
Partitioning of Web Graphs by Community Topology

Hidehiko Ino
Graduate School of

Information Science and
Technology

Hokkaido University
Sapporo, 060-0814 Japan

hino@main.ist.hokudai.ac.jp

Mineichi Kudo
Graduate School of

Information Science and
Technology

Hokkaido University
Sapporo, 060-0814 Japan

mine@main.ist.hokudai.ac.jp

Atsuyoshi Nakamura
Graduate School of

Information Science and
Technology

Hokkaido University
Sapporo, 060-0814 Japan

atsu@main.ist.hokudai.ac.jp

ABSTRACT
We introduce a stricter Web community definition to over-
come boundary ambiguity of a Web community defined by
Flake, Lawrence and Giles [2], and consider the problem of
finding communities that satisfy our definition. We discuss
how to find such communities and hardness of this problem.

We also propose Web page partitioning by equivalence
relation defined using the class of communities of our defini-
tion. Though the problem of efficiently finding all communi-
ties of our definition is NP-complete, we propose an efficient
method of finding a subclass of communities among the sets
partitioned by each of n− 1 cuts represented by a Gomory-
Hu tree [10], and partitioning a Web graph by equivalence
relation defined using the subclass.

According to our preliminary experiments, partitioning by
our method divided the pages retrieved by keyword search
into several different categories to some extent.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; H.3.3 [Information Systems]: Information
Storage and Retrieval—clustering,information filtering ; G.2.2
[Discrete Mathematics]: Graph Theory—network prob-
lems

General Terms
Algorithms, Experimentation

Keywords
Web community, graph partitioning, maximum flow algo-
rithm

1. INTRODUCTION
The World-Wide Web (WWW) is a huge network in which

pages are connected by links. Inside this Web link structure,
a lot of valuable information about the relationship between
Web pages exists because Web links are created by People
for the purpose of guidance to the related pages. Actually,
this information has been already used for many applica-
tion, for example, the ranking of pages retrieved by a search
engine [6, 1].

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

One of the interesting substructures of the WWW net-
work is a community structure, a structure of subgraphs with
dense connections. A set of pages having such structure, a
Web community, is conceivably created by people having
the same interests. Therefore, discovered communities can
be used in Web page search and recommendation.

There are mainly the following two detailed definitions
of communities defined as dense subgraphs. One definition
proposed by Kumar et al. [7] is that a community is a dense
directed bipartite subgraph which contains a complete bipar-
tite subgraph of a certain size. However, this definition is
ambiguous because it still contains the word ‘dense’. The
definition would become clear if a community were defined as
a complete bipartite subgraph itself, but then most commu-
nities would be too small and most pages would not belong
to any communities. The other definition proposed by Flake,
Lawrence, Giles [2] is that a community is a vertex subset in
which each member vertex has at least as many edges con-
necting to member vertices as it does to non-member ver-
tices. This definition is clear, and for every vertex subset,
it is possible to decide whether it is a community or not.
Besides, the possibility that large communities exist seems
to be high, and most pages seem to belong to some commu-
nities that are not a whole set of vertices.

In order to find communities defined by Flake et al., which
we call FLG-communities here, the following two methods
were proposed so far, and both methods are trying not
to find densely-connected vertex subsets but to find those
sparsely connected to their outside vertices. One is a method
based on edge betweenness proposed by Girvan and New-
man [4]. The edge betweenness of an edge is defined as
the number of shortest paths between pairs of vertices that
run along it. Based on the idea that the edges connecting
the inside and the outside of a community are expected to
have high edge betweenness, Girvan and Newman proposed
a method of removing an edge with the highest edge be-
tweenness one by one. However, it is not guaranteed that
FLG-communities are found by their method1. The other
is a method using the maximum flow algorithm proposed by
Flake et al. [2]. The maximum flow algorithm [9, 10] is an
algorithm that calculates how much water must run through
each edge in order to maximize the total amount of water
running from a vertex (source) to another vertex (sink) on
condition that the amount of water through each edge must
be at most its given capacity. The method using the maxi-

1For example, in Figure 2, their method divides C3 and
V − C3, and does not find the FLG-community C4.

661



mum flow algorithm is based on the idea that sparse edges
between the inside and the outside of an FLG-community
become a bottleneck of the flow from an inside vertex to
an outside vertex when the capacity of every edge is one.
A subset of saturated edges, the edges through which the
amount of water equal to its capacity is running, gives a
cut that divides the set of all vertices into two sets, a set
containing the source and a set containing the sink. Ford
and Fulkerson’s “max flow-min cut” theorem [9, 10] guar-
antees that this cut contains the minimum number of edges
among all cuts dividing the source and the sink. Flake et al.
claimed that, in order to be identified by the maximum flow
algorithm, an FLG-community C must satisfy the condition
that both s# and t# are larger than the number of edges in
the cut (C, V −C), where s# is the number of edges between
the source s and vertices in C, and t# is the number of edges
between the sink t and vertices in V − C.

There are two problems for the method proposed by Flake
et al. First, the boundary of an FLG-community is ambigu-
ous, that is, many slightly different subsets could be FLG-
communities for one densely-connected part of a graph. Sec-
ond, a vertex set found by a maximum flow algorithm might
not be an FLG-community even if an FLG-community C
satisfying the above condition exists.

To overcome the first problem, this paper introduces a
stricter community definition than the FLG-community def-
inition. In the FLG-community definition, only inside ver-
tices of a community are conditioned. In our community
definition, it must be also satisfied that each outside vertex
has at least as many edges connecting to outside vertices
as it does to inside vertices. (We call an FLG-community
satisfying this condition an IKN-weak-community.) In addi-
tion to this condition, inside vertices must satisfy a stricter
condition that each inside vertex has more edges connect-
ing to inside vertices than it does to outside vertices. (We
call an IKN-weak-community satisfying this condition an
IKN-community.) The definition of IKN-community reduces
boundary ambiguity of FLG-community to some extent be-
cause two distinct IKN-communities differ in at least two
vertices.

A clarification of what can be found by an s-t maximum
flow algorithm approaches the second problem. We prove
that what can be found by an s-t maximum flow algorithm
is not an FLG-community but a s-t quasi-IKN-community in
which all vertices but the two vertices s and t satisfy the con-
ditions of IKN-community. In terms of FLG-communities,
this means that a maximum flow algorithm always finds a
vertex set whose members but the source s satisfy the con-
dition of (strict2) FLG-community, which has been already
proved by Flake, Tarjan and Tsioutsiouliklis [3]. So, an
s-t maximum flow algorithm might seem to approximately
find an FLG-community. However, the fact that a source
might not satisfy the condition should not be neglected be-
cause a source is the most important vertex which must be
contained in the community. On the other hand, the fact
that all members but the source s (and the sink t) in a
found set satisfies the conditions of FLG-community (IKN-
community) ensures that only s (and t) should be checked
to satisfy the conditions to know whether it is an FLG-
community (IKN-community) or not.

An efficient algorithm to find not an s-t quasi-IKN-community

2See the definition in Sec. 2.1

but an s-t IKN-community (an IKN-community that in-
cludes s and excludes t) has not been known yet. As a
difference between the problem of finding an s-t IKN-weak-
community and the problem of finding an s-t quasi-IKN-
community, which can be solved efficiently by an s-t max-
imum flow algorithm, we show the fact that each coordi-
nate of every extreme point solution is an integer for the
LP-relaxation of the integer programming in a formaliza-
tion of the latter problem, but might not be an integer
for that in a formalization of the former problem. This
seems to support the hardness of the problem of finding
an s-t IKN-community. Actually, very recently, the prob-
lem of deciding whether an s-t IKN-community (IKN-weak-
community) exists or not for given s and t has been proved
to be NP-complete even if weights are restricted to be 1
[8]. The problem of deciding whether an IKN-community
(IKN-weak-community) exists or not in a given graph has
been also proved to be NP-complete [3], which implies NP-
completeness of the above s-t IKN-community (IKN-weak-
community) problem without restriction on weights.

Partitioning Web pages into groups having similar prop-
erties is useful for information retrieval, and Web commu-
nities can be used for this purpose. We propose Web page
partitioning by the equivalence relation defined using the
class of IKN-communities, where two pages are equivalent
if and only if the sets of IKN-communities including each
page coincide. This equivalence relation can be also de-
fined by using FLG-communities, but a partition obtained
by the relation may not be useful for the boundary ambigu-
ity problem described above. We also propose hierarchical
partitioning by repeatedly applying this partitioning to the
contracted graph in which all original vertices in the same
partition are contracted into one vertex.

In order to partition a Web graph by the equivalence re-
lation defined using IKN-communities, the existence of s-t
IKN-communities should be checked for arbitrary vertices s
and t, which is an NP-complete problem as described above.
In this paper, we propose a coarser partitioning by the equiv-
alence relation defined using a subclass of IKN-communities
which are efficiently extracted by an s-t maximum flow al-
gorithm. As mentioned above, sets found by an s-t maxi-
mum flow algorithm are s-t quasi-IKN-communities, so only
a further check if s and t satisfy the requirements of be-
ing an IKN-community is needed. Our method find IKN-
communities among all 2(n − 1) vertex subsets partitioned
by one of n−1 cuts represented by a Gomory-Hu tree [10]. A
Gomory-Hu tree of a connected graph G(V, E) is a tree with
a set of vertices V in which every cut (C, V −C) obtained by
removing one edge (s, t) is also a s-t minimum cut in G. It
is known that a Gomory-Hu tree can be created efficiently
by executing maximum flow algorithms n − 1 times.

According to our preliminary experiments, partitioning by
our method divided the pages retrieved by keyword search
into several different categories to some extent.

2. WEB COMMUNITIES

2.1 Definition
Let an undirected graph G(V, E) be a graph in which each

vertex represents a Web page and each edge represents a link
between two distinct pages. Assume that a weight wuv(=
wvu) ≥ 0 is given to each pair of vertices u and v, and
wuv = 0 if there is no edge between u and v. A weight

662



wuv for a pair of vertices u and v can be any value when an
edge exists between them, but we assume that it is 1 unless
explicitly stated otherwise.

Flake, Lawrence and Giles [2] defined a web community,
which we call an FLG-community here, in terms of undi-
rected graphs as follows.

Definition 1 (Flake, Lawrence and Giles [2]). An
FLG-community is a vertex subset C ⊂ V that satisfies the
following Condition 1.

Condition 1.
X
v∈C

wuv ≥
X

v∈V −C

wuv for all u ∈ C.

C1C2

C3 C4 C5

u v

s

t

Figure 1: Example of FLG-Communities
C1, C2, ..., C5.

This definition has the problem of boundary ambiguity.
For example, in the graph of Figure 1, C1, C2, C3, C4 and
C5 are all FLG-communities, though they are essentially the
same densely connected part of the graph. This raises the
problem of boundary ambiguity when we want to extract
one community for one densely connected part. Therefore,
we propose a stricter definition as follows.

Definition 2. An IKN-weak-community is a vertex
subset C ⊂ V that satisfies Condition 1 and the following
Condition 2.

Condition 2.
X
v∈C

wuv ≤
X

v∈V −C

wuv for all u ∈ V − C.

Definition 3. An IKN-community is a vertex subset
C ⊂ V that satisfies the following Condition 1′ and Condi-
tion 2.

Condition 1′.
X
v∈C

wuv >
X

v∈V −C

wuv for all u ∈ C.

Flake, Tarjan and Tsioutsiouliklis [3] consider a community
definition using Condition 1′ only. Here, we call such com-
munities strict FLG-communities.

Note that

{C : C is an IKN-community}
⊆ {C : C is an IKN-weak-community}
⊆ {C : C is an FLG-community}.

The whole set V and the empty set ∅ are trivial IKN-commu-
nities. Vertex subsets C3, C4 and C5 are IKN-weak-commun-
ities among 5 FLG-communities C1, C2, ..., C5 in Figure 1,

and only C3 is an IKN-community. Note that C1, C2 and
C3 are strict FLG-communities. The following proposition
ensures that if C is an IKN-community, C ∪ {v} for any
v �∈ C and C −{v} for any v ∈ C is not an IKN-community,
which means that boundary ambiguity is reduced.

Proposition 1. For any two distinct IKN-communities
C1 and C2, their symmetric difference contains at least two
vertices.

Proof. Let u �∈ C1 and C2 = C1∪{u}. Since C2 satisfies
Condition 1′,

P
v∈C1

wuv =
P

v∈C2
wuv >

P
v∈V −C2

wuv =P
v∈V −C1

wuv, which contradicts the assumption that C1

satisfies Condition 2.

2.2 How to Find Web Communities

s

t
C3

C4s tC1
C2

Figure 2: C2 and C4 are communities that are not
found by an s-t maximum flow algorithm.

Flake, Lawrence and Giles proposed a method that uses
a maximum flow algorithm to find an FLG-community. As
shown by them, it is a clear fact that an s-t maximum flow
algorithm fails to identify an FLG-community C which in-
cludes a vertex s and excludes a vertex t, when the number
of edges between C and V − C is larger than the number
of edges s# between s and C − {s}, or the number of edges
t# between t and V − C − {t}. Then, when the number of
edges between C and V −C is smaller than both s# and t#,
can C identified by an s-t maximum flow algorithm? The
answer is no. In the case of the left graph in Figure 2, C1

and C2 satisfy the condition but the FLG-community found
by an s-t maximum flow algorithm is C1 only. In the case
of the right graph in Figure 2, C4 satisfies the condition but
the found set is C3, which is not even an FLG-community.

These examples indicate the following two facts for com-
munities C that include s, exclude t, and have the number
of edges between C and V − C which is smaller than both
s# and t#.

• Not all such communities C can be found by an s-t
maximum flow algorithm.

• Non-FLG-communities can be found by an s-t maxi-
mum flow algorithm even if such communities C exist.

The second fact make us reluctant to use the algorithm for
finding FLG-communities.

In the followings, we make clear what can be found by a
maximum flow algorithm.

Let G′ = (V, E′) be a directed graph generated from G by
replacing each undirected edge (u, v) to two directed edges
(u, v) and (v, u). Given two vertices s and t, let fs,t denote a
maximum flow [9] from s to t when the capacity of each edge
(u, v) is wuv. We define S(fs,t) as the subset of vertices that
are reachable from s in the residual graph [9] of G′ for fs,t.
Note that a residual graph of G′ = (V, E′) for f is defined as

663



the graph that is composed of all vertices and the edges (u, v)
with positive residual capacity ruv = wuv −f(u, v)+f(v, u).

We call an IKN-community that includes s and excludes t
an s-t IKN-community. If a subset of vertices that includes s
and excludes t satisfies Condition 1′ and Condition 2 except
s and t, then we call the subset an s-t quasi-IKN-community.
Then, the following proposition holds.

Proposition 2. S(fs,t) is an s-t quasi-IKN-community.3

Proof. Let u ∈ S(fs,t) and u �= s. Since there is no
edge from u to any vertices in V − S(fs,t) in the residual
graph for fs,t, fs,t(u, v) = wuv and fs,t(v, u) = 0 hold for all
v ∈ V − S(fs,t). Thus,X

v∈V −S(fs,t)

wuv =
X

v∈V −S(fs,t)

fs,t(u, v)

≤
X
v∈V

fs,t(u, v) =
X
v∈V

fs,t(v, u)

=
X

v∈S(fs,t)

fs,t(v, u)

≤
X

v∈S(fs,t)

wvu =
X

v∈S(fs,t)

wuv

holds. If equality
P

v∈V −S(fs,t)
wuv =

P
v∈S(fs,t)

wuv holds,

fs,t(u, v) = 0 and fs,t(v, u) = wvu hold for all v ∈ S(fs,t),
which means that there is no edge from any vertices in
S(fs,t) to u in the residual graph. This contradict the fact
that u belongs to S(fs,t). Thus, all vertices in S(fs,t)−{s}
satisfies Condition 1′.

Similarly, it can be proved that all vertices in V −S(fs,t)−
{t} satisfies Condition 2.

Remark 1. For u = s, t,
P

v∈V fs,t(s, v) =
P

v∈V fs,t(v, s)+
|fs,t| and

P
v∈V fs,t(t, v) + |fs,t| =

P
v∈V fs,t(v, t) hold in-

stead of
P

v∈V fs,t(u, v) =
P

v∈V fs,t(v, u), where |fs,t| is
the value of flow fs,t. Therefore, S(fs,t) might not be an s-t
IKN-community.

Remark 2. Cut (S(fs,t), V − S(fs,t)) is one of the s-t
minimum cuts [9], but sets C and V − C for an s-t min-
imum cut (C, V − C) might not be s-t and t-s quasi-IKN-
communities. For example, cut C4, V − C4 in Figure 1 is
an s-t minimum cut but neither of them is an s-t or t-s
quasi-IKN-community because u for C4 and v for V − C4

do not satisfy Condition 1′. But for all s-t minimum cut
(C, V − C), both C and V − C are s-t quasi-IKN-weak-
communities, where an s-t quasi-IKN-weak-community is a
vertex subset that includes s, excludes t and satisfies Condi-
tion 1 and Condition 2.

Note that Proposition 2 indicates that we only have to
check that s satisfies Condition 1′ and t satisfies Condition 2
in order to know whether S(fs,t) is an IKN-community or
not.

As shown above, an s-t maximum flow algorithm only
guarantees that a found set is an s-t quasi-IKN-community,
and an efficient algorithm that finds s-t IKN-community has
not been known yet. Note that s-t quasi-IKN-communities
always exist but s-t IKN-communities might not exist.

3A part of this proposition, namely, a claim that all vertices
in S(fs,t)−{s} satisfy Condition 1′, has been already proved
by Flake, Tarjan and Tsioutsiouliklis [3].

In the followings, we show one evidence that the prob-
lem of finding an s-t IKN-community looks computationally
hard. The problem can be formalized as the following in-
teger program that is obtained by adding conditions to an
integer program [10] in a formalization of the minimum cut
problem, of which LP-relaxation is the LP-dual program of
a linear program in a formalization of the maximum flow
problem.

Problem 1. Minimize
X

(u,v)∈E′
wuvduv

subject to

duv − pu + pv ≥ 0 for (u, v) ∈ E′ (1)

ps − pt ≥ 1 (2)

−
X

v:(u,v)∈E′
wuvduv ≥ −1

2

X
v:(u,v)∈E′

wuv for u ∈ V (3)

−
X

u:(u,v)∈E′
wuvduv ≥ −1

2

X
u:(u,v)∈E′

wuv for v ∈ V (4)

duv ∈ {0, 1} for (u, v) ∈ E′ (5)

pu ∈ {0, 1} for u ∈ V (6)

The following proposition holds.

Proposition 3. Problem 1 has a feasible solution. ⇔ An
s-t IKN-weak-community exists.

Proof. (⇒) Let {p∗
u, d∗

u,v : u ∈ V, (u, v) ∈ E′} be an
optimal solution. let C = {u : p∗

u = 1}. Note that s ∈ C
and t �∈ C because p∗

s − p∗
t ≥ 1. Then, the optimality leads

that

d∗
uv =


1 if p∗

u = 1 and p∗
v = 0

0 otherwise.

For u ∈ C,

X
v∈V −C

wuv =
X
v∈V

wuvd∗
uv ≤ 1

2

X
v∈V

wuv

holds by Inequality (3). Thus, C satisfies Condition 1. For
v ∈ V − C,

X
u∈C

wuv =
X
u∈V

wuvd∗
uv ≤ 1

2

X
u∈V

wuv

holds by Inequality (4). Thus, C satisfies Condition 2.
(⇐) For an s-t IKN-community C, set pu for u ∈ V and duv

for (u, v) ∈ E′ as follows.

pu =


1 if u ∈ C
0 otherwise

duv =


1 if pu = 1 and pv = 0
0 otherwise.

Then, pu for u ∈ V and duv for (u, v) ∈ E′ are a feasible
solution of Problem 1.

The following is the LP-relaxation of Problem 1.

Problem 2. Minimize
X

(u,v)∈E′
wuvduv

664



subject to

duv − pu + pv ≥ 0 for (u, v) ∈ E′ (7)

ps − pt ≥ 1 (8)

−
X

v:(u,v)∈E′
wuvduv ≥ −1

2

X
v:(u,v)∈E′

wuv for u ∈ V (9)

−
X

u:(u,v)∈E′
wuvduv ≥ −1

2

X
u:(u,v)∈E′

wuv for v ∈ V (10)

duv ≥ 0 for (u, v) ∈ E′ (11)

pu ≥ 0 for u ∈ V (12)

For the corresponding LP-relaxation of the minimum cut
problem, the conditions represented by Inequalities (9) and
(10) are not needed, and it has been proved that each coor-
dinate of every extreme point solution is 0 or 1 [10], which is
not true for the Problem 2. Actually, the optimal solutions
of Problem 1 do not coincide with those of Problem 2 as
shown in Figure 3.

As hardness results on finding an s-t IKN-community,
stronger results have been proved very recently. In [8],
NP-completeness was proved for the problem of deciding
whether an s-t IKN-community (IKN-weak-community) ex-
ists or not for given s and t even if weights are restricted
to be 1. Flake, Tarjan and Tsioutsiouliklis [3] also proved
NP-completeness for the problem of deciding whether an
IKN-community (IKN-weak-community) exists or not in a
given graph, which implies NP-completeness of the above s-
t IKN-community (IKN-weak-community) problem without
restriction on weights.

The following proposition, which claims that an IKN-
community can be constructed from a set satisfying only
Condition 1′ or Condition 2, may help the task of Web com-
munity discovery. The constructed set might be a whole set
or an empty set.

Proposition 4. (1) For any subset C ⊆ V that satisfies
Condition 1′, the minimum IKN-community including C can
be constructed.
(2) For any subset C ⊆ V that satisfies Condition 2, the
maximum IKN-community included in C can be constructed.

Proof. (1) Let Bout(C) denote the set of vertices in
V − C that does not satisfy Condition 2. Let C0 = C,
and define Ci+1 as Ci ∪ Bout(Ci). Then, Ci+1 also satisfies
Condition 1′ when Ci satisfies that condition. Since C0 sat-
isfies the condition, all Ci satisfy it. The sequence C0, C1, ...
is monotonically increasing and |V | < ∞, so there exists n0

such that Cn = Cn0 for all n ≥ n0. Then, Cn0 is an IKN-
community because Bout(Cn0) = ∅. Since the minimum
community including Ci trivially contain Bout(Ci), Cn0 is
the minimum IKN-community including C.
(2) This can be proved similarly.

If both of two sets C1 and C2 satisfy Condition 1′, then
C1 ∪ C2 also satisfies that condition, thus we can also con-
struct the minimum IKN-community containing both of them.
Similarly, we can find the maximum IKN-community con-
tained in both of two sets that satisfy Condition 2. There-
fore, different IKN-communities can be found by using a set
of IKN-communities. (See Figure 4.)

C4
C1

C2

C3

Figure 4: C3 is the minimum IKN-community con-
taining C1∪C2. C1 is the maximum IKN-community
contained in C3 ∩ C4.

3. GRAPH PARTITIONING BY
COMMUNITY TOPOLOGY

3.1 Definition
Let C be a class of subsets of V in a graph G = (V, E). For

each vertex u, define the class U(u) of neighborhoods of u as
the set of subsets in C that contain u, that is, U(u) = {C :
C ∈ C, u ∈ C}. Consider the following equivalence relation
R:

uRv
def⇔ U(u) = U(v).

We call partitioning by this equivalence relation partitioning
by C. In this paper, we consider partitioning by the class of
IKN-communities.

By regarding each equivalence class as one vertex, we can
generate a contracted graph. We can obtain a higher level
partitioning by the class of IKN-communities in the con-
tracted graph. This procedure can be repeated until every
equivalence class becomes composed of only one vertex.

In this paper, we propose a hierarchical partitioning by
the class of IKN-communities through repeating partitioning
and contraction.

See Figure 5 for an example of partitioning by the class of
IKN-communities and a contracted graph for a partitioning.

G G’

1

1

1

1

1

2

2 2

2

2

Figure 5: Left: Partitioning by the class of IKN-
communities (Every edge weight is one.), Right:
Contracted graph of the left graph.

665



s t
1 00.5

0.5 0.5

0.5

0.50.5

0.5

0.5 0.5

0.5 0.5

0.5
0.5 0.5

0

0

0

0

0

0
0

0
0

0

0

00
0

0

s t
1 01

1 0

0

01

1

1 0

1 0

0
0 0

0

0

0

0

0

0
1

1
0

0

0

00
0

0

Figure 3: Right: Optimal solution of Problem 2 (value of objective function:1), Left: Optimal solution of
Problem 1 (value of objective function:2). Bold numbers represent pu, and italic numbers represent duv. Note
that duv for each edge (u, v) directed to left, which is 0, is omitted.

Considering NP-completeness for the problem of deciding
whether an s-t IKN-community exists or not for arbitrary
two vertices s and t, partitioning by the whole class of IKN-
communities is not practical. Here, we propose a method
that finds a subclass of IKN-communities efficiently and thus
generates a coarse partitioning by the subclass.

The maximum flow algorithms are efficient but IKN-com-
munities might not be found by them as commented in Re-
mark 1. However, the sets found by them are always s-t
quasi-IKN-communities C, so we only have to check that
the source s satisfies Condition 1′ and the sink t satisfies
Condition 2 to decide whether C is an IKN-community or
not. Here, we consider the problem of finding the subclass
of IKN-communities that can be found by an s-t maximum
flow algorithm for all pairs of vertices s and t.

For an undirected graph G(V, E) with n vertices, existence
of a set D of n − 1 cuts that satisfies the following property
is known [10].

Property 1 For arbitrary two vertices s and t, there exists
an s-t minimum cut in D.

Furthermore, there exists a set D that has Property 1 and is
represented by a tree T called a Gomory-Hu tree [10] which
is composed of vertices in V and n − 1 edges representing
n−1 cuts in D. A Gomory-Hu tree can be efficiently created
by repeatedly using a maximum flow algorithm n− 1 times.
We propose a method that finds IKN-communities among
the sets partitioned by the n− 1 minimum cuts represented
by a Gomory-Hu tree.

Note that there might be minimum cuts which are not
represented by one Gomory-Hu tree, and there might exist
other Gomory-Hu trees representing different set of mini-
mum cuts for the same graph. Thus, our proposed method
does not check whether S(fs,t) is an IKN-community for all
s, t ∈ V . In order to raise the possibility of finding IKN-
communities, we adopt the following heuristics.

Define T (fs,t) as the set of vertices from which t is reach-
able in the residual graph for a flow fs,t. Then, T (fs,t) can
be also proved to be a t-s quasi-IKN-community. Note that
T (fs,t) can coincide with V − S(fs,t) but is different gener-
ally. In the process of constructing a Gomory-Hu tree, we
check both sets S(fs,t) and T (fs,t) after every finding maxi-
mum flow fs,t, and adopt the one that is an IKN-community
as a minimum cut, if either S(fs,t) or T (fs,t) is an IKN-
community.

For example, the leftmost graph in Figure 6 has Gomory-
Hu trees expressed by the bottom graphs in the figure that
represent different sets of minimum cuts, which are also
drawn by broken lines in the corresponding top graphs of

0

1

2

3

4

5

0

1

2
3

4

5

3
3
3

2

2

0

1

2
3

4

5

3
3
3

2

2

0

1

2
3

4

5

0

1

2
3

4

5

Figure 6: Example of Gomory-Hu trees representing
different set of minimum cuts.

the figure. Note that the middle Gomory-Hu tree does not
have the minimum cut {0, 1}, {2, 3, 4, 5}, but the rightmost
one does, where set {2, 3, 4, 5} is an IKN-community. Note
that, for this graph, the rightmost Gomory-Hu tree is con-
structed by the above heuristics.

4. PRELIMINARY EXPERIMENTS

Keyword learning theory jaguar
Level 0 1 0 1
#Vertex 2919 366 2834 559
#Edge 6015 147 19226 169
#(Isolated vertex) 240 258 377 420
#(Connected component) 22 4 52 9
#IKN-community 117 12 147 20
#(Equivalence class) 126 12 182 27

Table 1: The number of vertices, edges, isolated
vertices, and connected components (that are not
isolated vertices) in two graphs created by the pro-
cedure Subgraph, and the number of found IKN-
communities (that are not connected components
themselves), and equivalence classes (that are not
isolated vertices) partitioned by the class of the
found IKN-communities.

We conducted experiments on graph partitioning by a
subclass of IKN-communities, using subgraphs of the WWW
that are composed of the pages related to given keywords.
For given keywords, we construct a subgraph by using the
Subgraph procedure proposed by Kleinberg [6], which re-
trieves t pages by using a search engine and adds all pages
that are linked from or linking to at least one of them,
though the number of pages linking to is restricted within

3.2 Efficient Algorithm for Partitioning

666



(#pages:1590)

0 tip.psychology.org (Theory Into Practice (TIP))

2 www.usask.ca/education/coursework/802papers/mergel/brenda.htm (Learning Theories of Instructional Design)

4 www.funderstanding.com/about learning.cfm (Funderstanding - About Learning)

other 928 pages(45 pages)

1 tip.psychology.org/theories.html ( TIP: The Theories )

other 10 pages(0 pages)

3 www.ozline.com/learning/theory.html (ozline - Working the Web for Education)

other 58 pages(0 pages)

7 www.exploratorium.edu/IFI/resources/research/constructivistlearning.html (Constructivist Learning Theory)

other 2 pages(0 pages)

8 www.educationau.edu.au/archives/cp/04.htm (Learning Theories)

other 7 pages(0 pages)

other 53 partitions

(#pages:656)

10 www.learningtheory.org (COLT: Computational Learning Theory)

59 www.crm.es/Activities/Act2003-04/LearningTheory/LearningTheoryhome.htm (Mathematical Foundation of Learning Theory)

61 theory.lcs.mit.edu/COLT-98

other 462 pages(9 pages)

19 plato.stanford.edu/entries/learning-formal (Formal Learning Theory)

other 2 pages(0 pages)

43 www.cis.udel.edu/ case/colt.html ( John Case’s COLT Page)

other 19 pages(0 pages)

51 liinwww.ira.uka.de/bibliography/Ai/colt.html (Bibliography on Computational and Algorithmic Learv...)

other 8 pages(0 pages)

52 www.esat.kuleuven.ac.be/sista/natoasi/ltp2002.html (NATO-ASI LTP2002)

other 15 pages(0 pages)

other 15 partitions

(#pages:179)

35 w4.evectors.it/itEntDirectory/topic?topic=learning theory (w4)

106 www.unimelb.edu.au/HB/subjects/468-110.html (468-110 Advanced Learning Theory)

other 125 pages(0 pages)

other 6 partitions

(#pages:1)

40 psych.fullerton.edu/jmearns/book3.htm (Applications of a Social Learning Theory of Personv...)

(#pages:6)

42 www.acm.org/sigchi/chi96/proceedings/papers/Soloway/es txt.htm (Learning Theory in Practice: Case Studies of Learv...)

other 4 pages(0 pages)

other 1 partitions

other 265 partitions

Figure 7: Result for keywords “learning theory.”

d pages. In our experiment, we used search engine Google
(www.google.co.jp), and set t and d to 200 and 50, respec-
tively. Note that we removed all intrinsic links [6], namely,
links to pages of the same domain, as Kleinberg did. By the
procedure Subgraph, graphs with the number of vertices,
edges, isolated vertices and connected components shown in
Table 1 are obtained for two keywords “learning theory”
and “jaguar”.

We hierarchically partitioned the obtained graphs by us-
ing our proposed graph partitioning algorithm two times.
Namely, in the level-1 partitioning, we used a contracted
graph that is created by regarding each equivalence class
obtained in the level-0 partition as one vertex. As shown
in Table 1, 117 and 147 IKN-communities are found in the
level-0 partitioning, and 12 and 20 IKN-communities are
found in the level-1 partitioning.

The results of hierarchical partitioning for the two graphs

are shown in Figure 7 and Figure 8. We ranked each par-
tition by the highest Google rank of the pages included in
the partition. In terms of this ranking, the figures show
the top 5 level-1 partitions and the top 5 level-0 partitions
for each of those level-1 partitions. The pages accompanied
with their URLs and titles are ones of which Google rank is
within 200 and is within the top 3 among the members of
each level-0 equivalence class. The number of pages whose
URLs and titles are not described is shown after the word
“other”, and the number of those pages whose Google rank
is within 200 is also shown in the following parentheses.

Figure 7 is the result for keywords “learning theory”.
There are mainly two learning theories, one is in the area
of education and psychology, the other is computational
learning theory. The second level-1 partition consists of
the pages related to computational learning theory, and the
other level-1 partitions consist of the pages related to edu-

667



(#pages:613)

0 www.jaguar.com/global/default.htm (Jaguar Cars)

120 jaguar.anort.com

152 chulkov.com/jaguar/jaguar.htm (&#160;JAGUAR X-Type Best in the world the automobiv...)

other 66 pages(0 pages)

2 www.jaguar-racing.com

other 34 pages(0 pages)

3 www.jaguar-racing.com/uk/flash

other 6 pages(0 pages)

6 www.jaguarcars.com (Jaguar Cars)

other 44 pages(0 pages)

7 www.jaguarcars.com/jp

8 www.jag-lovers.org (Jag-lovers - here to provide everything for the Jav...)

9 www.jag-lovers.org/brochures (Jag-lovers unique original Brochures and Adverts cv...)

other 207 pages(30 pages)

other 33 partitions

(#pages:1)

1 www.jaguar.com/de/de/home.htm (home)

(#pages:984)

4 www.apple.com/macosx (Apple - Mac OS X)

5 www.apple.com/macosx/overview (Apple - Mac OS X - Overview)

44 www.macattorney.com/tutorial.html (OS X 10.2 Jaguar Troubleshooting)

other 522 pages(7 pages)

11 www.schrodinger.com (Schr&ouml;dinger)

other 12 pages(0 pages)

12 www.schrodinger.com/Products/jaguar.html (Schr&ouml;dinger: Jaguar Program)

other 10 pages(0 pages)

16 www.jaguarmodels.com (Jaguar Models - Main Page (resin model kits))

other 4 pages(0 pages)

35 www.oneworldjourneys.com/expeditions/jaguar (One World Journeys — Jaguar: Lord of the Mayan Junv...)

other 5 pages(0 pages)

other 25 partitions

(#pages:7)

19 dspace.dial.pipex.com/agarman/jaguar.htm (Jaguar)

other 1 pages(0 pages)

37 www.bluelion.org/jaguar.htm (Panthera onca)

other 2 pages(0 pages)

other 1 partitions

(#pages:1)

20 dspace.dial.pipex.com/agarman/bco/jaguar.htm (Jaguar)

other 443 partitions

Figure 8: Result for keyword “jaguar.”

cational learning theory, though those partitions are small
except the first one. The number preceding each URL shows
its Google rank, and you can see that the top 10 pages
of Google search result is biased toward educational learn-
ing theory. Our result indicates that partitioning by IKN-
communities can be used to produce balanced search results.

Figure 8 is the result for keyword “jaguar”. The top 2
level-1 partitions are related to the automobile, the third
one is mainly composed of pages related to the computer and
the fourth and fifth ones are related to the animal. In the
computer partition, the first level-0 partition, whose mem-
bers are in majority, is related to the Mac OS, the second
and third level-0 partitions consist of the pages of a software
company producing a package called Jaguar, and the fourth
and fifth level-0 small partitions are composed of pages not
related to the computer.

5. CONCLUDING REMARKS
The method finding IKN-communities on the way to con-

structing a Gomory-Hu tree is computationally efficient. It
runs in O(mn2 log n) time4 by using a maximum flow al-
gorithm developed by Sleator and Tarjan [9], where m is
the number of edges and n is the number of vertices. How-
ever, there might be many IKN-communities that cannot
be found by this method. As a result, partitions obtained
by the method are possibly too coarse. Therefore, the algo-
rithm that can efficiently find more IKN-communities should
be developed. One candidate of such algorithms is a method
that solves Problem 1 using some optimization method.

The efficient method based on edge betweenness devel-

4This computational time can be reduced by using a faster
algorithm [5], though its time bound is more complicated.

668



oped by Girvan and Newman [4] may be used to find IKN-
communities. They conducted experiments for computer-
generated graphs, in which 128 vertices are partitioned into
4 groups with 32 vertices, and each vertex is connected to
16 other vertices by randomly-generated edges, k of them
are vertices in other groups and 16 − k of them in the same
group. According to the reported result, their algorithm
extracted 4 groups completely when k ≤ 6. Note that 4
groups in their graphs are IKN-communities when k ≤ 7.
Their method does not guarantee that any vertex satisfies
the conditions of IKN-communities for any vertex subset ob-
tained by the method, and the method can not find overlap-
ping IKN-communities. But their method runs in O(mn2)
time and has possibility that larger IKN-communities can be
found, so we think that further study on using their method
to find IKN-communities should be done.

6. ACKNOWLEDGEMENTS
We thank two doctor-course students in Tokyo Institute of

Technology, Mr. Shigezumi and Mr. Yamamoto, and their
supervisor Prof. Watanabe for having interest in our pro-
posed problems and proving hardness results on them. We
also thank anonymous reviewers for their helpful comments.

7. REFERENCES
[1] S. Brin and L. Page. The anatomy of a large-scale

hypertextual web search engine. Computer Networks,
30(1-7):107–117, 1998.

[2] G. Flake, S. Lawrence, and C. Giles. Efficient
identification of web communities. In Proceedings of
the 6th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
150–160, 2000.

[3] G. Flake, R. Tarjan, and K. Tsioutsiouliklis. Graph
clustering and mining cut trees. Internet Mathematics,
1(3):355–378, 2004.

[4] M. Girvan and M. Newman. Community structure in
social and biological networks. Proc. Natl. Acad. Sci.
USA, 99:7821–7826, 2002.

[5] V. King, S. Rao, and R. Tarjan. A faster deterministic
maximum flow algorithm. Journal of Algorithms,
17:447–474, 1994.

[6] J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46(5):604–632,
1999.

[7] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the web for emerging
cyber-communities. Computer Networks,
31(11-16):1481–1493, 1999.

[8] A. Nakamura, T. Shigezumi, and M. Yamamoto. On
NK-community problem. In Proceedings of the Winter
LA Symposium 2005, pages 12.1–12.8, 2005.

[9] R. Tarjan. Data Structure and Network Algorithm.
Society for Industrial and Applied Mathematics, 1983.

[10] V. Vazirani. Approximation Algorithms.
Springer-Verlag, 2001.

669


