML data

3

bib

book

section,year 8

title,section 5 96

5 8

<xsl:template match=“/”>
<html><table>
<xsl:apply-templates select=“.//book[year>2002]//section[title=‘X’]”/>
</table></html>

</xsl:template>

<xsl:template match=“section”>
<tr><td><xsl:value-of select=“title/text()”/></td></tr>

</xsl:template>

3 9

XSLT program

title

Figure 9: Incremental view maintenance example

dates to avoid traversing XT-nodes that are not impacted
by update operations.

4.4 Incremental view maintenance
Note that an XT-tree, a tree of XSLT expressions, forms

an inter-related XPath expression. XTim extends the XPath
semantics in Section 4.1 so as to determine the impacted
XPath expressions in the inter-related XPath expression by
update operations.

The view maintenance process consists of three steps: 1)
identify the impacted XPath expressions for update-path and
locate the context node in the source XML data, 2) re-
evaluate the XSLT program partially on the located con-
text node and maintain the impacted XT-nodes, and 3)
output the maintained materialized view stored in the XT-
tree. During the 1st step, for each update-step in update-path
XTim uses Fig. 7 to process XPath expressions. When some
XPath expression becomes empty, XTim locates a child XT-
node whose context node is identical to update-step and
continues processing the XPath expression of the child XT-
node. When XTim reaches to the end of update-path, it
reaches the root nodes of impacted XT-nodes (Fig. 10) and
moves to the 2nd step. In the 2nd step, XTim evaluates the
XPath expression on the context node specified by update-
step and maintains the XT-tree. After the 2nd step, since
the XT-tree stores the maintained materialized view, the
3rd step is easy to complete.

We focus on the XT-tree maintenance algorithm for an
XUpdate insert expression, since the symmetry of XUpdate
insert and delete expressions makes the maintenance algo-
rithm symmetric. One naive method of XT-tree mainte-

���

������������

�����������

�������

�������

������

� ��!��������

 ��!�

Figure 10: XTim view maintenance

nance is to traverse all the XT-nodes in the tree to locate
XT-nodes generated from XSLT expressions with absolute
XPath expressions. This method is sound because it en-
sures that all impacted XT-nodes are found and that the
referred variables always bind the maintained values. How-

Algorithm maintain-XT-tree(D,u-org,candidates)
Input: D is the updated source XML data.

u-org is the original XUpdate expression.
candidates is a set of XT nodes.

1. r = get-document-root(D);
2. for-each XT-node in candidates

3. if is-maintained(XT-node) continue;
4. else maintain-XT-node(XT-node,u-org);

Figure 11: maintain-XT-tree

Algorithm maintain-XT-node(p-XT, u)
Input: p-XT is current XT-node.

u is an XUpdate expression.
1. switch (get-XT-node-type(p-XT))
2. case XT-template:
3. break; // continue to line 18
4. case XT-param:
5. return; // deferred evaluation
6. case XT-node-set:
7. proceed-step(p-XT,u,get-xpath(p-XT));
8. return;
9. case XT-if:

10. for-each xpath in get-xpaths(p-XT)
11. proceed-step(p-XT,u,xpath);
12. // end for-each
13. return;
14. case XT-view:
15. proceed-step(p-XT,u,get-xpath(p-XT));
16. break; // continue to line 18
17. // end switch
18. for-each c-XT in get-children-XT-nodes(p-XT)
19. if is-maintained(c-XT) continue;
20. else maintain-XT-node(c-XT,u);

Figure 12: maintain-XT-node

ever, since it may not be efficient to traverse all the XT-
nodes in the XT-tree, we propose an optimized method that
avoids traversing all XT-nodes. This method utilizes can-
didates which store all XT-nodes, including the root XT-
node, with absolute XPath expressions. This approach is
also sound because it ensures that all impacted XT-nodes
are found by using the candidates and that the variable is
lazily maintained when its bound value is referred to.

4.4.1 Algorithm
Fig. 11 shows the main function. It parses the updated

source XML data D to allow the re-evaluation of some pred-
icate of XPath expressions to access portions of D (line 1).
For each XT-node in candidates (line 2), if it has already
been maintained then skip to the next XT-node to avoid
maintaining the same XT-node twice (line 3). Otherwise, it
invokes the maintain-XT-node function for current XT-
node (line 4).

Fig. 12 shows the maintain-XT-node function that main-
tains the current XT-node p-XT according to its type. When

677

Algorithm proceed-step(XT-node, u, or-xpath)
Input: XT-node is current XT-node.

u is an XUpdate expression for or-xpath.
or-xpath is an XPath expression.

1. or-xpath-next = null;
2. u-path = get-update-path(u);
3. u-step = get-first-step(u-path);
4. for-each xpe in get-paths-from-or-expr(or-xpath)
7. t-step = get-first-step(xpe);
8. switch (get-axis-type(t-step))
16. case descendant:
17. if match-node-test(u-step,t-step)
18. if is-predicate-impacted(u,t-step)
19. update-XT-node(XT-node,get-node(u-step),xpe);
20. break;
21. else or-xpath-next = or-expr(or-xpath-next,

get-rest-path(xpe),
xpe);

22. else or-xpath-next = or-expr(or-xpath-next,xpe);
24. // end switch
26. // end for-each
27. if (XPath match fails) return;
29. if (reached the updated subtree)
30. update-XT-node(XT-node,get-node(u-step),

or-xpath-next);
31. return;
33. if (A part of XPath is matched)
35. proceed-XT-node(XT-node,u-next,get-node(u-step));
36. proceed-step(XT-node,u-next,or-xpath-next);

Figure 13: proceed-step

p-XT’s type is XT-template indicating that it was generated
from an xsl:template expression (lines 2-3,18-20), all child
XT-nodes of p-XT are to be maintained: for each child XT-
node c-XT of p-XT, if it has already been maintained then
skip to the next XT-node (line 19), otherwise the maintain-
XT-node function is invoked recursively for c-XT (line 20).
When p-XT’s type is XT-param (lines 4-5), maintenance is
deferred until the variable/parameter is referred to. When
p-XT’s type is XT-node-set (lines 6-8), the proceed-step
function is invoked to check matching between the XPE of
the corresponding XSLT expression and update-path of the
XUpdate expression, and to maintain the descending part
of p-XT. When p-XT’s type is XT-if (lines 9-13,18-20), the
proceed-step function is invoked for all XPEs used in the
xsl:if condition and to maintain the descending part of p-
XT. If p-XT’s type is XT-view (lines 14-16,18-20), when
the corresponding XSLT expression is either xsl:value-of or
xsl:copy-of that uses an XPE, the proceed-step function is
invoked. The function then processes all child XT-nodes of
p-XT (lines 18-20).

Fig. 13 shows the key steps of the proceed-step func-
tion5; Appendix B of the full paper [19] shows the complete
program. The proceed-step function processes the first
update step (u-step) in update-path and is recursively in-
voked (line 36) until it reaches one of three cases; 1) XPath
match fails (line 27), 2) all update steps in update-path have
been processed, indicating that we have reached the root
node of the update subtree in the source XML data (lines
29-31), or 3) a part of XPath is matched (lines 33-36). In the
1st case, the XUpdate expression doesn’t impact the current
XT-node. In the 2nd case, it invokes the update-XT-node
function to update the current XT-node by evaluating or-
xpath-next. Theorem 4.4 explains the scope on the source
XML data during the processing of the update-XT-node

5Thus the line number skips.

function. In the 3rd case, there are two tasks; one is to
continue processing the unmatched part of XPath (line 36).
The other is to invoke the proceed-XT-node function for
locating a child XT-node and then traversing the XT-tree.
The proceed-XT-node function implements Theorem 4.5
and locates the child XT-template whose context nodeID is
identical to the nodeID of u-step.

In general, since the XPath expression or-path is disjunc-
tive, the proceed-step function processes each subexpres-
sion xpe in or-path (lines 4-26). t-step is the first step of xpe
(line 7). If the node-test of t-step matches the first step of
u-path (line 17), it continues to check that the predicates of
t-step are impacted by the XUpdate expression (line 18).
Otherwise (line 22), the proceed-step function sets or-
xpath-next, which corresponds to the 2nd line in (5) of the
eval algorithm in Fig. 7. If some predicate of the first step
(t-step) of xpe is impacted by the XUpdate expression, the
update-XT-node function is invoked to update current
XT-node (line 19). Otherwise (line 21), the proceed-step
function sets or-xpath-next, which corresponds to the 1st line
in (5) of the eval algorithm.

4.4.2 Example
Consider the example depicted in Fig. 9. The small tri-

angle in the left part depicts a new subtree inserted into
the source XML data. The update-path is expressed as
/(bib,1)/(book,2)/(section,8)/(section,9). The triangle in
the middle part shows the expected new subtree in the XT-
tree. There are two select XPath expressions in the XSLT
program; .//book[year>2002]//section[title=’X’] (xp1) and
title/text() (xp2). Incremental maintenance is done as fol-
lows.

1st step Starting from the root node of the XT-tree,
(bib,1) is processed by xp1 and the XPE for the next pro-
cessing (or-xpath-next) is also xp1 (line 22 in Fig. 13). Then
(book,2) is processed and or-xpath-next becomes xp1|//sec-
tion[title=’X’] (line 21 in Fig. 13). Finally, (section,8) is pro-
cessed and or-xpath-next becomes xp1|//section[title=’X’]|
(null). The (null) indicates partial XPath matching, so p1)
we continue processing the unmatched part of XPath, and
p2) we locate the child XT-node whose context nodeID is
identical with the current update step (section,8) and con-
tinue traversing the XT-tree.

2nd step Now we have reached the node whose nodeID
is 9, which is the root node of the updated subtree. For case
p1 (current XT-node is the root), we evaluate xp1|//sec-
tion[title=’X’] on the XML node whose nodeID is 9. The
scope on the source XML data is depicted by the triangle
consisting of dotted lines in Fig. 9, because we need to eval-
uate the predicate [year>2002] whose evaluation we have
skipped up to now. The remaining process is the same as
that part of the full transformation process; construct new
XT-nodes and continue processing the second XSLT tem-
plate. For case p2, the located XT-node whose nodeID is 8
is constructed from the second XSLT template, so we eval-
uate xp2 on the XML node whose nodeID is 9. This case
doesn’t impact the XT-tree.

5. ORDERED DATA MODEL
Since XTim stores a node-set sorted by nodeID and the

labeling schemes [16, 1] can encode the node position into
the nodeID (label), the labeling schemes enable XTim to
support the ordered data model. Future work includes de-

678

(a) XML data

depth data size (KB) # of elements

D7 7 141 3280
D8 8 464 9841
D9 9 1527 29524
D10 10 4949 88573
D11 11 16067 265720

(b) XSLT programs

description selectivity

simple preserving structure 7.8%
descendant flatten structure 66.7%
sort descendant + sort 66.7%
simple-pred simple + predicate 1.0%
descendant-pred descendant + predicate 2.5%

Table 1: XML data & XSLT programs

termining how to update the nodeIDs stored in the XT-tree
when nodeIDs in the source XML data are re-labeled.

There are two approaches to maintaining the evaluation
result of XPath with a position predicate; 1) re-evaluation,
and 2) materialization. Consider //book[year>2002][3]/title,
which extracts the title of the third book published after
2002. When a newly inserted book has a publication year
of 2003, the position predicate may be impacted by the
update operation, thus we need to maintain the material-
ized XPath view. The re-evaluation approach evaluates the
XPath expression fully, so it is not efficient w.r.t. speed
but it doesn’t require additional memory space. The ma-
terialization approach materializes the node-set returned by
//book[year>2002], incrementally maintains the node-set,
and evaluates [3] on the materialized node-set. This is effi-
cient w.r.t. speed but requires additional memory space.

6. EXPERIMENTS
We implemented a persistent DOM manager (PDOM)

and XTim using the XML parser Xerces-J 2.6.2 and the
XPath processor Jaxen 1.1. The PDOM loads XML files
and assigns a persistent nodeID to each node. Since our
data model is not node order sensitive, a new node re-
ceives a larger nodeID than the existing nodes. The PDOM
receives an original XUpdate expression [23], updates the
stored DOM, and submits rewritten XUpdate expressions
(defined in Section 3.3) to the XTim algorithm. Our execu-
tion environment consisted of an Intel Pentium M 1.6GHz
PC with 2048MB main memory, running Windows XP, and
Sun Java SDK 1.4.2 06. For each experiment, the perfor-
mance result doesn’t include the DOM building time nor
the XSLT program parsing time.

XML data: We used nested synthetic XML data that
forms a balanced 3-ranked tree as shown in (a) of Table 1.
We also conducted experiments using DBLP XML data, a
typical example of shallow XML. We omit the latter here,
since the result is similar to that of the former synthetic
XML data.

XSLT programs: We used four different types of XSLT
programs as shown in (b) of Table 1. simple represents a
structure preserving transformation that constructs a tree
whose size is 7.8% of the input XML data. descendant
represents a flatten-structure transformation using descen-
dant axis and constructs a tree whose size is 66.7% of the
input XML data. sort represents a flatten-structure trans-
formation with sort. simple-pred and descendant-pred
are simple with a predicate and descendant-pred with a
predicate respectively.

XML update operations: We used four different sub-
tree sizes for insertion: 4KB, 14KB, 43KB, and 141KB.
They are also balanced 3-ranked trees with depths of 4, 5,
6, and 7 respectively.

6.1 XT-tree building
Fig. 14 shows XT-tree size and the response time of XT-

tree building. (a) indicates that XT-tree size (the number of
nodes) scales reasonably to source XML size (the number of
nodes) and the selectivity of the XSLT program. The com-
bination of (a) and (b) indicates that the XT-tree building
performance depends on the XT-tree size in general. How-
ever, it is not true for descendant-pred transformation,
because the evaluation of descendant axis requires access to
all the nodes in the source XML data, which is expensive.

6.2 Comparison with SAXON
(c) in Fig. 146 shows the performance comparison of XTim

and SAXON version 8.1 [15] (one of the fastest XSLT pro-
cessors). The experiment compared the response time of 1)
the XTim incremental transformation of subtree insertion
with fixed size of 4KB, and 2) the SAXON transformation
of the updated XML data.

There are three observations. First XTim outperforms
SAXON’s full transformation by factors of up to 500, be-
cause the updated data size is small compared to the source
XML data size (2.84% in D7 to 0.02% in D11), so the
XPath re-evaluation of XTim is localized. Second XTim
performance of XSLT programs except sort is constant.
The reason is that the insertion position of the new sub-
tree is always the last position of the XT-node-set sorted
by nodeID, because the PDOM assigns larger nodeID to
a new node. In addition, XTim performance of sort is
linear to log2(source XML data size), because a binary
search is done on the XT-node-set to identify the insert po-
sition. Third, by comparing the XT-tree building time in
(b) and the SAXON’s transformation time in (c), the XT-
tree building in descendant, descendant-pred, sort is
slower than SAXON’s transformation, but not in the sim-
ple and simple-pred cases. The reason for the former is
that the XT-tree building process includes the XSLT trans-
formation process. For the latter, we conjecture that the
xsl:template lookup, which is one of the most expensive pro-
cesses in XSLT transformation, is efficiently implemented in
the XTim implementation due to the simplified XSLT spec-
ification described in Section 3.2.

6.3 Effect of updated data size
(d) in Fig. 14 shows the response times of XTim with the

subtree insertion of various sizes. The source XML data is
fixed at D10. The first observation is the large difference be-
tween sort and descendant performance; it indicates that
the binary search cost incurred by every new XT-node inser-
tion dominates sort performance. The second observation
is descendant-pred’s performance worsens against that of

6XTim results except sort overlap.

679

(a) XT-tree size

"

#""

$""

%""

&""

'"""

'#""

'$""

" (" '"" '(" #"" #(")""

*+,-./012*34/56+7/*8'"""9

:
;<
=>
>
?@
A>
BC
DE
>?
F
G
H
HH
I

JKLMNO
POJQORPSRT
JUVT
JKLMNOWMVOP
POJQORPSRTWMVOP

(b) XT-tree building time

X

Y

ZX

ZY

[X

[Y

X YXXX ZXXXX ZYXXX [XXXX

\]̂_̀abcd\efaghij

k
lmn
om
p
q
rm
s
t
uv
t
wx

yz{|}~
�~y�~�����
y���
yz{|}~�|�~�
�~y�~������|�~�

(c) transform time (4KB subtree insertion)

�

�

�

�

�

�

�

�

�

�

��

� ���� ����� ����� �����

�����������������

 ¡
¢
£
¤¥
¦¡
§
 ̈
§
©
ª
¤
©
«¬

®̄ °±²
³²́²µ³¶µ·
̧¹·
®̄ °±²º°¹²³
³²́²µ³¶µ·º°¹²³
®̄ °±²»¶¼̧µ½
³²́²µ³¶µ·»¶¼̧µ½
̧¹·»¶¼̧µ½
®̄ °±²º°¹²³»¶¼̧µ½
³²́²µ³¶µ·º°¹²³»¶¼̧µ½

(d) transform time (D10 (4949KB) is the source XML)

¾

¾
¿
À

¾
¿
Á

¾
¿
Â

¾
¿
Ã

Ä

Ä
¿
À

Ä
¿
Á

Ä
¿
Â

¾ Å¾ Ä¾¾ ÄÅ¾
ÆÇÈÉÊËÉÌÈÍÎËÊÉÉÈÆÏÉÐÑÒÓ

ÔÕ
Ö
×
ØÙ
ÚÕ
Û
ÔÜ
Û
Ý
ÞØ
Ý
ßà

áâãäåæ
çæèæéçêéë
áìíë
áâãäåæîäíæç
çáèæéçêéëîäíæç

Figure 14: Scalability experiments

descendant’s as subtree size increases. This reflects the im-
pact of the scope size difference on source XML data during
XPath re-evaluation; the scope size of descendant-pred is
larger than that of descendant.

7. RELATED WORK
There are a number of related works on incremental main-

tenance for materialized views in the context of the rela-
tional model [11], the semi-structured data model [17, 2, 21,
26], and the XML data model [25, 14, 9, 8].

incXSLT [25] is an incremental XSLT transformation al-
gorithm for an XML document editor through its rendered
presentations. incXSLT materializes the dynamic execution
flow of XSLT template processing and traverses the flow
in a top down manner. Their important contribution is to
clarify how to manage XSLT template precedence for incre-
mental view maintenance. XT-tree shares the concept of
execution flow, but XTim offers three technical differences
since their motivation differs from ours. First, although in-
cXSLT incrementally maintains the execution flow of XSLT
template processing, it doesn’t incrementally maintain the
XPath evaluation result and so re-evaluates XPath expres-
sions fully. Second, incXSLT restricts update operations to
just a single node, since they assume the update operation
is done via GUI. This does not efficiently support the inser-

tion/deletion of subtrees. Third, incXSLT requires that the
XPEs whose result type is a node-set must be expressed by
just child axis (not descendant axis). Reference [14] presents
a maintenance technique for materialized XML views stored
in a RDBMS or an ORDBMS. Their view definition is lim-
ited to select-projection views and it doesn’t support regu-
lar expressions (wildcard and descendant axis) on matching
patterns.

Reference [9, 8] presents an incremental XQuery view
maintenance algorithm based on the algebra XAT. It con-
structs a materialized tree using XAT and checks matching
XPEs with the update operation in a top down manner.
There are three issues with their techniques. First, they
don’t consider predicates on XPath. Second, since they store
all the intermediate node-sets returned by location step eval-
uations, they need a large memory space. Third, similar to
incXSLT, they restrict update operations to just a single
node that doesn’t require descendant processing such as the
eval algorithm in Fig. 7.

Reference [17] modifies the XML query language XML-
QL to ensure multi-linearity. However, it doesn’t support
recursive matching patterns expressed by descendant axis
in XPath and XML-QL is limited since it cannot express re-
cursive queries expressed by an XSLT template. Reference
[2] extends Lorel [3], a query language of the semi-structured

680

data model, and presents an incremental maintenance algo-
rithm for materialized views defined by the extended Lorel.
It records RelevantOids that contain the object identifier of
every object touched during the view evaluation and checks
whether RelevantOids contain the updated object. The
views defined by the extended Lorel are limited to a sub-
set of the source data, so it is not applicable to the views
defined by XSLT programs which define more general data
transformations. In addition, it restricts insertion/deletion
to just the edges and value updates on atomic objects; match
patterns are limited to those equivalent to XP {[]}. Refer-
ences [21, 26] present incremental maintenance algorithms
on the semi-structured data model whose views are limited
to return a set of nodes.

8. CONCLUSION
We have presented XTim, a novel algorithm for incremen-

tally maintaining XPath/XSLT views defined with XPath

expressions in XP {[],∗,//,vars}. We investigated the XPath
and XSLT features for incremental view maintenance in
response to subtree insertion/deletion. XTim implements
those features and experiments show that it improves the
XML transformation performance by factors of up to 500.

There are several future research directions. XTim can be
improved further with regard to restructuring transforma-
tions by considering some query containment. For example
in Section 2, if an inserted subtree triggers the application
of the second template for a certain year, we need to re-
evaluate the XPath expression in line 15 only on the inserted
subtree. The reason is the XPath expression collects pub-
lications for that year and no existence of the materialized
result of the year indicates there is no publication on the
year in existing source data. Other future work includes the
efficient incremental maintenance of a large number of views
and on an incremental update of the rendered presentations
of HTML and SVG. We are currently working on the incre-
mental SVG rendering to complete the incremental process
from source data to presentation.

9. REFERENCES
[1] S. Abiteboul, H. Kaplan, and T. Milo. Compact

labeling schemes for ancestor queries. In Proceedings
of SODA, pages 547–556, 2001.

[2] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and
J. L. Wiener. Incremental maintenance for
materialized views over semistructured data. In
Proceedings of VLDB, pages 38–49, 1998.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. L. Wiener. The Lorel query language for
semistructured data. International Journal on Digital
Libraries, 1(1):68–88, 1997.

[4] G. J. Bex, S. Maneth, and F. Neven. A formal model
for an expressive fragment of XSLT. Information
Systems, 27(1):21–39, 2002.

[5] J. Clark. XSL transformations (XSLT) version 1.0, 16
November 1999. http://www.w3.org/TR/xslt.

[6] J. Clark and S. DeRose. XML path language (XPath)
version 1.0, 16 November 1999.
http://www.w3.org/TR/xpath.

[7] Y. Diao and M. J. Franklin. High-performance XML
filtering: An overview of YFilter. In IEEE Data
Engineering Bulletin, 2003.

[8] K. Dimitrova, M. El-Sayed, and E. A. Rundensteiner.
Order-sensitive view maintenance of materialized
XQuery views. In Computer Science Technical Report
Series. Worcester Polytechnic Institute, 2003.

[9] M. El-Sayed, L. Wang, L. Ding, and E. A.
Rundensteiner. An algebraic approach for incremental
maintenance of materialized XQuery views. In
Computer Science Technical Report Series. Worcester
Polytechnic Institute, 2003.

[10] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata.
In Proceedings of ICDT, pages 173–189, 2003.

[11] A. Gupta and I. S. Mumick. Maintenance of
materialized views: Problems, techniques and
applications. IEEE Data Engineering Bulletin,
18(2):3–18, 1995.

[12] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In Proceedings of
SIGMOD, pages 157–166, 1993.

[13] I. JTC1/SC29/WG11. Mpeg-7 description definition
language (DDL).
http://archive.dstc.edu.au/mpeg7-ddl/.

[14] H. Kang and J. Lim. Deferred incremental refresh of
XML materialized views. In Proceedings of
Australasian database conference on Database
technologies, pages 217–226, 2003.

[15] M. H. Kay. SAXON the XSLT and XQuery processor.
http://saxon.sourceforge.net/.

[16] Q. Li and B. Moon. Indexing and querying XML data
for regular path expressions. In Proceedings of VLDB,
pages 361–370, 2001.

[17] H. Liefke and S. B. Davidson. View maintenance for
hierarchical semistructured data. In Data Warehousing
and Knowledge Discovery, pages 114–125, 2000.

[18] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
Looking forward. In Proceedings of Workshop on XML
Data Management (XMLDM), LNCS. Springer, 2002.

[19] M. Onizuka, T. Honishi, F. Y. Chan, and
R. Michigami. Incremental maintenance for
materialized XPath/XSLT views (full version).
http://xmltk.sourceforge.net/xtim.pdf.

[20] C. Owens. PMC project P/META.
http://www.ebu.ch/departments/technical/pmc/
pmc meta.html.

[21] D. Suciu. Query decomposition and view maintenance
for query languages for unstructured data. In
Proceedings of VLDB, pages 227–238, 1996.

[22] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld.
Updating XML. In Proceedings of SIGMOD, pages
413–424, 2001.

[23] The XML:DB Initiative. XUpdate - XML update
language, September 14 2000.
http://www.xmldb.org/xupdate/.

[24] TV-Anytime Forum. http://www.tv-anytime.org/.

[25] L. Villard and N. Layaida. An incremental XSLT
transformation processor for XML document
manipulation. In Proceedings of WWW, pages
474–485, 2002.

[26] Y. Zhuge and H. Garcia-Molina. Graph structured
views and their incremental maintenance. In
Proceedings of ICDE, pages 116–125, 1998.

681

